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Abstract 
We consider the problem of assessing bone fracture risk for a subject hit by a 
blunt impact projectile. We aim at constructing a framework for integrating 
test data and Advanced Total Body Model (ATBM) simulations into the risk 
assessment. The ATBM is a finite element model managed by the Joint Non- 
Lethal Weapons Directorate for the purpose of assessing the risk of injury 
caused by blunt impacts from non-lethal weapons. In ATBM simulations, the 
quantity that determines arm bone fracture is the calculated maximum strain in 
the bone. The main obstacle to accurate prediction is that the calculated 
strain is incompatible with the measured strain. The fracture strain measured 
in bending tests of real bones is affected by random inhomogeneity in bones 
and uncertainty in measurement gauge attachment location/orientation. In 
contrast, the strain calculated in ATBM simulations is based on the assump-
tion that all bones are perfectly elastic with homogeneous material properties 
and no measurement uncertainty. To connect test data and ATBM simula-
tions in a proper and meaningful setting, we introduce the concept of elastic-
ity-homogenized strain. We interpret test data in terms of the homogenized 
strain, and build an empirical dose-injury model with the homogenized strain 
as the input dose for predicting injury. The maximum strain calculated by 
ATBM has randomness due to uncertainty in specifications of ATBM setup 
parameters. The dose propagation uncertainty formulation accommodates 
this uncertainty efficiently by simply updating the shape parameters in the 
dose-injury model, avoiding the high computational cost of sampling this 
uncertainty via multiple ATBM runs. 
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1. Introduction 

Non-lethal blunt impact weapons have been widely used by law enforcement 
and military to incapacitate individuals while minimizing fatalities and collateral 
damage.  

With continued use of existing blunt impact projectiles and the development 
of new capabilities, it is important to assess risk of injury. The Joint Non-Lethal 
Weapons Directorate (JNLWD) has been developing blunt impact injury mod-
eling capabilities for over a decade beginning with the Interim Total Body Model 
(ITBM). ITBM eventually evolved into the Advanced Total Body Model (ATBM), 
which is a simulation package still in development today. The existing simula-
tion engine consists of two parts: a finite element model (FEM) based on a 50th 
percentile male target; with individual tissue models and properties defined from 
the literature. This model is used in conjunction with a projectile model to si-
mulate the impact dynamics including forces, deformation, stresses and strains 
in individual elements over time. The second part is called the injury model, 
usually a logistic regression of experimental injury data [1]. A probability of hit 
model is also under development for this package. The ATBM package includes 
models for the head, eye, neck, thorax, arm and leg. The output values of a given 
simulation are compared to the injury model to assess the probability of injury 
under the simulated conditions. We note two limitations to this methodology, 
which together, result in significant uncertainty in the predicted risk of injury. 
They arise from the fact that the experimental population is both limited in 
quantity (small N) and different from the desired target population.  

The FEM consists of body part properties based on the best available data and 
50th percentile geometry. All estimates of response metrics are intended to 
represent the 50th percentile response; however we have limited data on how 
such properties are distributed across the population, and we do not have ade-
quate confidence in the value of the mean (or median) property. This is a fun-
damental limitation that can only be mitigated through increased experimental 
efforts, which come at significant cost. In addition, the properties that are avail-
able are mainly sourced from post-mortem human subject (PMHS) experiments, 
which should be assumed to have some differences from living subjects. So the 
FEM must extrapolate from already highly uncertain values.  

The injury model is developed using all available data, some of which is in the 
correct strain rate regime1 and all of which is obtained on PMHS or animal sub-

 

 

1Many tissue properties in the body are strain rate dependent, as are the dynamics of impact. 
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jects. Again, by necessity, we extrapolate our injury model results from the expe-
rimental population to the target.  

In this study, we look at the issue of uncertainty and extrapolation in the in-
jury model, as a venue for connecting the idealized ATBM simulations and real 
test data. Based on the literature, we expect that skeletal injuries are likely better 
characterized by the experimental data set than are soft tissue injuries (due to 
the fact that bone properties are better maintained through death and preserva-
tion than soft tissues). Therefore here we focus on predicting bone fracture risk, 
and we examine uncertainty propagation. Recently, Kramer and Swallow have 
raised the issue of sensitivity in the ATBM simulation outputs with respect to the 
inputs. They explored risk assessment of significant injury using ATBM simula-
tions and studied the propagation from uncertainty in ATBM simulation results 
to the predicted distribution of injury risk and the average risk (unpublished re-
sults). In this study, we aim at establishing a mathematical framework for as-
sessing bone fracture risk that incorporates theoretical ATBM simulations and 
experimental test data of real bones. Specifically, we study arm fracture caused 
by the impact of non-lethal weapon projectiles. We build on previous work [2] 
that endeavors to incorporate uncertainty into the estimates of fracture risk. We 
also examine several mathematical issues in combining ATBM simulations and 
test data.  

The experimental data on arm fracture were measured in three-point bending 
tests on a small number of humeri and forearms from female cadaveric donors 
of average age 57 (humerus samples) and 61 (forearm samples) [3] [4]. The PMHS 
samples were tested under loading conditions that were designed to emulate an 
airbag impact in traffic accidents [3] [4] [5].  

We model the data using a log-normal distribution of stresses, strains and 
bending moments and apply a linear correction for the documented gross phys-
ical characteristics of the subjects (age and body mass). This gives us a venue to 
correct for the effects of known characteristics in test data and to explore the 
variations in macroscopic properties that are not fully correlated with the age 
and body mass.  

We explore the issues of including and adjusting for the effects of loading rate, 
age and body mass in the risk assessment framework. The goal is to formulate an 
injury risk prediction that is relevant and meaningful for the larger portion of 
the population. The key step in integrating test data and ATBM simulations is to 
recognize that the calculated strain and the measured strain are different. The 
fracture strain measured in drop tests of real bones is affected by random inho-
mogeneity in bone and uncertainty in measurement gauge attachment (loca-
tion/orientation). The strain calculated in ATBM simulations is for an idealized 
situation where all bones are perfectly elastic with homogeneous material prop-
erties and no measurement uncertainty. To assimilate test data with ATBM si-
mulations, we introduce the concept of elasticity-homogenized strain, which is 
the hypothetical strain in experiments if the bone remains perfectly elastic with 
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homogeneous material properties all the way up to the fracture. The elastici-
ty-homogenized strain serves as a bridge connecting test data to ATBM simula-
tions. The connection process consists of several steps: 1) interpret test data in 
terms of elasticity-homogenized strain; 2) in the framework of dose propagation 
uncertainty, build a dose-injury model with ln(elasticity-homogenized strain) as 
the input dose for predicting injury; 3) in ATBM simulations, calculate the input 
dose as ln(maximum strain); and 4) predict the injury probability using the 
properly built dose-injury model and the output of ATBM simulations. The re-
sult is a computational framework for assessing the injury risk of bone fracture 
for a subject hit by a non-lethal weapon projectile.  

We organize the paper as follows. First, we briefly review the setup of three- 
point bending tests in Section 2, which provides the experimental data on im-
pact-induced bone fracture of real arm samples with bones surrounded by tis-
sues and muscles. In Section 3, we describe the general dose-response relation 
based on the uncertainty propagation formulation. The static dose response re-
lation is applicable in assessing injury risk of bone fracture when the impact 
loading is quasi-static and the injury process is nearly memoryless. In a dynamic 
loading test, the test result is in the form of measured peak value of dose (strain 
or stress or bending moment) at fracture, which is called fracture tolerance. In 
Section 4, we develop an efficient and accurate inference procedure for deter-
mining model parameters in the dose-response relation from observed samples 
of fracture tolerance in loading tests. When the impact occurs at a sufficiently 
high loading rate, the injury process is no longer memoryless due to the dynamic 
plastic deformation of bones. Consequently, the fracture tolerance is affected by 
the loading rate. In Section 5, we derive scaling laws of fracture tolerance versus 
loading rate and we examine the scaling laws using data of compression tests 
conducted on human femoral cortical bone over a wide range of loading rates. In 
Section 6 and Section 7, we carry out fluctuation analysis on the existing data of 
humerus fracture and forearm fracture, and build empirical injury models that 
are compatible with the ATBM simulation environment. Section 8 synthesizes 
the empirical injury models and the ATBM simulations to produce a viable 
framework for assessing the bone fracture risk caused by the impact of a blunt 
projectile. Finally, we highlight our results and outline future work in Section 9.  

2. Review of Three-Point Bending Test Setup  

In three-point bending experiments, a rod-shaped sample is placed horizontally, 
supported/anchored at two ends. The load is applied in the vertical direction, at 
a location between the two ends. In [5] [6], dynamic three-point bending tests 
were performed on PMHS forearms by dropping a heavy impactor (9.48 kg) 
onto the anchored sample, from a specified height (2 m) above the sample. The 
drop height was selected to produce a moderate pre-impact velocity (3.63 or 4.42 
m/s) for the impactor. If the sample is perfectly elastic for the full range of stress, 
upon the impact, it will deform elastically and when the load is released it will 

https://doi.org/10.4236/health.2019.1110109


H. Y. Wang et al. 
 

 

DOI: 10.4236/health.2019.1110109 1430 Health 
 

relax back to its original state with no damage. The forearm is not perfectly elas-
tic. When the load is large enough, it will fracture. In the three-point bending 
tests of forearms [5] [6], upon the impact, the strain, stress and bending moment 
increase initially before the occurrence of fracture; they reach their peak values 
at fracture, and then decrease after fracture since the fractured sample can no 
longer sustain the load. In experiments, the mass and the drop height of impac-
tor are selected to ensure that fracture will occur in the process; the peak values 
of strain, stress, and bending moment observed at fracture are recorded as frac-
ture tolerances. The data set from three-point bending experiments is a sequence 
of random values of fracture tolerance, each corresponding to an individual 
bone sample tested. In injury risk assessment, a relevant task is to estimate the 
probability of bone fracture at a given input dose in the form of strain, stress, or 
bending moment. This task is different from the question directly addressed in 
the dynamic loading tests. Below we first introduce the mathematical formula-
tion of dose injury relation, which predicts injury probability from the given in-
put dose. Then we use bending test data to determine model parameters in the 
dose injury relation.  

