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Abstract 
This paper explores the mathematics behind optimal portfolio construction 
when relative utility and risk are considered together in a general sense. I de-
rive the portfolio optimization problems when subject to both a general liner 
constraint and a constraint to tracking error (a quadratic constraint), the 
most pervasive constraint placed on delegated portfolio managers. This un-
ifies three very influential papers from the evolution of optimal portfolio 
theory. In addition, I also analyze the general linear constraint when applied 
to Sharpe Ratio maximization. When applied together, these formulations 
can allow principals and agents to better analyze alternatives and negotiate 
contracting in order to ensure that the constraints generate proper utility 
maximization. 
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1. Introduction 

The purpose of this essay is to generalize the Markowitz portfolio choice prob-
lem and derive solutions to the variance minimization and utility maximization 
problems considering both general linear constraints and a single quadratic con-
straint. The Markowitz portfolio choice problem (introduced in [1]) has been 
studied from many different perspectives. The problem is essential to minimize 
the variance of a linearly combined set of correlated random variables (returns), 
conditioned on the mean of these variables, with a constraint on the scalers or 
weights. The set of all such points is called the efficient frontier, i.e. the mini-
mum variance envelope. The modern expression of the optimization problem 
outlined by Markowitz is due to Merton [2] who derives the solutions analyti-

How to cite this paper: Stowe, D.L. (2019) 
Portfolio Mathematics with General Linear 
and Quadratic Constraints. Journal of Ma-
thematical Finance, 9, 675-690. 
https://doi.org/10.4236/jmf.2019.94034 
 
Received: July 12, 2019 
Accepted: October 27, 2019 
Published: October 30, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jmf
https://doi.org/10.4236/jmf.2019.94034
https://www.scirp.org/
https://doi.org/10.4236/jmf.2019.94034
http://creativecommons.org/licenses/by/4.0/


D. L. Stowe 
 

 

DOI: 10.4236/jmf.2019.94034 676 Journal of Mathematical Finance 
 

cally using linear algebra. His solution considers the problem as a quadratic 
programming problem with two predefined linear constraints, the weight con-
straint (scalar constraint) and the expected return constraint (the mean). The 
statement of the problem is as follows. Matrices and vectors are in boldface. 

w - n × 1 weight vector of the portfolio. 
Ω - n × n covariance matrix (symmetric and positive definite). 
r - n × 1 vector of expected returns. 
1 - n × 1 vector of 1’s. 

min s.t. 1 and .r′ ′ ′= =
w

w w w w r1Ω                (1.1) 

However, the problem can also be solved with a general linear constraint as 
demonstrated by Best and Grauer [3]. The general linear constraint opens up 
possibilities to make considerations for and constraints on portfolio beta, sector 
or industry weights, multi-stage optimization, etc. I derive the solution to the 
general linear constraint problem in part 2 of this essay to familiarize the reader 
with my notation and so I can use it in my derivation of the maximum Sharpe 
Ratio problem. 

However, since the original introduction of the model, modern thinking on 
portfolio construction (and financial theory in general) has evolved to consider 
the differences in incentives between the individual making the portfolio choices, 
the agent, and the individual hiring the delegated manager, the principal. This 
spawned a theory of active portfolio management, or delegated portfolio man-
agement, which centers on a time series of excess returns, essentially the returns 
of a security or portfolio in excess of a benchmark. This is a space transforma-
tion that causes agents to optimize in excess return space rather than raw return 
space (or even another excess return space with a different benchmark). Princip-
als are then potentially motivated to constrain agent behavior in this space by 
putting limits on the variance of the delegated manager’s excess return, i.e. their 
tracking error variance. 

There are many modern examples of papers analyzing delegated or relative 
problems. Bisburgen, Brandt, and Koijen [4] revisit the problem of multiple ex-
ternal agents relaxing the assumption about the certainty of the agents’ risk ap-
petites and conclude that serious inefficiency exists without this assumption. 
Blake et al. [5] use the BBK framework and apply it to the delegated relation-
ships in the pension industry and, among many other things, show that the de-
legated incentive is pervasive in professional investment management. Cuoco 
and Kaniel [6] analyze the linkage between compensation contracts and excess 
performance in delegated portfolio management. However, the delegated con-
tracting problem can probably best be summed up by analyzing the tracking er-
ror constraint. 

The first to analyze a constraint to tracking error in the context of a Marko-
witz portfolio choice model was Roll [7]. In this paper, Roll demonstrates the 
differences in portfolio choice for a decision-maker optimizing over variance 
versus one optimizing over tracking error. In a further refinement, Jorion [8], 
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applies a tracking error constraint to a mean/variance optimization problem, 
thus introducing a quadratic constraint into the problem. Whereas the Marko-
witz problem, under linear constraints, forms a minimum variance set shaped 
like a parabola in mean and variance, the tracking error constraint causes the ef-
ficient set to be shaped like an ellipse, with the feasible portfolios inside. See 
Figure 1 for a visual example of these curves.  

