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Abstract 
In this paper, an Improved Affine-Scaling Interior Point Algorithm for 
Linear Programming has been proposed. Computational results of selected 
practical problems affirming the proposed algorithm have been provided. 
The proposed algorithm is accurate, faster and therefore reduces the num-
ber of iterations required to obtain an optimal solution of a given Linear 
Programming problem as compared to the already existing Affine-Scaling 
Interior Point Algorithm. The algorithm can be very useful for development 
of faster software packages for solving linear programming problems using 
the interior-point methods. 
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1. Introduction 

The Simplex Method (SM) remained a popular solution method of practical lin-
ear programming (LP) problems, until the development of interior point meth-
ods. [1] was the pioneer in the field and his Projective Scaling Method was able 
to compete with the SM as applied to realistic problems. As the name suggests, 
interior point methods approach an optimal point (which is known to be on the 
boundary of the feasible set) through a sequence of interior points [2]. Unlike 
the SM, iterates are calculated not on the boundary, but in the interior of the 
feasible region. Starting with an initial interior point, the method moves through 
the interior of the feasible set along an improving direction to another interior 
point. There, a new improving direction is found, along which a move is made 
to yet another interior point. This process is repeated, resulting in a sequence of 
interior points that converge to an optimal boundary point. Many different types 
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of interior-point methods for linear programming have been developed. Most of 
the methods fall under one of the three main categories: the projective and po-
tential reduction method, affine-scaling method and path-following methods 
[3]. In this paper, an Improved Affine-Scaling Interior Point Algorithm of LP 
has been proposed with the view of increasing the efficiency of the original algo-
rithm due to [4]. 

2. Materials and Methods 
The Affine-Scaling Interior-Point Algorithm was first introduced by [4]. He 
subsequently published a convergence analysis in [5]. Dikin’s work went largely 
unnoticed for many years until [6] [7] [8] and [9] rediscovered it as a simple 
variant of Karmarkar’s algorithm. Here, the problem is rescaled in order to make 
the initial point stay some distance away from any boundary constraint and then 
restrict the step length, so that the next move will not reach the boundary. The 
algorithm is as follows. 

Given an optimization problem in standard form: 
Optimize TZ c x=  
Subject to Ax b=  

0,x ≥  

where c, A and b are the cost coefficients, technological coefficients and resource 
availability respectively, the Affine-Scaling Interior-Point Algorithm is summa-
rized in the following steps: 

Step 1: Given the initial trial solution, ( )T
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Step 2: Calculate  and .A AD c Dc= =

  
Step 3: Calculate ( ) 1T T  and pP I A AA A C Pc
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  where P is a projection 
matrix and pC  is a projected gradient. 

Step 4: Identify the negative component of pC  having the largest absolute 
value, and set v  to this absolute value. Then Calculate 
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where 0 1θ< <  [4]. 
Step 5: Calculate x Dx=   as the trial solution for the next iteration starting 

from step 1. 
(If this trial solution is virtually unchanged from the preceding one, then the 

algorithm has virtually converged to an optimal solution and the algorithm is 
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terminated) [10]. 

3. Results and Discussions 

The Improved Affine-Scaling Interior-Point Algorithm 
In the Affine-scaling interior-point algorithm [4] discussed above, the selected 

constant, θ  in Equation 1.0 is required to be such that 0 1θ< < . Thus, ac-
cording to [4], the possible θ  values should exclude 0 and 1. The selected 
constant, θ  measures the fraction used of the distance that could be moved 
before the feasible region is exited [10]. [5] published convergence analysis of the 
method using θ  = 0.5. [11] used θ  = 2/3 in their convergence result. [10] 
used θ  values of 0.5 and 0.9 in their Interactive Operations Research (IOR) 
software. In this study, an investigation into the consequence of θ  value of one 
(1) on the algorithm has been undertaken. Subsequently, it has been observed 
that, θ  value of one (1) gives the least number of iterations of a given LP prob-
lem. The observation has led to an improved Affine-scaling interior-point algo-
rithm which is the same the Affine-scaling interior-point algorithm [4] but with 
θ  values now given as 0 1θ< ≤ . 

Table 1(a) and Table 1(b) present some computational results of selected 
practical problems affirming the proposed algorithm. The tables specify the LP 
problems, selected θ  values (with their corresponding number of iterations in 
brackets) and their optimal solutions using a developed Interior-Point Program 
based on the Affine-Scaling Interior Point Algorithm which was written in 
MATLAB. To obtain the optimal solution of any LP problem in standard form, 
the developed program requires the user to input the initial feasible trial solu-
tion (which gives the diagonal matrix), cost coefficients, the number of col-
umns/rows of the identity matrix, technological coefficients and the selected 
constant. 
 
Table 1. (a): Computational results of selected practical problems affirming the proposed 
algorithm; (b): Computational Results of selected practical problems affirming the pro-
posed algorithm. 