3. The Dose Injury Relation  
3.1. Dose Quantity for Predicting Injury Risk  

There are several candidates that may serve as the single metric predictor va-
riable for injury risk assessment. In the three-point bending tests, these can-
didates include strain, stress and bending moment. Any of these predictor va-
riables or any function of these variables may be considered as the input dose 
in the mathematical formulation for predicting the probability of bone frac-
ture injury. In particular, we can use ln(strain) instead of strain as the input 
dose. Mathematically, let 

x = quantity selected as the input dose. 
Here the phrase “input” refers to the situation where the dose x is specified 

and maintained in experiments. For example, in a clinic trial of a drug, the 
input dose is the daily amount of medicine administrated to each patient, 
which is precisely specified and maintained. In some experiments, the dose x 
is not directly specified. Instead, a related quantity u is directly specified and 
quantity x is a consequence of quantity u and is measured. Consider a hypo-
thetical test setup for investigating the relationship between the bending mo-
ment and the fracture probability. The impactor is dropped from various ver-
tical positions, spanning a wide range of height. In each repeat of the hypo-
thetical test, the drop height is prescribed, and the corresponding maximum 
bending moment on the sample is measured regardless of the injury outcome. 
The maximum bending moment during each loading serves as the dose for 
predicting fracture injury. The bending moment is positively correlated with 
the prescribed drop height of impactor, but is not completely determined by 
the height. When the dose quantity x is not directly specified but is influenced 
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by a specified quantity, it is more appropriate to label quantity x as “measured” 
dose. For simplicity of discussion, most of the time, we shall use these two 
terms interchangeably. The data set of the hypothetical test has the form  

{ }Data , , 1, 2, ,j jx I j m= =   

where  
m = number of trials repeated in experiments;  
xj = measured (or specified) dose in the j-th trial;  
Ij = observed binary injury outcome in the j-th trial.  
In this hypothetical test setup for measuring the injury probability, to cap-

ture the variation of injury probability vs dose, it is desirable to select a wide 
range of drop heights to cover the section from near 0% to near 100% injury 
probability.  

Notice that the three-point bending test in [5] [6] is designed quite diffe-
rently from the hypothetical test above. In [5] [6], the drop height of the im-
pactor is set high enough to ensure fracture occurs in each and every loading 
test. The dose increases monotonically until fracture, and the peak dose at 
fracture is recorded as the fracture tolerance. Such an experimental setup is 
called dynamic loading. A key characteristic of dynamic loading is the vir-
tually unlimited increase of load to ensure eventual fracture in each test. Ac-
cordingly, the data set measured in dynamic loading experiments takes the 
form  

{ }Data , 1,2, ,jY j m= =    

where  
m = number of samples tested;  
Yj = observed fracture tolerance of sample j;  
= measured value of dose x at fracture of sample j.  
Here we use x to denote the specified/measured dose and Y to denote the 

observed fracture tolerance (i.e., the value of x at fracture). This distinction in 
notation is necessary for interpreting the results of dynamic bending tests.  

3.2. Logistic Injury Model  

Let p(x) be the probability governing the occurrence of injury at dose quantity 
x.  

We model the injury probability using the logistic function [2]:  

( )
( ) ( )

( )50

50

1 ; ,
2 ln 9

1 exp
Lp x f x D W

x D
W

= ≡
− 

+ − 
 

           (1) 

where  
D50 = the median injury dose, at which injury probability p(D50) = 50%;  
in general, Dη = the dose value at which p(Dη) = η%; and  
W ≡ D90 – D10 = the 10 - 90 percentile width of the injury function.  
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3.3. Formulation of Dose Propagation Uncertainty  

In a previous study [2], we interpreted the logistic injury model as a very ac-
curate approximation to the normal distribution model, which is formulated 
based on: 1) uncertainty in dose propagation; 2) uncertainty in dose mea-
surement; and 3) uncertainty in critical dose threshold for injury. The formu-
lation of dose propagation uncertainty is summarized as follows.  
• The target dose is the amount of dose that propagates from the input site 

to reach the active site for injury. At the active site, the target doze Z and 
the critical threshold Z(c) uniquely determines the binary injury outcome I:  

( ) ( )

( )
1 injured , if 

0 not injured , otherwise

cZ Z
I

 >= 


 

Once the target dose Z and the critical threshold Z(c) are known, the injury 
outcome is completely determined.  
• The critical threshold Z(c) is not a fixed value for all samples. Even for bone 

samples from donors virtually of the same age, of the same bone density 
and of the same bone geometry, random microstructural constituents of 
samples will result in different values for the critical threshold. At a fixed 
target dose Z, even for a set of seemingly homogeneous samples, the hid-
den variation in the critical threshold Z(c) will lead to different injury out-
comes. For samples from a heterogeneous population, there will be addi-
tional variations in the critical threshold Z(c), attributed to differences in 
bone density and bone geometry. We model Z(c) as a Gaussian random va-
riable.  

( ) ( )1 1 1 1, ~ 0,1cZ s Nµ ξ ξ= +   

• There is a discrepancy between the measured dose x at the measurement 
site and the target dose Z reaching the active site of injury. The discrepan-
cy (Z – x) reflects:  

1) The uncertainty in dose propagation from the measurement site to the 
active site for injury; and  

2) The uncertainty in measurement gauge attachment (position and orien-
tation).  

We model the discrepancy (Z – x) as an independent Gaussian random va-
riable  

( ) ( )2 2 2 2, ~ 0,1Z x s Nµ ξ ξ− = − +   

where (ξ1, ξ2) are i.i.d. samples of N(0, 1).  
• The algebraic difference (Z – Z(c)) has the expression  

( ) ( ) ( ) ( )1 2 1 1 2 2
cZ Z x s s x sµ µ ξ ξ µ ξ− = − + − − ≡ − −   

where  

( ) ( )2 2
1 2 1 2, , ~ 0,1s s s Nµ µ µ ξ= + = +   
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That is, the difference (Z – Z(c)) is another Gaussian random variable.  
• When the measured dose is at level x, the injury probability of a random 

sample in a random realization of test, p(x), has the expression:  

( ) ( )( ) 1 1Pr 0 Pr erf
2 2 2

c x xp x Z Z
s s
µ µξ − −  = − > = < = +   

   
  

• The injury model is completely specified by two shape parameters: median 
injury dose D50 and the width W ≡ D90 – D10. It has the expression:  

( ) ( ) ( ) ( )
1

50
50

2erf 0.81 1 erf ; ,
2 2 N

x D
p x f x D W

W

− ⋅ −
= + ≡  

 
       (2) 

where the shape parameters (D50, W) are related to (μ, s) as  

( )1
50 , 2 2erf 0.8D W sµ −= =                 (3) 

Both the logistic model and the normal distribution model are completely 
specified by shape parameters (D50, W). In [2], we showed that these two models 
are very close to each other. In the next section, we examine two inference ap-
proaches based on these two models.  

4. Inferring the Dose-Injury Relation in a Memoryless  
Process  

4.1. Memoryless Process  

We consider the case where the applied dose varies with time but the dose injury 
process is still memoryless. Specifically, by “memoryless process”, we assume:  
• The dose at time t takes effect immediately without delay;  
• If the dose at time t does not result in injury immediately, it will not influ-

ence the injury process beyond time t; that is, there is no partial injury or 
left-over effect;  

• The randomness in the occurrence of injury is associated with biovariability 
of the test sample and realization of the experimental setup, both of which 
are invariant with respect to time during each loading process; as a result, the 
randomness in injury occurrence does not change with time in each loading; 
in other words, if a dose of level x causes no injury at time t1, a dose of the 
same level at a later time won’t result in injury; a static load (dose) of level x 
over a long time will have exactly the same effect as the same load over a 
short time.  

A prominent property of memoryless loading process is that the injury proba-
bility is determined solely by the peak value of the loading profile: increasing the 
load (the dose) to level x and then releasing the load has the same effect as a 
static load of level x in causing injury.  

A quasi-static loading test (i.e. dynamic loading with small loading rate) can 
be viewed approximately as a memoryless process. We compare two inference 
formulations for constructing the dose injury relation from the observed sam-
ples of fracture tolerance in a quasi-static loading test.  
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4.2. Two Inference Formulations  

Method 1: Estimating ( )jp x Y=  and fitting logistic function to (Yj, p(Yj)).  
This is the methodology followed by [1]. First, the measured samples of frac-

ture tolerance are sorted into an increasing sequence {Yj}. Under the assumption 
of a memoryless process, the sorted data sequence indicates that if the dose is 
maintained at x = Yj, then j samples out of the m samples tested are injured (i.e., 
fractured). These are samples 1 through j in the sorted sequence, with observed 
fracture tolerance less than or equal to Yj. Thus, at input dose x = Yj, it is rea-
sonable to estimate the corresponding injury probability as:  

( )j
jp x Y

m
= ≈   

We use the logistic function form ( )50; ,Lf x D W  defined in (1). The dose- 
injury relation is described by shape parameters (D50, W), which are determined 
by fitting function ( )50; ,Lf x D W  to data ( ){ }, , 1, 2, ,jY j m j m=  .  

( ) ( )( )
( )

( )
50

2

50 50
, 1

Method 1: , arg min ; ,
m

est est
L j

D W j

jD W f Y D W
m=

 = − 
 

∑   

This is a non-linear least squares fitting problem.  
Method 2: Using the framework of dose propagation uncertainty.  
With the injury function given in (2), the task of inferring the dose injury re-

lation is reduced to estimating parameters (D50, W) from measured samples of 
fracture tolerance: {Yj}. In a loading process, the input dose x(t) and the target 
dose Z(t) are functions of time. As discussed above in deriving the dose propa-
gation uncertainty formulation, the difference (Z(t) – Z(c)) has the expression:  

( ) ( ) ( ) ( ), ~ 0,1cZ t Z x t s Nµ ξ ξ− = − −   

The uncertainty in dose propagation is attributed to biovariability of the test 
sample (i.e., bone density, bone geometry) and attributed to realization of the 
experimental setup (i.e., where the impactor hits and where the measurement 
gauge is attached). These factors are invariant with respect to time during each 
loading. As a result, the dose propagation uncertainty, (–μ – sξ), is independent 
of time in each loading. Quantity (–μ – sξ), however, is still a random variable, 
fluctuating among individual realizations of loading and among individual test 
samples.  