The closest application of a utility problem directly to Roll’s TEV frontier by 
Bertrand [9]. In this paper, he considers the problem of a fixed risk aversion 
constraint in mean/variance and its ability to generate preferred portfolios.  

The variance minimization problem is one approach to analyzing portfolio 
choice. However, it is also reasonable to consider the problem of maximizing 
utility. The popular utility function considered in this problem is a “quadrat-
ic-style” utility where the investor’s utility increases in the expected return, ′w r , 
and decreases in the expected risk or variance, ′w wΩ . And, the parameter, a, 
measures the sensitivity or the tradeoff: the level of risk aversion. The relation-
ship is expressed as follows: 

max a′ ′−
w

w r w wΩ                       (1.2) 

Figure 2 shows a few of the curves depicted in Figure 1 with iso-utility curves 
corresponding to the same level of risk aversion, a.  

Modern extensions of the Markowitz portfolio choice problem tend to focus 
more on altering something fundamental about the model or analyzing a specific 
constraint. For example, Chen et al. [10] optimize over semivariance but the 
model is adjusted to account for uncertainty in variable estimation based on 
historical data. Or authors may use modern techniques to analyze traditional 
problems like Kar et al. [11] that optimizes over the Sharpe Ratio and the Value 
at Risk simultaneously. These papers are very interesting and practical consider-
ations for real world applications of this theory.  

The primary contribution of this essay is in solving the problem proposed by 
Jorion [8], optimizing with a tracking error constraint, under the conditions of 
the general linear constraint of Best and Grauer [3]. This expands and unifies 
two important developments in the mathematical analysis of the original Mar-
kowitz portfolio optimization model. I solve this problem with both a variance 
optimization approach and a utility maximization approach. The remainder of 
this paper precedes as follows. In section 2, I revisit the Best and Grauer [3] 
analysis with only a general linear constraint. In section 3, I derive the solution 
to the problem with the addition of a quadratic constraint (the tracking error 
constraint). This section contains this paper’s primary contribution and is a sig-
nificant development in the ability to apply the general linear constraint to ana-
lyze modern delegated contracting with constraints and considerations to rela-
tive risk. In section 4, I consider an alternative utility function, the maximization 
of the Sharpe Ratio, Sharpe [12], given these constraints. Lastly, section 5 con-
cludes and suggests potential paths of future research. 
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Figure 1. Optimal sets in mean/standard deviation space given differing constraints. This figure 
depicts mean/standard deviation space. The three curves open to the right are hyperbolas. They 
are solutions to quadratic programming problems with linear constraints. Notably, if the hori-
zontal axis were in variance, these would be parabolas, and the circular shape would be an el-
lipse. The furthest curve to the left is the minimum variance envelope derived my Markowitz 
[1]. The next curve is a Markowitz minimization problem with additional linear constraints (a 
beta constraint in this case). The point labeled Benchmark is a portfolio that an arbitrary dele-
gated investment manager would be given. The curve passing through the benchmark is the 
minimum tracking error curve, the TEV Frontier, derived by Roll [7]. The ellipse is the optimi-
zation of the Markowitz problem subject to tracking error constraint (a quadratic constraint) as 
proposed in Jorion [8]. 

 

 

Figure 2. Optimal sets in mean/standard deviation space given differing constraints. This figure 
depicts mean/standard deviation space. The dotted lines represent the iso-utility curves asso-
ciated with maximizing a utility function in this space when subject to a few of the constraints 
discussed in this paper. The leftmost curve and the highest iso-utility curve is the standard 
Markowitz [1] optimization. The next highest is the optimization when subject to a tracking 
error volatility constraint as discussed in Jorion [8], and the lowest is subject to tracking error 
optimization (rather than standard deviation optimization) as in Roll [7]. Depending on the 
level of risk aversion, i.e. the “slope” of the iso-utility relationships, the choice along the TEV 
Frontier and the TEV Ellipse can result in situations where the utility curves flip-flop, making 
one higher than the other. The Markowitz optimization, however, is always the highest. 
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2. Mean/Variance Optimization with a General Linear  
Constraint 

The general linear constraint problem analyzed in Best and Grauer [3] comes in 
two forms, variance minimization given linear constraints and utility maximiza-
tion given linear constraints. Although these problems are already solved, I re-
peat this calculation to familiarize the reader with my notation and so I can refer 
to my solutions throughout the paper. Additionally, I leave the expressions in 
the purest form possible, without making extraneous substitution. As before, the 
notation used throughout this paper is as follows: 

w - n × 1 weight vector of the portfolio. 
Ω - n × n covariance matrix (symmetric and positive definite). 
E - n × k matrix of constraint conditions. 
c - 1 × k vector of constraint constants. 