(a) 

LP Problem 
θ  values and their corresponding 
number of iterations in brackets 

Optimal Solution 

Maximize 1 26 8X XZ = +  

Subject to 

1 22 12X X ≤+  

1 2 10X X+ ≤  

1 2, 0X X ≥  

0.1 →  (79) 
0.3 →  (24) 
0.5 →  (12) 
0.7 →  (8) 
0.9 →  (6) 

0.2 →  (38) 
0.4 →  (17) 
0.6 →  (10) 
0.8 →  (7) 
1.0 →  (2) 

64Z =  

1 8X =  

2 2X =  

Maximize 1 22 3X XZ = +  

Subject to 

1 2 350X X+ ≥  

1 22 600X X+ ≤  

1 125X ≥  
1 2 0X X ≥  

0.1 →  (92) 
0.3 →  (29) 
0.5 →  (17) 
0.7 →  (11) 
0.9 →  (8) 

0.2 →  (45) 
0.4 →  (21) 
0.6 →  (12) 
0.8 →  (10) 
1.0 →  (2) 

1300Z =  

1 125X =  

2 350X =  
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Continued 

Minimize 1 23 2X XZ = +  

Subject to 

1 25 10X X ≥+  

1 2 1 2 6 4 12X X X X+ ≥ ≥+  
1 2 0X X ≥  

0.1 →  (90) 
0.3 →  (27) 
0.5 →  (15) 
0.7 →  (10) 
0.9 →  (7) 

0.2 →  (43) 
0.4 →  (20) 
0.6 →  (11) 
0.8 →  (9) 
1.0 →  (2) 

13Z =  

1 1X =  

2 5X =  

Minimize 1 2120 0Z X X= +  

Subject to 

1 22 40X X ≤+  

1 2 303X X+ ≥  

1 23 604X X+ ≥  

1 2 0X X ≥  

0.1 →  (90) 
0.3 →  (27) 
0.5 →  (15) 
0.7 →  (10) 
0.9 →  (7) 

0.2 →  (43) 
0.4 →  (20) 
0.6 →  (11) 
0.8 →  (9) 
1.0 →  (2) 

240Z =  

1 6X =  

2 12X =  

Maximize 1 2 3171 06 1Z X X X+= +  

Subject to 

1 2 3 2004 0X X X+ + ≤  

1 2 3 36002X X X+ + ≤  

1 2 32 2 2400X X X+ + ≤  

1 30X ≤  

1 2 3, , 0X X X ≥  

0.1 →  (122) 
0.3 →  (37) 
0.5 →  (19) 
0.7 →  (12) 
0.9 →  (10) 

0.2 →  (58) 
0.4 →  (26) 
0.6 →  (15) 
0.8 →  (11) 
1.0 →  (3) 

20625Z =  

1 30X =  

2 1185X =  

3 0X =  

(b) 

LP Problem 
θ  values and their  

corresponding number  
of iterations in brackets 

Optimal Solution 

Minimize 1 2 3

4 5

1.06 300
   

0.56
2703.50 4368.  23 

X X X
X X

Z = + +
+ +

 

Subject to 

1 20.011.06 729824.875X X+ ≥  

2 30.6490.56 1522188.03X X+ ≥  

3 503.0 160 40.X ≥  

42 170 623.50 210.06X ≥  

543 168 74 9.23 72. 2X ≥  

1 2 3 4 5, , , , 0X X X X X ≥  

0.1 →  (130) 
0.3 →  (42) 
0.5 →  (22) 
0.7 →  (15) 
0.9 →  (13) 

0.2 →  (62) 
0.4 →  (29) 
0.6 →  (16) 
0.8 →  (14) 
1.0 →  (5) 

2435620.485Z =  

1 688490.254X =  

2 2716245.849X =  

3 1680.053X =  

4 60.000X =  

5 4.000X =  

Minimize 1 2 3

4 5

2.03 2.93
   

0.56
1543.85 1494.  14 

X X X
X X

Z = + +

+ +
 

Subject to 

1 32.03 0.015 3604.90X X ≥+  

2 30.56  0.633 430264.03X X+ ≥  

32.93 750.50X ≥  

415 243 62 3.85 45. 9X ≥  

5149 54. 9 614 76.5X ≥  

1 2 3 4 5, , , , 0X X X X X ≥  

0.1 →  (130) 
0.3 →  (42) 
0.5 →  (22) 
0.7 →  (15) 
0.9 →  (13) 

0.2 →  (62) 
0.4 →  (29) 
0.6 →  (16) 
0.8 →  (14) 
1.0 →  (5) 

466675.399Z =  

1 1773.920X =  

2 768039.091X =  

3 256.143X =  

4 17.000X =  

5 4.000X =  

 
It is seen from Table 1(a) and Table 1(b) that, the number of iterations de-

creases as θ  values increase, and that θ  = 1 gives the least number of itera-
tions. Since θ  value of one (1) gives the least number of iterations, it should be 
included in the algorithm as proposed above to increase efficiency of the algo-
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rithm. 

4. Conclusion 

An Improved Affine-Scaling Interior Point Algorithm for Linear Programming 
has been proposed. Computational results of selected practical problems affirm-
ing the proposed algorithm have been provided. The proposed algorithm is ac-
curate, faster and therefore reduces the number of iterations required to obtain 
an optimal solution of a given Linear Programming (LP) problem as compared 
to the already existing Affine-Scaling Interior Point Algorithm. The algorithm 
can be very useful for development of faster software packages for solving linear 
programming problems using the interior-point methods. 

Future Work 

In this paper, computational results of selected practical problems affirming the 
proposed algorithm have been provided. We hope to provide a rigorous proof of 
the algorithm in the near future. 
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