In a memoryless process, fracture occurs when the target dose Z(t) reaches the 
critical threshold Z(c). In the three-point bending tests, the input dose x(t) in-
creases with time until fracture. Let tf be the time of fracture. At fracture, the 
load and the dose propagation uncertainty are related by  

( ) ( )( ) ( )( )0
ff

c

t tt t
Z t Z x t sµ ξ

==
= − = − −   

By definition, fracture tolerance Y is the observed value of x at fracture: Y = 
x(tf). It follows that the fracture tolerance Y has the distribution:  

( ) ( )2~ ,fY x t s N sµ ξ µ= = +   
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This is the distribution of Y among individual realizations of loading and 
among individual test samples. The distribution of Y tells us that parameters (μ, 
s) are the mean and standard deviation of Y. Given data set { }, 1, 2, ,jY j m=  , 
parameters (μ, s) are estimated using the sample mean and sample standard 
deviation:  

( )

( ) ( )( )
1

2

1

1

1
1

m
est

j
j

m
est est

j
j

Y
m

s Y
m

µ

µ

=

=

=

= −
−

∑

∑
  

Using the relation between the uncertainty parameters (μ, s) and the shape 
parameters (D50, W) derived in (3), we estimate (D50, W) as  

( )

( ) ( ) ( )( )

50
1

21

1

1

Method 2:
12 2erf 0.8

1

m
est

j
j

m
est est

j
j

D Y
m

W Y
m

µ

=

−

=

 =


 = − −

∑

∑
  

In contrast to the non-linear least squares fitting in Method 1, Method 2 re-
quires only straightforward calculation of sample mean and sample standard 
deviation. In addition, Method 2 produces the maximum likelihood estimates of 
parameter (D50, W) under the assumption that observed samples of fracture to-
lerance {Yj} follow a normal distribution.  

4.3. Comparison of the Two Inference Methods  

Table 1 below compares the performance of the two methods in estimating the 
shape parameters (D50, W) from data. The data sets used in comparison study 
are generated by simulations using parameter values D50 = 16 and W = 5. Note 
that mathematically we can shift and scale the dose-injury function to make D50 
= 0 and W = 1. The error study is not affected by the particular choice of (D50, 
W). Each data set contains m = 10 samples of fracture tolerance, reflecting the 
small sample size in real bending tests. We examine the errors in the estimated 
median injury dose and in the estimated width:  

( )( )50 50
estD D−  and ( )( )estW W− .  

 
Table 1. Comparison of the two inference formulations. 

  Method 1 Method 2 

( )( )50 50
estD D−  

mean –0.291 0.0 

std 0.651 0.616 

RMS 0.713 0.616 

( )( )estW W−  

mean –0.165 –0.136 

std 1.483 1.161 

RMS 1.492 1.169 
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We calculate the mean, the standard deviation (std) and the RMS (root-mean- 
square) of each error using Monte Carlo simulations. The values reported in Ta-
ble 1 are based on N = 500,000 independent data sets, each data set yielding an 
independent sample of ( ) ( )( )50 ,est estD W . Based on the results in Table 1, we con-
clude that Method 2 is more accurate (having smaller error) than Method 1 in 
every aspect. In particular, Method 2 is unbiased for estimating the median in-
jury dose. In addition, Method 2 is much simpler to implement computationally 
than Method 1.  

5. Scaling of Fracture Tolerance vs Loading Rate—The Case  
of an Injury Process with Memory  

In the previous section, we reviewed the formulation of dose propagation un-
certainty and extended it to the case of quasi-static dynamic loading experiments, 
which are approximately memoryless. In a memoryless process, the effect of in-
put dose is instantaneous with no delay in time, and if it does not result in injury 
immediately there is no partial injury or left-over effect for a later time. As a re-
sult, in a memoryless injury process, the observed fracture tolerance is not af-
fected by the loading rate.  

In order to accommodate experiments with high loading rates, in particular, 
in order to compare test data obtained with different loading rates, we need to 
relax the memoryless assumption and consider the memory effect. We study the 
dependence of observed fracture tolerance on loading rate. For simplicity, we 
neglect the randomness of fracture tolerance among individual samples, and fo-
cus solely on the effect of loading rate. In general, bone is visco-elastic-plastic, 
which has memory. Below, in the discussion of memory effect, we use the stress 
σ as the input dose. The situation of using other predictor variables as the input 
dose may have similar behaviors.  

5.1. Exponential Model of Fracture Time vs Applied Static Stress  

Under a constant applied stress σ, a visco-elastic-plastic material undergoes plastic 
deformation at a pace that is dependent on the applied stress σ. Given suffi-
ciently long time, it will eventually fracture. In [7], one model for fracture is that 
the fracture time tf(σ) decreases exponentially with respect to the applied static 
stress σ.  

( ) 0
0

expft t σσ
σ

 −
=  

 
                      (4) 

where  
t0: fracture time at zero applied stress (very very large);  
σ0: stress increment that reduces the fracture time by a factor of e = 2.71828 …  
We view the applied stress σ as contributing uniformly over time interval [0, tf] 

in driving the plastic deformation toward the eventual fracture at tf. We measure 
the contribution to fracture in percentage so that fracture occurs when the total 
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contribution reaches 1 = 100%. With the exponential model of fracture time vs 
applied static stress, the contribution of stress σ in time interval [ ],t t t+ ∆  is  

[ ] ( ) 0 0

1 1contribution of  in , d d exp d
f

t t t t t
t t

σσ
σ σ

 
+ = =  

 
  

In dynamic loading experiments, the applied stress varies with time: σ(t). The 
cumulative contribution of applied stress profile {σ(t)} over time interval [0, T] 
is 

( ){ } ( )
0

0 0

1contribution of ,0 exp d
T t

t t T t
t

σ
σ

σ
 

< < =  
 

∫   

In a dynamic loading experiment designed to ensure fracture occurring within 
a reasonably observable time, the applied stress σ(t) increases monotonically with 
time t until fracture. Fracture occurs when the cumulative contribution reaches 
100%. To illustrate the effect of loading rate in a simple setting, we first consider 
the case of σ(t) increasing linearly with time t until fracture:  

( )t tσ η=  until fracture  

where η is the stress increase rate. We introduce time scale t*.  
*

0t σ η= : time scale for increasing stress by σ0  

here σ0 is the stress increment that increases the contribution toward fracture 
per unit time by a factor of e = 2.71828. Accordingly, in the dynamic loading, t* 
is the time increment that increases the contribution toward fracture per unit 
time by a factor of e = 2.71828.  

We calculate the cumulative contribution of {σ(t) = ηt} over time interval [0, 
T].  

( ) *

* *0 0
0 0 0 0

1 1exp d exp d exp 1
T Tt t t Tt t

t t tt t
σ
σ

      = = −      
     

∫ ∫   

Let Tf(η) denote the time to fracture under dynamic loading {σ(t) = ηt}. It sa-
tisfies:  

( )*

*
0

exp 1 1fTt
t t

η  
− =      

  

Solving for Tf(η) we obtain 

( ) * 0
*ln 1f

t
T t

t
η  = + 

 
  

In all meaningful dynamic loading experiments, we have ( ) 0fT tη 
, which 

implies *
0 1t t  . That allows us to write the fracture time Tf(η) approximately 

as  

( ) * 0
*lnf

t
T t

t
η  ≈  

 
  

The fracture tolerance, σf(η), is defined as the stress at fracture.  
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( ) ( ) ( )
0

0
0

lnf
ft T

t
t

η

η
σ η σ σ

σ=

 
≡ =  

 
  

Let ε  denote the strain increase rate (strain rate). Suppose the stress increase 
rate η is proportional to the strain rate ε  until fracture,  

cη ε=   until fracture.  
We write fracture tolerance σf as a function of strain rate ε   

( ) ( ) ( ) ( )

( )

0
0 10 0 10

0

0 1 10

ln 10 log ln 10 log

log

f
t c

C C

σ ε σ σ ε
σ

ε

 
= + 

 
= +

 



          (5) 

With the exponential model, the theoretically predicted fracture tolerance ( )fσ ε  
is a linear function of the logarithm of strain rate. In light of the linear relation 
of ( )fσ ε  vs ( )10log ε  described in (5), we propose a loading rate adjusted dose 
for predicting fracture risk.  

( ) ( ) ( )Loading rate max 0 10
adjusted dose

ln 10 logx σ ε σ ε≡ −                 (6) 

where ( )maxσ ε  is the maximum stress over a pre-selected time period [0, T] or 
over the entire time course of a loading. The effect of this loading rate adjusted 
dose in causing fracture is expected to be independent of the loading rate when 
the underlying exponential model is a valid description of the fracture process. 
In other words, the fracture probability is solely determined by the value of the 
loading rate adjusted dose regardless of the loading rate used in tests. For this 
reason, the loading rate adjusted dose serves as a formulation for unifying test 
results from experiments with different loading rates.  

5.2. Local Linear Relation between Stress Rate and Strain Rate  

In the mathematical derivation above, we used the linear relation  

( )d
d

t
c

t
σ

ε=                           (7) 

The theoretically predicted linear dependence of ( )fσ ε  on ( )10log ε , shown 
in Equation (5), does not require linear relation (7) be globally satisfied during 
the entire loading process. To derive Equation (5), we only need linear relation 
(7) in a time interval near fracture that contains the dominant contribution to-
ward fracture. The detailed analysis for this general case is presented in Appen-
dix A.  