2.1. Minimize Variance with a General Linear Constraint 

The variance function with a weight vector and a covariance matrix is ′w wΩ . 
We want to minimize this function given a general linear constraint on the 
weights as follows: 

min s.t. .′ ′ =
w

w w w E cΩ  

We introduce a new vector, Λ , to use as Lagrange multipliers: 
Λ  - k × 1 vector of Lagrange multipliers. 
The Lagrangian is: 

( ) .L ′ ′= − −w w w E cΩ Λ  

We differentiate the Lagrangian and set it equal to zero to find the critical 
values: 

2 .− =w E 0Ω Λ  

Solving for the weight vector yields: 

11 .
2

−=w EΩ Λ  

Next, we plug this weight vector into the condition to solve for the Lagrange 
multipliers: 

11 .
2

−′ ′ ′= =w E E E cΛ Ω
 

( ) 112 .
−−′ ′= E E cΛ Ω  

Plugging this value into the expression for the weight vector above reveals the 
optimal weight vector given the general linear constraint: 

( ) 11 1 .
−− −′ ′=w E E E cΩ Ω                   (2.1.1) 

This is a beautiful expression without substitution. We can apply this to the 
variance function to calculate the variance given the constraints: 

https://doi.org/10.4236/jmf.2019.94034


D. L. Stowe 
 

 

DOI: 10.4236/jmf.2019.94034 680 Journal of Mathematical Finance 
 

( ) 11 .
−−′ ′ ′=w w c E E cΩ Ω  

This is an equally beautiful expression. To solve this with the Markowitz con-
straints from Equation (1.1), we would make: 

[ ],=E r1  

and 

1
.

r
 

=  
 

c  

E is essentially an augmented matrix with a column of 1s and a column of ex-
pected returns for each security. c is a 2 × 1 matrix where the constraint on the 
top represents the sum of all the weights equaling 1 and the bottom r 
representing the sum of all the weights times the expected returns equaling a 
target weight, the weighted average expected return. The expression of the Mar-
kowitz minimum variance envelope with these constraints is: 

[ ] [ ]
1

11 1
.

r r

−
−

′    ′′ =         
w w r r1 1Ω Ω  

And, we can vary the constraint, r, to trace out the entire frontier as depicted 
in Figure 1. Table 1 includes the parameters used to make the calculations in 
the figures. 

2.2. Maximize Utility with a General Linear Constraint 

The utility function in Equation (1.2) can also be computed with a general linear 
constraint. This form of utility is particularly convenient because it is expressed 
as a quadratic programming problem. We introduce a new constant into this 
utility, the risk aversion level, which is essentially the slope of the utility function 
(in variance) and reintroduce the return vector: 

a - level of risk aversion. 
r - n × 1 vector of expected returns. 
The problem is as follows: 

max s.t. .a′ ′ ′− =
w

w r w w w E cΩ  

We set up the Lagrangian: 

( ) .L a′ ′ ′= − − −w r w w w E cΩ Λ  
 

Table 1. Numerical values used to build the figures. 

r b Ω 

0.06 
0.10 
0.13 
0.04 

0 
1 
0 
0 

0.0111 
0.0064 
0.0052 
0.0013 

0.0064 
0.0184 
0.0095 
0.0084 

0.0052 
0.0095 
0.0178 
0.0068 

0.0013 
0.0084 
0.0068 
0.0125 

Every figure and calculation done in this paper were built with these three matrices. These values were cho-
sen somewhat arbitrarily for ease of exposition. The final examples are mildly representative of a realistic 
scenario even though the values are not calculated from real world data. 
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Differentiate the function and set the conditions to zero: 

2 .a− − =r w E 0Ω Λ  

Solve for the weight vector: 

( )11 .
2a

−= −w r EΩ Λ  

Reapply the constraint condition to calculate Λ : 

( ) 11 .
2a

−′′ = − =w E r E E cΛ Ω  

( ) ( )11 1 2 .a
−− −′ ′ ′= −E E E r cΛ Ω Ω  

And lastly, plug Λ  into the weight vector, do some rearranging, and this 
yields the optimal weights: 

( ) ( )( )1 11 1 1 1 11 .
2a

− −− − − − −′ ′ ′ ′= + −w E E c r E E E E rEΩ Ω Ω Ω Ω    (2.2.1) 

This expression is messier than above but after the rearranging, one can see 
that the final solution in Equation (2.2.1) is simply the minimum variance solu-
tion from Equation (2.1.1) shifted by an additional term.  

2.3. Optimize in Excess Return/Tracking Error 

The problem proposed by Roll [7] suggests that delegated managers optimize in 
excess return/tracking error volatility (TEV) rather than mean/variance. The 
solutions to these problems are identical to the solutions derived in sections 2.1 
and 2.2 albeit with a different weight vector and different constraints. We need 
to introduce another weight vector into the process: 

b - n × 1 constant vector of weights (for a benchmark). 
Tracking error variance and excess return are then defined as follows: 
( ) ( )′− −w b w bΩ  - Tracking error variance (TEV). 
( )′−w b r  - Excess return. 
Since b is a constant vector, we could substitute it into any of the expressions 

in 2.1 and 2.2 and still have a valid derivation. Thus, similar to Equation (2.1.1), 
the weight vector that solves the TEV minimization problem: 

( ) ( ) ( )min s.t. .′ ′− − − =
w

w b w b w b E cΩ  

is: 

( ) ( ) 11 1 .
−− −′ ′− =w b E E E cΩ Ω                 (2.3.1) 

And, the weight vector that solves a utility maximization problem: 

( ) ( ) ( ) ( )max s.t. .a′ ′ ′− − − − − =
w

w b r w b w b w b E cΩ  

is: 

( ) ( ) ( )( )1 11 1 1 1 11 .
2a

− −− − − − −′ ′ ′ ′− = + −w b E E E c r E E E E rΩ Ω Ω Ω Ω  (2.3.2) 

Because we are in excess return space, the constraints on this problem need to 
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change slightly. To replicate the solutions in Roll (1992), the constraint vector 
needs to be set as follows: 

0
.

w br r
 

=  − 
c  

Taken the two vectors, w and b, which should each normalize to 1, their dif-
ference is 0. Also the second constraint is now the excess return constraint, 

w br r− , in order to draw the curves appropriately. See Figure 3 for a representa-
tion of these curves drawn in tracking error space. 

3. Optimize with an Additional Tracking Error Constraint 

The variance optimization problem given a tracking error constraint was origi-
nally solved in the context of portfolio choice in Jorion [8]. In this framework, 
he used the standard Markowitz constraints, the length of the weight vector and 
the weighted average expected return, to derive an ellipse in mean/variance 
space inside of which contains all portfolios with tracking error less than the 
constraint. In this section, which is the primary contribution of this essay, I de-
rive “Jorion’s ellipse” with the general linear constraint of Best and Grauer [3]. 
This contribution unifies the analysis of linear constraints on the portfolio opti-
mization model and the significance of relative portfolio optimization to modern 
delegated contracting. The closed-form nature of these solutions gives analysts a 
conceptual, theoretical framework to perform comparative analysis without 
having to rely on numerical simulation. 
 

 

Figure 3. Optimal sets in excess return and tracking error given differing constraints. 
This figure depicts tracking error volatility/expected excess return space. The dotted lines 
represent iso-utility curves associated with maximizing a utility function subject to the 
constraints discussed in this paper. The TEV frontier from Roll [7] is the left-most curve 
and is touches the axis at the origin, where the benchmark plots. This is a degenerate 
hyperbola in this space. The rightmost curve is where the Markowitz efficient frontier 
plots in this space. The ellipse from previous figures is now a vertical line at the location 
of the tracking error constraint. This example shows how the tracking error constraint 
affects utility optimization when compared to the unconstrained choice.  
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3.1. Optimize Var with General Linear and Tracking Error  
Constraints  

As with before, we will need a couple new variable definitions: 
2T  - Tracking error variance constraint. 

λ  - Lagrange multiplier for the tracking error constraint. 
We, once again, begin by stating the problem: 

( ) ( ) 2min s.t. , .T′′ ′ = − − =
w

w w w E c w b w bΩ Ω  

The Lagrangian then follows: 

( ) ( ) ( )( )2 .L Tλ ′′ ′= − − − − − −w w w E c w b w bΩ Λ Ω  

Next we differentiate by w as set the resulting equations equal to zero: 

( )2 2 2 .λ− − − =w E w b 0Ω Λ Ω Ω  

Solving for w yields the following vector: 

( ) ( )11 2 .
2 1

λ
λ

−= −
−

w E bΩ Λ Ω  

Applying the first constraint allows us to calculate one of the Lagrangian 
terms, Λ : 

( ) ( ) 11 2 .
2 1

λ
λ

−′ ′ ′ ′= − =
−

w E E b E cΛ Ω Ω  

( ) ( )( )11 2 1 2 .λ λ
−−′ ′ ′= − +E E c E bΛ Ω  

Substituting Λ  back into the vector for w yields: 

( ) ( )( )1 11 1 1 1 .
1
λ
λ

− −− − − −′ ′ ′ ′= + −
−

w E E E c E E E E b bΩ Ω Ω Ω  

Because the second condition is easier to calculate if we consider the vector (w 
– b), we can subtract b from the vector above: 