5.3. Power Law Model of Fracture Time vs Applied Static Stress  

In another model for fracture [7], the time to fracture tf(σ) under a constant ap-
plied stress σ follows a power law  

( ) 0
0

b

ft t σσ
σ

−
 =  
 

                       (8) 

With the power law model, we show that the logarithm of fracture tolerance is 
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a linear function of the logarithm of strain rate.  

( ) ( ) ( )

( )

0
10 10 0 10 10

0

0 1 10

11 1log log log log
1 1

log

f

c b t
b b

C C

σ ε σ ε
σ

ε

+ 
= + + 

+ + 
= +

 



     (9) 

The derivation of relation (9) is presented in Appendix B. After the comple-
tion of the manuscript, the authors became aware that relation (9) was derived in 
[8] for the case where the stress rate, the strain rate and their ratio are all con-
stants, independent of time. In Appendix B we present a derivation for a slightly 
more general case where the stress rate and the strain rate only need to be locally 
proportional in a time interval leading to fracture. Both derivations were based 
on the view that cumulative damage increases at a rate that is solely determined 
by the applied stress and is independent of damage status. Fracture occurs when 
the cumulative damage reaches 100%.  

For the power law model, the linear relation is between ( )( )10log fσ ε  and 

( )10log ε . Accordingly, the loading rate adjusted dose for predicting fracture 
probability is  

( )( ) ( )Loading rate 10 max 10
adjusted dose

1log log
1

x
b

σ ε ε≡ −
+

    

This loading rate adjusted dose is based on the power law model.  

5.4. Comparison of the Exponential Model and the Power Law  
Model  

We examine the two theoretical models above for fracture tolerance vs strain 
rate using the data of compression tests of human femoral cortical bone samples 
[6]. When compressed, respectively, along the longitudinal and the transverse 
directions, the fracture tolerance of the bone material varies with the applied 
strain rate ε . Table 2 summarizes the test results reported in [6] for strain rates 
ranging from ε  = 10–3/s to ε  = 103/s. The results include fracture stress (i.e., 
stress at fracture) and fracture strain (i.e., strain at fracture).  

We fit the exponential model (5) and the power law model (9) to the data of 
compression fracture stress vs strain rate. Figure 1 plots the data and the fittings 
of the two models in each of the longitudinal and transverse compressions. Fig-
ure 1 demonstrates that both models fit fairly well with the data. The two mod-
els are close to each other in the range of data. Coefficient ln(10)σ0 in exponen-
tial model (5) and coefficient 1/(1 + b) in power law model (9) are both expected 
to be positive based on their physical meaning. As a result, both models pre-
dict the fracture stress as an increasing function of strain rate. Indeed, experi-
mental results from [6] confirm this theoretical prediction. Given the fracture 
stress measured at a particular strain rate, we like to theoretically predict the 
fracture stress at a different strain rate for samples of the same type. We calculate 
the prediction using either the exponential model (5) or the power law model 
(9).  
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Table 2. Compression test results of human femoral cortical bone in [6]. 

Compression 
direction 

Strain rate 
(1/s) 

Stress at fracture 
(MPa) 

Strain at fracture 
(%) 

Longitudinal 

0.001 152.1 ± 21.6 3.06 ± 1.06 

1 205.3 ± 16.5 3.83 ± 0.9 

1000 319 ± 23.9 3.24 ± 0.79 

Transverse 

0.001 86.6 ± 21.7 7.21 ± 3.61 

1 146.98 ± 27.53 9.78 ± 4.79 

1000 178.9 ± 26.02 3.17 ± 1.28 

 

 
Figure 1. Measured fracture stress vs strain rate from [6] and fittings of the two 
models, in each of the two compression directions: longitudinal and transverse.  

 
Exponential model:  

( )
2 1

2
0 10

1

ln 10 logf fr r

r
rε ε

σ σ σ
= =

 
= +  

  

               (10) 

Power law model: 

2 1

2
10 10 10

1

1log log log
1f fr r

r
b rε ε

σ σ
= =

 
= +  +   

             (11) 

For the purpose of predicting the fracture stress based on an observed fracture 
stress at a particular strain rate, we only need coefficient ln(10)σ0 in (5), or coef-
ficient 1/(1 + b) in (9). For each of the compression directions, the values of 
ln(10)σ0 in (5) and 1/(1 + b) in (9) are estimated by fitting the two models to test 
data. The fitting results are reported in Table 3. In Table 3, coefficient ln(10)σ0 
for the longitudinal compression is significantly higher than that for the trans-
verse compression (27.82 MPa vs 15.38 MPa). In contrast, coefficient 1/(1 + b) 
in the power law model is virtually the same for the two compression directions 
(≈0.053), which corresponds to b ≈ 18. It will be interesting to see if exponent b 
in the power law model remains approximately the same for bone samples of 
other types besides femoral cortical bones. If that is approximately true, then the 
power law model is universally applicable for scaling the fracture stress vs strain  
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Table 3. Slope coefficients of the two models, in two compression directions. 

 Longitudinal compression Transverse compression 

ln(10)σ0 in exponential model 27.82 MPa 15.38 MPa 

1/(1 + b) in power law model 5.361× 10–2 5.252× 10–2 

 
rate regardless of bone type and regardless of compression direction. In addition 
to possessing a universal exponent b, the predicted fracture stress (11) based on 
the power law model appears mathematically more reasonable than (10) based 
on the exponential model. In (11), the power law model always predicts a posi-
tive value for the fracture stress σf while in (10), the exponential model may 
produce a negative value for σf at very low strain rate. Finally, model (11) is ma-
thematically more appealing than model (10) in that coefficient 1/(1 + b) and all 
terms in (11) are dimensionless.  

The derivation of exponential model (5) and power law model (9) above is 
based on the two corresponding models for the fracture time under a constant 
applied stress. The key assumption is to view the applied static stress as contri-
buting toward fracture uniformly over the time duration up to fracture. This de-
rivation cannot be directly extended to predict the relation between the fracture 
strain and the strain rate. Nevertheless, we apply the function forms of models (5) 
and (9) phenomenologically to fit the test results of fracture strain vs strain rate 
from [6]. Figure 2 plots the data and the fittings of the two models in each of the 
longitudinal and transverse directions.  

Examining the test results from [6] and the fitting results shown in Figure 1 
and Figure 2, we make several observations:  
• The measured fracture stress vs strain rate is well fit by both the exponen-

tial model and the power law model in the transverse compression and in the 
longitudinal compression. The power law model gives a slightly better fit and 
yields a unified exponent b ≈ 18 in both the cases of transverse compression 
and longitudinal compression. This makes the power law model more un-
iversally applicable.  

• The variation in measured fracture strain, as represented by error bars, is 
significantly larger than that of corresponding measured fracture stress. Large 
variation in measured fracture strain can also be expected in other types of 
experiments, especially in three-point bending tests. There are several rea-
sons: 1) the spot of maximum weakness due to microstructure in a bone is at 
an uncertain position relative to the location of strain measurement; 2) bone 
inhomogeneity makes local strain strongly position dependent, varying sig-
nificantly from one position to another; in contrast, the stress calculated 
from the applied force is fairly immune from the effect of inhomogeneity; 
and 3) strain measurement is affected by the uncertainty in strain gauge at-
tachment. We will discuss more on microstructure, inhomogeneity, and un-
certainty in strain gauge attachment.  

• The measured fracture strain vs strain rate in transverse compression does  
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Figure 2. Measured fracture strain vs strain rate from [6] and fittings of the two 
models, in each of the two compression directions: longitudinal and transverse.  

 

not follow any simple trend. The measured fracture strain in longitudinal com-
pression appears to be roughly invariant with respect to the strain rate. More 
test results at strain rates in between 10–3, 1, and 103 are needed to resolve this 
trend. Also more tests are needed to produce reliable values with reasonably 
small error bars.  

• Tensile test results for the effect of strain rate/dynamic loading are needed, 
which are probably more relevant (than the compression test results) for pre-
dicting fracture caused by bending.  

6. An Injury Model Based on Existing Data of Humerus  
Fracture  

We examine the bending test results of humerus fracture and forearm fracture 
from [4]. We start with the humerus data in [4]. The upper arm has only one 
long cylinder-shaped bone: the humerus. The measured bending moment of the 
upper arm complex is assumed to closely approximate the bending moment of 
the humerus. This allowed the authors of [4] to calculate the bending stress on 
the humerus using the measured bending moment of the upper arm and the 
bone cross-sectional properties obtained in pre-test CT scans of individual sam-
ples. The values of calculated stress vs measured strain during the initial linear 
response regime of the loading were used to estimate the elastic modulus [4]. 
The calculation of stress can be carried out all the way up to fracture. The calcu-
lated stress immediately before fracture can be used as an indirect measurement 
of fracture stress. In [9], this method was used to calculate the fracture stress for 
human femurs under impact loading. The fracture stress for humeri, however, 
was not calculated/reported in [4].  

In contrast to the upper arm, the forearm has two bones: radius and ulna. The 
bending moment can only be measured for the whole forearm complex con-
taining both bones. The bending moment of each individual bone is not directly 
measurable in the three-point bending tests. As a result, the bending stress of 
each bone cannot be determined from the available measurements.  
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6.1. Log-Normal Distribution of Measured Fracture Tolerance  

In the bending test of [4], each humerus specimen is impacted in the direction 
from posterior to anterior, and the time series of bending moment and time se-
ries of strains at two locations on the humerus were recorded. The two measured 
strains on the humerus are:  
• anterior strain > 0: tensile strain on the anterior side  
• posterior strain < 0: compression strain on the posterior side  

For mathematical convenience, we use the absolute value when studying the 
posterior strain. Let Y be the random variable modeling the measured fracture 
tolerance, which is defined as the peak value before fracture in a recorded time 
series. Here Y may be any of the 3 measured fracture tolerances: anterior strain, 
posterior strain or bending moment. We first find whether Y is closer to a nor-
mal distribution or to a log-normal distribution. We introduce quantity Q(Y) to 
distinguish these two distributions.  