( ) ( )( ) ( )( )1 11 1 1 1 .
1
λ
λ

− −− − − −′ ′ ′ ′− = − + −
−

w b E E E c b E E E E b bΩ Ω Ω Ω  

Applying the condition yields the following equation, after some minor sim-
plification: 

( ) ( )

( )( )
( )( )

( ) ( )

2
12 1

12 1

1 11 1 2

2

1

2
1

2

.

b

b

b

T

λ σ
λ
λ σ
λ

σ

−−

−−

− −− −

′− −

  ′ ′ ′= − − 
  ′ ′ ′+ − − 

′ ′ ′ ′ ′+ − +

=

w b w b

b E E E E b

b E E E E b

c E E c b E E E c

Ω

Ω

Ω

Ω Ω

 

where 2
bσ ′= b bΩ , the variance of the benchmark.  
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Lastly, after some profuse and tedious elementary algebra, and an application 
of the quadratic equation, the constant can be solved for: 

( )( )
( )

1 211 2 2

12 1

2
1 1 .

1
b

b

Tσλ
λ σ

−−

−−

 ′ ′ ′+ − +   = − ± −   −   ′ ′ ′− 

c b E E E c

b E E E E b

Ω

Ω
 

And the optimal solution for w is obtained by plugging in the constant: 

( )

( )( )
( )

( )( )

11 1

1 211 2 2

12 1

11 1

2
1 1

.

b

b

Tσ

σ

−− −

−−

−−

−− −

′ ′=

  ′ ′ ′+ − +  − ± −   ′ ′ ′−   

′ ′⋅ −

w E E E c

c b E E E c

b E E E E b

E E E E b b

Ω Ω

Ω

Ω

Ω Ω

      (3.1.1) 

This weight vector is the solution to the problem of optimizing variance given 
a general linear and a tracking error constraint. Additionally, as before, this vec-
tor is a transformation of the general minimum variance solution shifted by a 
term in two directions. The ± draws out half of the curve in one direction and 
the other half in the other direction. The linear constraints in combination with 
the tracking error constraint can cause there to be an infinite number, two, one 
or no real solutions to the problem. It is certainly notable that the two con-
straints can work in conflict and generate imaginary vectors. Essentially, if the 
linear constraints generate a curve that doesn’t pass through the tracking error 
constrained ellipse, then there will be no real solutions to this problem. 

3.2. Optimize Utility Given General Linear & Tracking Error  
Constraints 

The utility optimization problem can also be important to principals. Knowing 
the best possible outcome given a tracking error constraint could be a useful 
metric when deciding how strict to make this constraint. No new variables are 
needed. The statement of the problem is as follows: 

( ) ( ) 2max s.t. , .a T′′ ′ ′− = − − =
w

w r w w w E c w b w bΩ Ω  

The Lagrangian is then set up: 

( ) ( ) ( )( )2 .L a Tλ ′′ ′ ′= − − − − − − −w r w w w E c w b w bΩ Λ Ω  

Then it is differentiated and set to zero: 

( )2 2 .a λ− − − − =r w E w b 0Ω Λ Ω Ω  

Before moving to the next step, it is convenient to add 2a bΩ  to both sides: 

( ) ( )2 2 2 .a aλ− − − − − =r w b E w b bΩ Ω Λ Ω Ω Ω  

Then we should solve for w: 
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( ) ( )11 2 .
2

a
a λ

−= − − +
+

w r b E bΩ Ω Λ  

Applying the first constraint yields: 

( ) ( ) 11 2 .
2

a
a λ

−′′ ′ ′= − − + =
+

w E r b E E b E cΩ Λ Ω  

And solving for Λ  gives the following: 

( ) ( )( )( )11 1 2 2 .a a λ
−− −′ ′ ′ ′ ′= − − + −E E E r E b c E bΛ Ω Ω  

Next we plug Λ  back into the equation for w: 

( ) ( ) ( ) ( ) ( )( )
( ) ( )

11 1 1

11 1

1 2 2
2

 .

a a
a λ

−− − −

−− −

 
′ ′− = − − −  + 

′ ′ ′+ −

w b r b E E E E r b

E E E c E b

Ω Ω Ω Ω Ω

Ω Ω

 

Applying the final constraint yields the following after some algebra and can-
cellation: 

( ) ( )

( ) ( ) ( )( )( )

( )( ) ( )

2
11 1 1 1

11

2

1 2 2
2

.

a a
a

T

λ
−− − − −

−−

′− −

  ′ ′ ′= − − −  + 

′ ′ ′ ′+ − −

=

w b w b

r b E E E E r b

c b E E E c E b

Ω

Ω Ω Ω Ω Ω Ω

Ω

 

Solving for the constant is a simple process: 

( )
( )( ) ( )

( ) ( )( )( )

1 2
12 1

11 1 1 1

1 .
2 2 2

T

a a aλ

−−

−− − − −

 
′ ′ ′ ′− − −   

= ±    + ′ ′ ′  − − − 
 

c b E E E c E b

r b E E E E r b

Ω

Ω Ω Ω Ω Ω Ω
 

And plugging this back into the equation for w yields the optimal weight vec-
tors for utility when it is constrained by a general linear constraint and a track-
ing error constraint: 

( ) ( )

( )( ) ( )

( ) ( )( )( )

( ) ( ) ( )( )

1 11 1 1 1

1 2
12 1

11 1 1 1

11 1 1

2 2

2 2 .

T

a a

a a

− −− − − −

−−

−− − − −

−− − −

′ ′ ′ ′= − +

 
′ ′ ′ ′− − − 

±  ′ ′ ′− − − 
 

′ ′⋅ − − −

w E E E c E E E E b b

c b E E E c E b

r b E E E E r b

r b E E E E r b

Ω Ω Ω Ω

Ω

Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω

 (3.2.1) 

One can see that this solution is also a shift from the minimum variance port-
folio. Also, because the utility function is a parabola and the feasible set is an el-
lipse, the ± gives two solutions, one for the utility minimization problem and 
one for the utility maximization problem. This problem suffers from the same 
concerns regarding conflicting constraints. It is possible for this problem to have 
no real solutions if the constraints are chosen carelessly.  
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4. Maximize the Sharpe Ratio with General Linear  
Constraints 

With the introduction of the Capital Asset Pricing Model, finance theory went 
the direction of assuming a risk free asset when analyzing linear asset pricing 
problems. The Sharpe Ratio, introduced in Sharpe [12] and defined below:  

( )1 2Sharpe Ratio ,fr′ −
=

′

w r

w wΩ
 

is popular even today and assumes a risk free asset, which has expected return, 

fr . This ratio is simply the slope of a line connecting the risk free asset to any 
risky point in the Markowitz feasible set. See Figure 4 for representations of this 
line. 

Maximizing the slope of this line in mean/variance space generates what is 
known as the Capital Market Line (CML) and its intersection with the minimum 
variance envelope is called the market portfolio.  

The problem with the risk free asset in the context of a general solution to the 
variance minimization problem is that the covariance matrix, Ω , is no longer 
invertible because the risk free asset creates a row and column of zeros. Thus, 
Equation (2.1.1) is not a valid solution in this scenario. Finding the CML under 
the standard linear constraints of portfolio optimization is rather straight for-
ward but with a general linear constraint, it becomes slightly more complicated. 

 

 
Figure 4. Maximizing sharpe ratio and the associated iso-utility. This figure depicts 
mean/standard deviation space. The dotted lines represent the iso-utility curves asso-
ciated with a linear “Sharpe Ratio” maximization utility function. As one can see, the lines 
pivot around the risk free asset and depending on the goal, the Sharpe Ratio is the slope 
of the line. The maximum unconstrained iso-utility curve is the Capital Market Line 
(CML) and the point where it is tangent to the minimum variance envelope is the Market 
Portfolio. Also shown is the Sharpe Ratio utility optimized with a constraint to tracking 
error. It is maximized relative to the Jorion Ellipse. Lastly, the Sharpe Ratio utility asso-
ciated with the benchmark is depicted. 
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Maximizing the Sharpe Ratio with a General Linear Constraint  

Below is the solution to the Sharpe Ratio maximization problem. It is important 
to note that the solution to the following problem gives the weight vector for 
what is called the Market Portfolio if the constraints are the standard weight and 
return constraints. The statement of the problem is below: 

( )1 2max s.t. .fr
S

′ −
′= =

′w

w r
w E c

w wΩ
 

This formulation doesn’t lend itself well to quadratic programming, so in or-
der to solve it we will use a well-known result called the mutual fund theorem, 
from Merton [2], or the two fund theorem. Essentially, a linear combination of 
any two portfolios on the efficient envelope also resides on the efficient envelope. 
Thus, the solution to the maximization problem above is a linear combination of 
any other two portfolios on the efficient set. Therefore, I will use two of the re-
sults I already derived, ∗w  the variance minimization solution, Equation (2.1.1), 
and Uw  the utility maximization solution, Equation (2.2.1). 

( ) 11 1 .
−− −

∗ ′ ′=w E E E cΩ Ω  

( ) ( )( )1 11 1 1 1 1 .
− −− − − − −′ ′ ′ ′= + −Uw E E E c r E E E E rΩ Ω Ω Ω Ω  

And, their linear combination is below with weight x: 

( )1 .x x∗= − + Uw w w  

For simplicity, I define a new weight vector Hw ,  

( )( )11 1 1 .
−− − −

∗ ′ ′= − = −H Uw w w r E E E E rΩ Ω Ω  

And, the weight vector, w, becomes: 
.x∗= + Hw w w  

Plugging this vector into our function for S yields: 

( )1 22
.