( ) ( )
( ) ( )( ) ( )( )

2

2 med ln ln
std
E Y

Q Y Y E Y
Y

 
 ≡ −    

 
  

where E( ) denotes the mean and med( ) the median. In Appendix C, we show 
that Q(Y) = 1 if Y is normal; Q(Y) = 0 if Y is log-normal. Note that a log-normal 
distribution has a heavy tail. If the tail of Y is heavier than that of a log-normal, 
then we have Q(Y) < 0. Table 4 lists the Q-values for the 3 measured fracture 
tolerances: anterior strain, posterior strain, and bending moment. Each Q-value 
is based on 11 measured samples from [4].  

Examining the values reported in Table 4, we make several observations:  
• Measured fracture bending moment is close to a log-normal distribution.  
• For Y = measured fracture anterior strain or posterior strain, between the 

choices of normal and log-normal, it is more appropriate to model Y as a 
log-normal than as a normal. The negative value of Q indicates that the tail of 
Y is heavier than that of a log-normal. That is, log(Y) has a heavy tail. In oth-
er words, the fluctuations of log(strain) caused by measurement uncertainty 
has a heavy tail, instead of being symmetric normal.  

• The bottom row in Table 4 indicates higher relative variation in the meas-
ured fracture strains than in the measured fracture bending moment, espe-
cially in the tensile anterior strain. This is consistent with the observations in 
split-Hopkinson pressure bar compression tests of femoral cortical bone sam-
ples [6]. Some part of the variation is due to the biovariability of samples tested, 
which affects all 3 measured fracture tolerances. Some other part of the varia-
tion is due to the random inhomogeneity, which makes local strain strongly 
position dependent and thus mainly affects measured strains. In addition, 
measured strains are affected by the uncertainty in measurement gauge at-
tachment (position/orientation, distance from the bone surface). Suppose we 
hypothetically “homogenize” a quantity by filtering out the variations caused 
by random inhomogeneity and measurement uncertainty. This hypothetical 
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Table 4. Q-values of the 3 measured fracture tolerances in humerus data. 

 

Y = measured fracture quantity 

Anterior  
strain (%) 

Posterior  
strain (%) 

Bending 
moment (Nm) 

Q-value –2.95 –3.47 0.07 

std(Y)/E(Y) 0.40 0.20 0.13 

 
homogenization does not filter out the effects of biovariability in macroscop-
ic properties (for example, variations in bone density or in bone geometry). 
Since the measured bending moment is fairly immune from random inho-
mogeneity and measurement uncertainty, it will not be significantly affected 
by this hypothetical homogenization. In Table 4, the measured fracture bend-
ing moment has smaller variation than the 2 measured fracture strain quanti-
ties, and is close to log-normal. Thus, it is reasonable to expect that the “ho-
mogenized” fracture strain will have smaller variation and follow the log-normal 
distribution. This issue will be further explored in the fluctuation/residual 
analysis below.  

Before we end this subsection, we point out that in terms of approximate CDF, 
log-normal and normal distributions are not mutually exclusive. The two distri-
butions may be practically close to each other. A random variable may be both 
close to a log-normal and close to a normal. This occurs when log(Y) is a normal 
random variable with a small standard deviation. Let ( )log Y µ σξ= +  where 

( )~ 0,1Nξ  and 1σ  . We write Y as  

( ) ( ) ( ) ( ) ( )( )2exp exp exp exp 1Y Oµ σξ µ σξ µ σξ σ= + = = + +   

which is approximately a normal random variable.  
Figure 3 compares the quantile-quantile plot of bending moment vs theoret-

ical normal and that of bending moment vs theoretical log-normal. The results  
 

 
Figure 3. Quantile-quantile plot of bending moment vs theoretical 
normal and that of bending moment vs theoretical log-normal.  
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indicate that it is justified to model the fracture bending moment phenomeno-
logically either as a normal or as a log-normal. In this study, we choose to model 
measured fracture tolerances as log-normal. 

6.2. Fluctuations in Fracture Strain and Fracture Bending Moment  
of Humerus Data  

Let X = anterior strain or posterior strain or bending moment. The value of X at 
fracture is the fracture tolerance Y. Since we model ln(Y) approximately a nor-
mal random variable, it is more appropriate to use ln(X) as the input dose in the 
dose propagation uncertainty formulation, instead of using X as the input dose. 
As we derived in Section 3, the shape parameters (D50, W) in the injury model 
for input dose ln(X) are expressed in terms of E(ln(Y)) and std(ln(Y)), the mean 
and standard deviation of ln(fracture tolerance). Based on observed samples of 
ln(Y), we approximate its mean and standard deviation as 

( ) ( )

( )( ) ( ) ( )( )
1

2

1

1ln ln

1std ln ln ln

N

j
j

N

j
j

Y Y
N

Y Y Y
N

=

=

=

≈ −

∑

∑
  

In the above, the standard deviation uses N as the denominator, instead of (N 
– 1). This is to make it having the same form as the RMSD (root-mean-square 
deviation) described below so that we can directly compare these two quantities 
with each other.  

In [4], two attributes were given for each sample tested: age (A) and body 
mass (M) of the cadaver donor. We explore if some of the variation in ln(Y) can 
be explained by variations in age (A) and/or in body mass (M). We consider the 
data set  

( ){ }, , , 1, ,j j jA M Y j N=    

We use a linear function of (A, M) as the fitting function for ln(Y):  

( ) ( )0, A Mf A M c c A c M= + +  

We fit function f(A, M) to {ln(Y)j}. The RMSD of the fitting is  

( )
( )( )

0

2

0, , 1

1RMSD min ln
A M

N

A j M j jc c c j
c c A c M Y

N =

= + + −∑   

The approximation of std(ln(Y)) given above is simply the RMSD of fitting 
using constant function ( ) 0,f A M c= . Figure 4 shows data of ln(measured 
fracture bending moment) and the least squares fitting of ( )0 A Mc c A c M+ + , 
which yields  

Fitting results for bending moment:  

0 4.57c = ,  
32.77 10Ac −= − ×  (p-value, 0.41), 

39.78 10Mc −= ×  (p-value, 0.063).  
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Figure 4. Data of ln(measured fracture bending moment) and least squares fitting of 

( )0 A Mc c A c M+ + , which yields 0 4.57c = , 32.77 10Ac −= − ×  and 39.78 10Mc −= × . Left 

panel: data vs age (A). Right panel: data vs body mass (M).  
 

The negative value of coefficient cA suggests that the fracture bending mo-
ment decreases with age while the positive value of cM indicates that the fracture 
bending moment increases with body mass. The data and fitting for ln(measured 
fracture extension strain) are displayed in Figure 5. The least squares fitting 
( )0 A Mc c A c M+ +  for ln(strain) gives.  

Fitting results for extension strain:  

0 0.212c = − ,  
21.2 10Ac −= ×  (p-value, 0.35),  

52.53 10Mc −= − ×  (p-value, 0.999).  

The coefficients obtained in fitting seem to indicate that the fracture strain 
increases with age and is independent of body mass. Given the p-value of 0.35, 
the predicted trend of fracture strain increasing with age is not statistically sig-
nificant. It may be an artifact of small sample size and outlier fluctuations in 
biovariability not correlated with age. Here we treat this fitting result only as a 
placeholder in the framework.  

Next we study the fluctuations in ln(Y) where Y is any of the 3 measured 
fracture quantities. We like to examine the part of variations in ln(Y) that is not 
correlated with (A, M). For that purpose, we first model the dependence of ln(Y) 
on (A, M) using a least square fitting of ( )0 A Mc c A c M+ + . The variation in the 
residual ( ) ( )( )0ln A MY c c A c M− + +  serves our purpose and is represented by 
the RMSD (root-mean-square deviation) of the fitting. The RMSD contains the 
effects of 3 factors listed in Table 5.  

The effects of factors ii) and iii) vary significantly in magnitude among the 3 
measured fracture quantities. Random local inhomogeneity of bone significantly 
increases the variation in strain while having minimal effect on stress; the loca-
tion and the method of attaching strain gauges indirectly on the bone introduces 
additional uncertainty in measuring bone strain. In contrast, the variation in 
macroscopic properties is expected to have approximately the same effect on all 
3 measured fracture quantities.  

https://doi.org/10.4236/health.2019.1110109


H. Y. Wang et al. 
 

 

DOI: 10.4236/health.2019.1110109 1447 Health 
 

   
Figure 5. Data of ln(measured fracture extension strain) and least squares fitting of 

( )0 A Mc c A c M+ + , which yields coefficients 0 0.212c = − , 21.2 10Ac −= ×  and 
52.53 10Mc −= − × . Left panel: data vs age(A). Right panel: data vs body mass(M).  

 
Table 5. Three factors that contribute to RMSD of fitting. 

Factor i) 
Variation in macroscopic properties and uncertainty in dose propagation, due to  
biovariability, not explained by (A, M) 

Factor ii) Random local inhomogeneity, not associated with a change in macroscopic properties 

Factor iii) Uncertainty in measurement gauge attachment 

 
By comparing the RMSDs of fitting for the 3 fracture quantities, we identity 

which quantity is least affected by factors ii) and iii) above. In this way, we iden-
tify which quantity is the best candidate for isolating and quantifying the effect 
of factor i).  

Table 6 displays the standard deviation, the RMSD of fitting, and the pre-
dicted mean value of ln(Y) at (A = 55 y, M = 55 kg) for the 3 measured fracture 
quantities. In Table 6, of the 3 fracture quantities, the fracture bending moment 
has the smallest RMSD, further supporting the assertion that bending moment is 
the most accurately measured and the least affected by random local inhomo-
geneity and measurement uncertainty. The RMSDs of fitting for the 2 strains in-
dicate that large fluctuations remain after the dependence on age and body mass 
is discounted. These large fluctuations in the two measured strains likely contain 
significant contributions from factors ii) and iii), in addition to the contribution 
from factor i). Both the random local inhomogeneity and the measurement un-
certainty increase the variation in measured strain. In contrast, the fracture 
bending moment is calculated based on: 1) the peak impact force exerted on the 
bone; and 2) the bone geometry. Both 1) and 2) are fairly immune from the ef-
fects of measurement uncertainty and random local inhomogeneity.  

6.3. Elasticity-Homogenized Strain in Experiments and in ATBM  

Any model designed to simulate a generic (as opposed to specific) individual 
usually does not account for random local inhomogeneity in bone microstruc-
ture. In particular, ATBM simulations treat each bone as an object of uniform  
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Table 6. Comparison of fluctuations in 3 measured fracture quantities in humerus data. 

 

Y = measured fracture quantity 

Anterior  
strain (%) 

Posterior  
strain (%) 

Bending 
moment (Nm) 

Std(ln(Y)) 0.358 0.173 0.128 

RMSD of fitting  
{ln(Y)j} to f (A, M) 

0.338 0.162 0.098 

Predicted E(ln(Y)) at 
age = 55 y, body mass = 55 kg 

ln(1.563) ln(1.236) ln(142.3) 

 
material properties. Therefore, the strains calculated in ATBM finite element 
model (FEM) simulations are incompatible with the measured peak strains from 
[4]. In the ATBM-FEM of the arm, the cortical bone of the humerus is modeled 
as a shell of finite thickness surrounding an interior of trabecular bone and being 
surrounded by flesh outside. Each bone/tissue type has homogeneous material 
properties within its region. In the FEM, the geometry of each bone type/tissue 
type is accurately represented in the finite element model. The material proper-
ties, however, are set as uniform and homogeneous inside each bone type region. 
In a simulation, the calculated strain is the strain in a 3-D region that models the 
cortical bone with a realistic geometry, but is homogenized to uniform material 
properties. As a result, the calculated strain does not contain the effect of posi-
tion-dependent fluctuations caused by random inhomogeneity in bone.  

In addition, three-point bending experiments have measurement uncertainty 
in measured strains because they are measured at the tissue surface of the upper 
arm complex with strain gauge location and attachment uncertainty. This mea-
surement uncertainty is not reflected in the FEM. Finally, the FEM simulates 
each bone type as perfectly elastic throughout the entire loading process, disre-
garding the event of fracture and the material property changes leading to frac-
ture. In real bones, plasticity will inevitably become more prominent when the 
strain is large especially in the phase immediately preceding fracture. The effect 
of plasticity is not included in ATBM-FEM. In summary, the ATBM-FEM ex-
cludes the effects of factors ii) and iii) listed in Table 5 (i.e., random local inho-
mogeneity and measurement uncertainty). In addition, it excludes the effect of 
bone plasticity, which plays a non-negligible role in the mechanism of bone frac-
ture. In the ATBM framework for injury risk assessment, an injury model is built 
on experimental injury data and ATBM simulation results are compared to the 
injury curve to predict injury probability. We note that existing empirical injury 
models were based on a straightforward interpretation of experimental injury 
data. They contain all of the uncertainty inherent in the data set used for build-
ing the logistic regression. But they lack the ability to parse the various contribu-
tions.  

We are not aiming at predicting fracture strains in future three-point bending 
tests of PMHS samples where strains are measured in a similar fashion as in [4]. 
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Rather, our goal is to integrate ATBM simulations with a properly built injury 
model to predict bone fracture risk caused by a blunt impact. For the purpose of 
integrating idealized ATBM simulations and real test data, we require additional 
insight into distinguishing different types of variations and dissecting their ef-
fects on the measured quantities in experiments. The ultimate goal of JNLWD’s 
efforts is to assess the overall risk associated with a given projectile in use against 
the (younger, living) population of potential targets. The specific goal of our 
study here is to reconstruct the injury model based on existing test data under 
the constraint that the injury model is compatible with the strains calculated in 
ATBM simulations. The injury model should also possess the capability of ac-
commodating additional uncertainty in the input dose, in the dose propagation 
and in the critical threshold for injury. This capability enables us to account for 
both natural variation in the target population and extrapolation from the pop-
ulation available for data collection (elderly, deceased) to the desired target pop-
ulation (younger, living). For a subject impacted by a non-lethal weapon projec-
tile, the properly built injury model allows a meaningful risk prediction from the 
calculated strain in ATBM simulations.  

To connect real test data and idealized ATBM simulations in a proper dose- 
injury model, we introduce the concept of “elasticity-homogenized strain”, which 
is defined as what the strain would be if the three assumptions below are hypo-
thetically satisfied during the entire loading process:  
• Each bone type remains perfectly elastic for the full range of loading;  
• Each bone type has homogeneous material properties;  
• There is no measurement uncertainty.  

The strains calculated in the ATBM-FEM are elasticity-homogenized strains. 
Real test data reflect all effects of factors i), ii) and iii) in Table 5. Elasticity-homo- 
genized strains contain only the effect of factor i). To extract the essential statis-
tics of “elasticity-homogenized strain at fracture”, we need to exclude the effects 
of factors ii) and iii) (random local inhomogeneity and measurement uncertain-
ty). As we analyzed above, the measured fracture bending moment is much less 
affected by these two factors in comparison with the measured fracture strains. 
The RMSD of fitting for the fracture bending moment represents the variation 
in measured fracture bending moments after the dependence on age and body 
mass (A, M) is discounted. Thus, the RMSD of fitting for the fracture bending 
moment is the best candidate available in existing data for isolating and quanti-
fying the effect of factor i) in Table 5, which includes the variation in macros-
copic properties and uncertainty in dose propagation due to biovariability that is 
not explained by age or body mass. The relative variation of bending moment is 
calculated as the RMSD of fitting for ln(bending moment). We use the calcu-
lated relative variation of bending moment to estimate the relative variation of 
the hypothetical elasticity-homogenized strain, which is not observable in expe-
riments. Using this approach, we build an injury model that is based on existing 
test data and that is compatible with the results of idealized ATBM simulations.  
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6.4. A Dose-Injury Model for the Standard Group of Age = 55 y and  
Body Mass = 55 kg  

The hypothetical elasticity-homogenized strain introduced above serves as the 
key connection between the three-point bending test data and the ATBM simu-
lations. Based on the test data, we construct an injury model for the standard 
group of age 55 y and body mass = 55 kg. The dose-response model predicts the 
fracture probability from the hypothetical elasticity-homogenized strain. The 
injury curve is specified by two shape parameters: median injury dose D50 and 
width W. When applying the injury model to a general group of subjects, we will 
update the shape parameters (D50, W) in the framework of dose propagation 
uncertainty to incorporate the effects of age and body mass (A, M) [2]. We build 
the injury model for the standard group in steps as described below.  
• Log-normal distribution of elasticity-homogenized strain  

The test data indicates that the bending moment at fracture follows a log- 
normal distribution. Both the bending moment and the hypothetical elastici-
ty-homogenized strain are mainly influenced by factor i) in Table 5. It is rea-
sonable to expect that the elasticity-homogenized strain at fracture also follow a 
log-normal distribution.  
• The dose quantity  

We use ln(elasticity-homogenized strain) as the input dose in the injury mod-
el for two reasons: 1) we use ln( ) because the strain at fracture has a log-normal 
distribution; and 2) we use the strain instead of the bending moment because 
the strain is readily available from ATBM simulations in all situations. In con-
trast, the calculation of bending moment depends on the particular experi-
mental setting of three-point bending tests [4], which excludes the option of us-
ing ln(bending moment) as the input dose in the general situation of impact by a 
projectile.  
• Critical threshold for ln(elasticity-homogenized strain)  

Let Z(c) be the critical threshold on ln(elasticity-homogenized strain) for the 
standard group of age = 55 y and body mass = 55 kg. Fracture occurs when 
ln(elasticity-homogenized strain) ≥ Z(c). Due to biovariability and dose propaga-
tion uncertainty, there is still randomness in threshold Z(c) even within the stan-
dard group. For a given subject and a given experimental realization, we have  

Z(c) = ln(elasticity-homogenized strain at fracture) 
The statistics of Z(c) is not readily available from test data since the hypotheti-

cal elasticity-homogenized strain is not directly measurable in experiments. To 
estimate the mean and standard deviation of random Z(c), we start with the dis-
tribution of ln(measured strain at fracture) and then filter out as much as possi-
ble the effects of age and body mass and filter out the effects of random local in-
homogeneity and measurement uncertainty (factors ii) and iii) in Table 5).  
• Mean of the critical threshold Z(c)  

In the least squares fitting, we predict the mean of ln(strain at fracture) for 
subjects of age 55 y and body mass 55 kg (Table 6). We use the predicted mean 
of ln(strain at fracture) to model the mean of the non-observable ln(elasticity- 
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homogenized strain at fracture) for the standard group, which is E(Z(c)).  
( )( ) ( ) 0ln 1.563 0.447cE Z z= = ≡   

• Standard deviation of the critical threshold Z(c)  
As we discussed above, the measured bending moment and the hypothetical 

elasticity-homogenized strain are both fairly immune from factors ii) and iii) 
listed in Table 5. The RMSD of fitting ln(bending moment at fracture) to f(A, M) 
discounts the dependence on (A, M) and captures the variation caused by factor 
i), which is the biovariability not explained by (A, M). The basic idea is that 
when a measurable quantity and a similar non-observable quantity are both 
mainly affected by factor i), we simply use the variation of the measurable one to 
model the variation of the non-observable one. Specifically, the standard devia-
tion of the non-observable ln(elasticity-homogenized strain at fracture), std(Z(c)), 
is approximated by the RMSD of fitting the measurable ln(bending moment at 
fracture) to f(A, M). The RMSD value is given in Table 6.  

( )( ) ( )std RMSD of fitting for ln bending moment at fracture

0.098

cZ

z

=

= ≡ ∆
 

• A normal distribution injury model  
For the standard group (age = 55 y, body mass = 55 kg), we model the critical 

threshold Z(c) as a normal random variable  
( ) ( )0~ 0,1cZ z zN+ ∆   

We select x = ln(elasticity-homogenized strain) as the dose quantity for the 
injury model. The corresponding injury probability is given by function fN(x; D50, 
W) defined in (2).  