2
fx r

S
x x
∗

∗ ∗ ∗

′ ′+ −
=

′ ′ ′− +

H

H H H

w r w r

w w w w w wΩ Ω Ω
 

Hw  is particularly convenient because it can be shown that  

( ) ( )1 11 1 1 1 0.
− −− − − −

∗′ ′ ′ ′ ′= − =Hw w c E E E r c E E E rΩ Ω Ω Ω Ω  

Thus, S becomes: 

( )1 22
.fx r

S
x

∗

∗ ∗

′ ′+ −
=

′ ′+

H

H H

w r w r

w w w wΩ Ω
 

Now basic calculus can be applied to find the maximum with respect to x. 

( )
( )3/22

d 0.
d

fx rS
x x

∗ ∗ ∗

∗ ∗

′ ′ ′ ′⋅ − − ⋅
= − =

′ ′+

H H H

H H

w w w r w r w w

w w w w

Ω Ω

Ω Ω
 

And the solution follows easily: 
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( )
.

f

x
r

∗ ∗

∗

′ ′⋅
=

′ ′⋅ −
H

H H

w r w w
w w w r

Ω
Ω

 

Next, we need to calculate the expected returns and variances to reparametrize 
the expression into the proper variables and find the constant: 

( )
( )

( )
( )

( )
( )

1 11 1 1

1 11 1 1 1

11

11 1
.

f

f

x
r

r

− −− − −

− −− − − −

−−

−− −

′ ′ ′ ′ ′ ′−
= ⋅

′ ′ ′ ′ ′ ′− −

′ ′
=

′ ′ −

r r r E E E E r c E E c

r r r E E E E r c E E E r

c E E c

c E E E r

Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω

Ω

Ω Ω

 

And lastly, plug this constant back into the function for x∗= + Hw w w : 

( ) ( )
( )

( )( )

11
11 1

11 1

11 1 1 .

fr

−−
−− −

−− −

−− − −

 ′ ′ ′ ′= +   ′ ′ − 

′ ′⋅ −

c E E c
w E E E c

c E E E r

r E E E E r

Ω
Ω Ω

Ω Ω

Ω Ω Ω

        (4.1.1) 

Thus, this is the weight vector that maximizes the Sharpe Ratio given a general 
linear constraint, or equivalently, if the constraints are the standard Markowitz 
constraints, this is the weight vector of the market portfolio. It is expressed in 
the familiar and convenient form of a shift to the minimum variance weight 
vector.  

5. Conclusions 

In this paper, I derive the solutions to portfolio choice problems with a general 
linear constraint when they are also subject to a tracking error constraint. The 
primary method used to derive the solutions is quadratic programming. This 
essay connects the research of some of the most fundamental papers in the field 
of portfolio choice and generalizes a solution to the Tracking Error Volatility 
constraint problem of Jorion [8]. I set up the objective function in both variance 
minimization and utility maximization. Although Jorion solves the variance mi-
nimization problem for specific constraints, my method solves the problem with 
a general constraint. Moreover, Jorion does not derive the utility maximization 
problem with a tracking error constraint, which I have done in the essay with a 
general linear constraint. 

Additionally, I have revisited the problems of Best and Grauer [3] and refor-
mulated them so the similarity is more apparent between their solutions and 
mine. I have discussed how the general constraint matrices need to be set in or-
der to replicate the problems of Markowitz [1] and Roll [7]. I use my derivations 
of the general linear constrained problems to tackle the problem of maximizing 
the Sharpe Ratio and derive the optimal solution to this problem. Maximizing 
the Sharpe ratio can be considered an alternative form of utility and is a very 
important concept in the foundation of linear asset pricing, particularly when a 
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risk free rate is assumed to exist.  
There are limitations to empirical research given these derivations. Real world 

data is oftentimes too volatile to apply the methods of modern portfolio theory 
directly. These derivations are best used as a conceptual framework to make 
theoretical assertions about the behavior of investment managers. The implica-
tions from these theories can, however, be creatively tested and existing empiri-
cal data can be used to discover nuances of the decision-making or real world 
investment managers. One example in particular that this model exposes is that 
managers that are incentivized by relative risk and return metrics will usually 
build portfolios that are riskier than a principal would desire. Although these 
equations likely couldn’t test that. This result could be tested in numerous other 
ways. 

There are many other examples of constrained portfolio choice problems that 
fall into the framework outlined in this paper. Although my final expressions are 
cumbersome, they are also left in their purist form so the reader can see the form 
unobstructed by substitution. The general linear constraint is very useful when 
considering real world constraints to asset management, and the tracking error 
constraint is a pervasive, explicit and implicit constraint to which almost all asset 
managers abide. This paper will hopefully allow researchers to compare the ef-
fects of differing constraints on portfolios in a more approachable manner, with 
the solutions readily available.  