( ) ( )50; ,Np x f x D W= ,  

x ≡ ln(elasticity-homogenized strain).  
where the shape parameters (D50, W) are  

( )
50 0

1

0.447,

2 2erf 0.8 0.251

D z

W z−

= =

= ∆ =
  

For conciseness, we shall refer to “elasticity-homogenized strain” simply as 
strain since this is the strain quantity calculated in ATBM simulations. The 
dose-injury model is shown in Figure 6. In the left panel of Figure 6, the injury 
probability is plotted as a function of input dose x = ln(strain). In the right panel, 
the injury probability is plotted as a function of strain. This is the injury model 
of humerus fracture for the standard group of age 55 y and body mass 55 kg. It 
predicts the injury probability from the input dose of ln(elasticity-homogenized 
strain), which is the output of ATBM simulations. For a general group with dis-
tribution of (age, body mass) deviating from (55 y, 55 kg), the additional uncer-
tainty needs to be incorporated in the injury model of humerus fracture, and 
separately incorporated in the ATBM simulations when calculating the strains 
on humerus. The effects of (age, body mass) distribution will be discussed later.  
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Figure 6. Injury model of humerus fracture based on test data from [4], for the standard 
group of age = 55 y and body mass = 55 kg. Left panel: injury probability vs ln(strain). 
Right panel: injury probability vs strain (%). Here the simple notation “strain” refers to 
the hypothetical “elasticity-homogenized strain”. The injury model is formulated with 
ln(strain) as the dose. The median injury dose and the width parameter are D50 = ln(1.564) 
= 0.447 and W = 0.251.  

7. An Injury Model Based on Existing Data of Forearm  
Fracture  

The forearm has a more complex structure than that of the upper arm. The fo-
rearm has two large bones: radius and ulna. While both the radius and the ulna 
articulate with the humerus at the elbow joint, the ulna is primarily for anchor-
ing the forearm to the humerus and the radius is responsible for rotating the fo-
rearm around its axis (the ulna). At the wrist joint, only the radius directly arti-
culates with the carpal bones, which connect the hand to the forearm. This ra-
dius-ulna structure enables the pronator and supinator muscles to drive the fo-
rearm-wrist-hand complex to rotate around its axis swiftly, smoothly, with wide 
range, and against significant opposing torque. In the supinated position when 
forearms are placed on one’s own lap with palms facing up, the radius and ulna 
are nearly parallel to each other with the radius on the thumb side (outside). In 
the pronated position when the forearms are placed on one’s own lap with palms 
facing down, the wrist end of radius is rotated with respect to the ulna and 
crossing over the ulna. The forearm has two sides: the side corresponding to the 
palm side (front) of hand is called the anterior side; the side corresponding to 
the dorsal side (back) of hand is called the posterior side.  

We use the fluctuation analysis approach developed in the previous section to 
study the forearm fracture test results in [4].  

7.1. Fluctuation Analysis on Forearm Data  

In three-point bending tests [4], seven forearm samples in the pronated position 
were struck in the anterior-posterior direction, that is, the palm-back direction 
with reference to hand. The experiment was designed to emulate the situation of 
a person driving a car, holding the steering wheel with palms facing forward, 
and being struck by an object from the front. In the pronated position, the ra-
dius is behind the ulna when viewed in the anterior-posterior direction. Impact 
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in the anterior-posterior direction will hit the ulna first. For each forearm sam-
ple, three peak quantities were measured: radius strain at fracture, ulna strain at 
fracture, and the bending moment of the whole forearm at fracture. For the fo-
rearm data, we carry out the fluctuation analysis as described in the previous 
section. The results are reported in Table 7. Similar to the humerus data, the 
measured bending moment of the whole forearm at fracture has the smallest rel-
ative variation (0.183) among 3 measured quantities. After the least squares fit-
ting to discount the dependence on age and body mass (A, M), its relative varia-
tion drops further to 0.103. Table 7 shows that the measured radius strain and 
ulna strain have significantly higher relative variations, reflecting the effects of 
random local inhomogeneity and measurement uncertainty, which are factors ii) 
and iii) in Table 5. The measured bending moment, on the other hand, is fairly 
immune from these two factors.  

7.2. A Dose-Injury Model for the Standard Group of Age = 60 y  
and Body Mass = 55 kg  

As in the situation of humerus data, the hypothetical elasticity-homogenized 
strain serves as a bridge for connecting the real test data and idealized ATBM 
simulations. We use ln(elasticity-homogenized strain) as the dose in the injury 
model.  

Based on the data set of measured ulna fracture strain or radius fracture strain, 
we use the least squares fitting procedure to predict the corresponding mean of 
ln(fracture strain) for the standard group of age 60 y and body mass 55 kg. 
Here we select age = 60 y as the standard group because all but one of the fo-
rearm specimens tested were from cadaver donors above age 59 [4]. Using this 
data set to predict quantities at age 55 will be an extrapolation, which we wish to 
avoid.  

We use the predicted mean of ln(fracture strain) at (age = 60 y, body mass = 
55 kg) to model the mean of ln(elasticity-homogenized strain at fracture) for the 
standard group, which gives E(Z(c)). Recall that Z(c) is the critical threshold in the 
dose propagation uncertainty formulation. Even within the standard group, Z(c) is a 
random variable due to biovariability. The predicted E(Z(c)), as reported in Table 7,  

 
Table 7. Comparison of fluctuations in 3 measured fracture quantities in forearm data. 

 

Y = measured fracture quantity 

Radius  
strain (%) 

Ulna  
strain (%) 

Bending 
moment (Nm) 

Std(ln(Y)) 0.297 0.469 0.183 

RMSD of fitting  
{ln(Y)j} to f(A, M) 

0.222 0.420 0.103 

Predicted E(ln(Y)) at 
age = 60 y, body mass = 55 kg 

ln(1.334) ln(0.330) ln(70.96) 
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is  

Ulna fracture: ( )( ) ( ) 0ln 0.330 1.109cE Z z= = − ≡   

Radius fracture: ( )( ) ( ) 0ln 1.334 0.2882cE Z z= = ≡   

Following the same approach as in the previous section, we approximate the 
standard deviation of the non-observable ln(elasticity-homogenized strain at 
fracture), std(Z(c)), using the RMSD of fitting the measurable ln(bending mo-
ment at fracture) to f(A, M). The RMSD value is given in Table 7.  

Ulna fracture: ( )( )std 0.103cZ z= ≡ ∆   

Radius fracture: same as ulna fracture.  
With this approach, the critical threshold Z(c) for predicting ulna fracture has 

the same standard deviation as that for predicting radius fracture. The mean of 
Z(c), however, is different for the ulna fracture and for the radius fracture. We 
model the critical threshold Z(c) as a normal random variable. For the standard 
group of age 60 y and body mass 55 kg, Z(c) has the distributions below, respec-
tively for ulna fracture and radius fracture:  

( ) ( )0~ 0,1cZ z zN+ ∆   

Ulna fracture: ( ) ( )~ 1.109 0.103 0,1cZ N− +   

Radius fracture: ( ) ( )~ 0.2882 0.103 0,1cZ N+   

We select x = ln(elasticity-homogenized strain) as the input dose for the in-
jury model. The corresponding injury probability is given by function fN(x; D50, 
W) defined in (2).  

( ) ( )50; ,Np x f x D W= ,  

x ≡ ln(elasticity-homogenized strain),  
where the shape parameters are related to (z0, Δz) by  

( )1
50 0 , 2 2erf 0.8D z W z−= = ∆   

Ulna fracture: 50 1.109, 0.264D W= − =   
Radius fracture: 50 0.2882, 0.264D W= =   

Again, for conciseness, we shall refer to “elasticity-homogenized strain” simp-
ly as strain. Figure 7 displays plots of injury probability vs strain, respectively, 
for the radius fracture (left panel) and for the ulna fracture (right panel). These 
are the injury modes for the standard group of age 60 y and body mass 55 kg. 
For a general group, the effects of (age, body mass) distribution will be incorpo-
rated in the two injury models, and separately incorporated in the ATBM simu-
lations when calculating the strains on ulna and on radius. The effects of (age, 
body mass) distribution will be discussed later.  

8. An Injury Risk Assessment Framework Based on  
Idealized ATBM-FEM Simulations and Real Test Data  

We consider the problem of assessing fracture risk of the humerus. The fracture 
risk of the radius and the ulna in forearm can be studied in a similar way.  
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Figure 7. Injury models for forearm fracture based on data from [4]. Left panel: probabil-
ity of radius fracture vs radius strain (%). Right panel: probability of ulna fracture vs ulna 
strain (%). Here the simple notation “strain” refers to the hypothetical “elastici-
ty-homogenized strain”. The injury model is formulated with ln(strain) as the dose. For 
radius fracture, the median injury dose and the width parameter are D50 = 0.288 = 
ln(1.334) and W = 0.264; for ulna fracture D50 = –1.108 = ln(0.33) and W = 0.264. In the 
plots, injury probability is shown as a function of strain, instead of ln(strain).  

8.1. Separate Injury Models For Extension Fracture and  
Compression Fracture  

In the humerus data, there are two strains measured at fracture: anterior strain 
and posterior strain. In three-point bending experiments, the humerus is im-
pacted in the posterior-anterior direction, which results in an extension strain 
on the anterior side and a compression strain on the posterior side. In bending 
experiments of humerus, at fracture, the magnitude of anterior strain (extension) 
is observed to be larger than that of posterior strain (compression). In stand-alone 
extension tests and compression tests, however, bones are observed to have small-
er fracture tolerance for extension than for compression [10]. These observa-
tions indicate that in humerus bending tests, the fracture failure is primarily 
caused by the strain on the anterior side exceeding the extension tolerance while 
the strain on the posterior side is still below the compression tolerance. Thus, in 
bending tests, the measured anterior fracture strain serves as a proper sample of 
the critical threshold for extension failure while the measured posterior strain at 
fracture gives only an underestimated (lower bound) sample of the critical thre-
shold for compression failure.  