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this 
paper. 

References 
[1] Markowitz, H. (1952) Portfolio Selection. The Journal of Finance, 7, 77-91.  

https://doi.org/10.1111/j.1540-6261.1952.tb01525.x 

[2] Merton, R.C. (1972) An Analytic Derivation of the Efficient Portfolio Frontier. 
Journal of Financial and Quantitative Analysis, 7, 1851-1872.  
https://doi.org/10.2307/2329621 

[3] Best, M.J. and Grauer, R.R. (1990) The Efficient Set Mathematics When Mean-Variance 
Problems Are Subject to General Linear Constraints. Journal of Economics and 
Business, 42, 105-120. https://doi.org/10.1016/0148-6195(90)90027-A 

[4] Binsbergen, J., Brandt, M. and Koijen, R. (2008) Optimal Decentralized Investment 
Management. Journal of Finance, 63, 1849-1895.  
https://doi.org/10.1111/j.1540-6261.2008.01376.x 

[5] Blake, D.A., Rossi, G., Timmermann, A., Tonks, I. and Wermers, R. (2013) Decen-
tralized Investment Management: Evidence from the Pension Fund Industry. The 
Journal of Finance, 68, 1133-1178. https://doi.org/10.1111/jofi.12024 

[6] Cuoco, D. and Kaniel, R. (2011) Equilibrium Prices in the Presence of Delegated 
Portfolio Management. Journal of Financial Economics, 101, 264-296.  
https://doi.org/10.1016/j.jfineco.2011.02.012 

[7] Roll, R. (1992) A Mean/Variance Analysis of Tracking Error. The Journal of Portfo-

https://doi.org/10.4236/jmf.2019.94034
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
https://doi.org/10.2307/2329621
https://doi.org/10.1016/0148-6195(90)90027-A
https://doi.org/10.1111/j.1540-6261.2008.01376.x
https://doi.org/10.1111/jofi.12024
https://doi.org/10.1016/j.jfineco.2011.02.012


D. L. Stowe 
 

 

DOI: 10.4236/jmf.2019.94034 690 Journal of Mathematical Finance 
 

lio Management, 18, 13-22. https://doi.org/10.3905/jpm.1992.701922 

[8] Jorion, P. (2003) Portfolio Optimization with Tracking-Error Constraints. Financial 
Analysts Journal, 59, 70-82. https://doi.org/10.2469/faj.v59.n5.2565 

[9] Bertrand, P. (2010) Another Look at Portfolio Optimization under Tracking Error 
Constraints. Financial Analysts Journal, 66, 78-90.  
https://doi.org/10.2469/faj.v66.n3.2 

[10] Chen, L., Peng, J., Zhang, B. and Rosyida, I. (2017) Diversified Models for Portfolio 
Selection Based on Uncertain Semivariance. International Journal of Systems 
Science, 48, 637-648. https://doi.org/10.1080/00207721.2016.1206985 

[11] Kar, M.B., Kar, S., Guo, S., Li, X. and Majumder, S. (2019) A New Bi-Objective 
Fuzzy Portfolio Selection Model and Its Solution through Evolutionary Algorithms. 
Soft Computing, 23, 4367-4381. https://doi.org/10.1007/s00500-018-3094-0 

[12] Sharpe, W.F. (1966) Mutual Fund Performance. The Journal of Business, 39, 
119-138. https://doi.org/10.1086/294846 

 

https://doi.org/10.4236/jmf.2019.94034
https://doi.org/10.3905/jpm.1992.701922
https://doi.org/10.2469/faj.v59.n5.2565
https://doi.org/10.2469/faj.v66.n3.2
https://doi.org/10.1080/00207721.2016.1206985
https://doi.org/10.1007/s00500-018-3094-0
https://doi.org/10.1086/294846

	Portfolio Mathematics with General Linear and Quadratic Constraints
	Abstract
	Keywords
	1. Introduction
	2. Mean/Variance Optimization with a General Linear Constraint
	2.1. Minimize Variance with a General Linear Constraint
	2.2. Maximize Utility with a General Linear Constraint
	2.3. Optimize in Excess Return/Tracking Error

	3. Optimize with an Additional Tracking Error Constraint
	3.1. Optimize Var with General Linear and Tracking Error Constraints 
	3.2. Optimize Utility Given General Linear & Tracking Error Constraints

	4. Maximize the Sharpe Ratio with General Linear Constraints
	Maximizing the Sharpe Ratio with a General Linear Constraint 

	5. Conclusions
	Conflicts of Interest
	References