Note that even within the standard group of (age = 55 y, body mass = 55 kg), 
both the extension strain threshold and compression strain threshold are still 
random variables due to biovariability. As discussed in the analysis of previous 
sections, the critical threshold for strain has a log-normal distribution. For ma-
thematical convenience, we consider the critical threshold Z(c) for ln(strain), 
which is the input dose of the injury model. Critical threshold Z(c) has a normal 
distribution. In the corresponding injury model for extension fracture or for 
compression fracture, the median injury dose (D50) is given by E(Z(c)) and the 
width (W) is related to std(Z(c)) by  

( ) ( )( )12 2erf 0.8 std cW Z−=   
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In the dose propagation uncertainty formulation, the injury model has the 
form of function fN(x; D50, W) defined in (2).  

Extension fracture: 
( ) ( )( ) ( ) ( ) ( )( )50; ,E E E E E

Np x f x D W= ,  

x(E) ≡ ln(extension strain).  
Compression fracture: 

( ) ( )( ) ( ) ( ) ( )( )50; ,C C C C C
Np x f x D W= ,  

x(C) ≡ ln(compression strain).  
For the standard group of (age = 55 y, body mass = 55 kg), the shape parame-

ters of the injury model for extension fracture were estimated based on the 
bending test data.  

Extension fracture:  
( ) ( )
50 0.447, 0.251E ED W= =   

For compression fracture, the lower bound estimate of ( )
50

CD  from the bend-
ing test data is significantly smaller than ( )

50
ED  for extension fracture. We think 

this underestimated ( )
50

CD  is too low. In general, we expect the compression to-
lerance should be larger than the extension tolerance: ( ) ( )

50 50
C ED D> . As a rea-

sonable placeholder until a relevant estimate becomes available, we shall use  
( ) ( ) ( ) ( )
50 50 0.447, 0.251C E C ED D W W= = = =   

The age and body mass affect both the shape parameters of injury models and 
the ATBM-FEM simulation setup. Their effects will be incorporated after we 
build the structure of injury assessment formulation by connecting the ATBM 
simulations and the empirical injury models.  

8.2. A Formulation for Assessing the Injury Risk from a Given  
ATBM-FEM Simulation Setup  

In this section, we consider a method for integrating the injury model into 
ATBM-FEM simulations and implementing the uncertainty propagation calcu-
lation.  

To assess the bone fracture risk when a subject is hit by a blunt projectile, we 
start by assembling a random realization of the projectile-body-impact. Let ΘATBM 
denote the parameter set describing the projectile-body-impact. Basically, para-
meter set ΘATBM specifies the ATBM simulation setup.  

ΘATBM = {parameters in ATBM setup}  
ΘATBM consists of a large number of parameters, including but not limited to:  

• mass, shape and material properties of the projectile;  
• impact velocity;  
• impact location and angle on the body;  
• geometry of individual body components (bones, organs, tissues);  
• material properties of individual body components.  
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Many parameters in ΘATBM are not deterministic. Rather, they are random va-
riables in a random realization of ATBM setup. In ATBM simulations, these pa-
rameters could be sampled from distributions defined by characteristic parame-
ters of the problem. For example, the impact location/angle on the body could be 
sampled from an empirical distribution; the elasticity modulus of humerus bone 
could be sampled from a distribution constructed based on the age and body 
mass of the subject. Once the parameters in set ΘATBM are sampled in a realiza-
tion of ATBM setup, the strain/stress distribution can be computed over the spa-
tial dimensions of each body component and over the entire time course of the 
hypothetical perfectly elastic impact. In ATBM simulations, body components 
are assumed to remain elastic throughout the loading; fracture failure is not di-
rectly reflected in the simulation. For a bone with homogeneous material prop-
erties, if fracture occurs, it will be at the location of maximum extension strain 
or at the location of maximum compression strain. Let  

( ) ( )ATBM, ; strain distribution of humerus over ,u t u tε Θ =
    

where ( ),u t  denotes the spatial and time coordinates. The strain distribution 
depends on the ATBM setup parameter set ΘATBM. For example, a larger impact 
velocity induces a larger strain on the bone while a larger body mass may miti-
gate the impact (due to the amount of muscle and tissue surrounding the bone). 
For simplicity, we denote the strain distribution concisely as ( ),u tε  . In the 
strain distribution, positive values are extension strain while negative values are 
compression strain. For compression strain, we take the maximum of its abso-
lute value. Over the humerus bone and over time, the maximum extension strain 

( )
max

Eε  and the maximum compression strain ( )
max
Cε  are, respectively,  

( )
( )

( )( )
( )

( )
( )( )

max ,

max ,

max , ,0

max , ,0

E

u t

C

u t

u t

u t

ε ε

ε ε

=

= −









  

Note that although it is not explicitly shown in the concise notation, both ( )
max

Eε  
and ( )

max
Cε  are functions of the ATBM setup ΘATBM.  

We calculate the fracture risk corresponding to the strain distribution ( ),u tε   
as  

{ }( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

50

50

max ,

; ,

; ,

E C

E E E E
N

C C C C
N

p p p

p f x D W

p f x D W

ε =

=

=

                  (12) 

where  

( ) ( )( ) ( )
( )( )

( ) ( )( ) ( )
( )( )

max ,

max ,

ln ln max , ,0 ,

ln ln max , ,0

E E

u t

C C

u t

x u t

x u t

ε ε

ε ε

 = =  
 
 = = − 
 









  

The mathematical approach of taking the larger of the extension fracture risk 
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and the compression fracture risk is based on the view that the random biova-
riability in bone properties tends to influence the extension fracture threshold 
and the compression fracture threshold in a similar way. For example, a lower 
bone density is likely to decrease both the extension and compression fracture 
thresholds.  

In the unlikely situation where the extension fracture threshold and the com-
pression fracture threshold are independent of each other, the fracture risk is 
governed by  

{ }( ) ( )( ) ( )( )1 1 1E Cp p pε− = − −   

which leads to  

{ }( ) ( ) ( ) ( ) ( )E C E Cp p p p pε = + − ⋅   

We think it is unreasonable to assume the independence of extension and com-
pression fracture thresholds. So, we shall use (12), which is based on the more 
reasonable assumption that the extension and compression fracture thresholds 
are highly correlated in the randomness of biovariability.  

Injury model (12) calculates the fracture probability corresponding to a high- 
dimensional input in the form of strain distribution ( ),u tε   over space and 
time. For each sampled realization of ATBM setup ΘATBM, the output of ATBM 
simulations gives the corresponding strain distribution ( ),u tε  . In this way, we 
have constructed a computational framework that maps a sampled realization of 
ATBM setup ΘATBM to the corresponding probability of bone fracture p.  

( ){ } ( )( ) ( )( )( )

( ) ( )( )

ATBM simulation Calculate input dose
ATBM max max

ATBM Strain Dose for predicting extensionsetup distribution fracture, compression fracture

Injury model

, ln , ln

,

E C

E C

u t

p p

ε ε εΘ → →

→









ProbabilityProbability of extension of fracturefracture, compression fracture

p→




  

The computational framework summarized above predicts the fracture injury 
risk for the standard group of (age = 55 y, body mass = 55 kg) and for a given 
ATBM setup ΘATBM.  

8.3. Effects of Age and Body Mass  

Let A = age, M = body mass. We first look at how to incorporate the effect of (A, 
M) into the dose-injury relation. In the injury model, ln(elasticity homogenized 
strain) is selected as the input dose. In the dose propagation uncertainty formu-
lation, the injury model is specified by the two shape parameters: the median 
injury dose D50 and the width W. The median injury dose D50 is the mean of the 
non-observable ln(elasticity homogenized strain) at fracture. D50 is estimated by 
fitting measured ln(Y) to a linear function of (A, M) where Y is the anterior (ex-
tension) strain at fracture. The least squares fitting reveals the dependence of 
median injury dose D50 on age (year) and body mass (kg).  
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Median injury dose vs (A, M) for humerus fracture:  
( ) ( ) ( ) ( )– –52
50 , 0.447 1.2 10 55 552.53 10ED A M A M= + × − −×−   

Here ( )
50

ED  is for ln(elasticity homogenized extension strain). It needs to be 
pointed out that the dependence of ( )

50
ED  on (A, M) given above is based on 

fitting to a very small set of test data. It should be regarded only as a place-
holder until a better candidate is available. A more accurate dependence rela-
tion needs to be constructed based on more experimental measurements if availa-
ble, or based on theoretical/empirical knowledge, or based on a combination 
of the two.  

The fitting above based on limited data does not describe how the width of 
injury model varies with age and body mass. We shall assume that the width for 
the standard group (estimated in the previous sections) is valid for all (A, M).  

Width parameter vs (A, M) for humerus fracture:  
( ) ( ), 0.251EW A M =  for all (A, M)  

Again, this serves only as a placeholder until a better candidate is available.  
Next we incorporate the effect of age and body mass into the ATBM simula-

tions. We write the ATBM setup parameter set ΘATBM explicitly as  

( )ATBM , ,A M ωΘ   

In the function form above, (A, M) describes the distribution from which pa-
rameter set ΘATBM is sampled. But (A, M) does not completely specify ΘATBM. 
Even when (A, M) is fixed, ΘATBM is still a random variable. There is biovariabil-
ity not explained by (A, M). In addition, the impact velocity, impact location and 
angle of the projectile have uncertainty. The overall randomness in ΘATBM is 
symbolically represented by ω.  

8.4. A Framework for Assessing the Injury Risk of a Subject of  
Given Age and Body Mass  

Consider a random subject of given age and body mass (A, M). We study the 
humerus fracture risk of the subject caused by the blunt impact of a projectile. 
Even though (A, M) is given, there are randomness in the subject’s biovariability 
and randomness in the projectile-body-impact. As a result, the injury probability 
varies among individual subjects and among individual impact realizations of a 
fixed subject. The average injury probability for a random subject of given (A, M) 
may be calculated following the steps below:  

1) Sample the parameter set ΘATBM(ω) to set up ATBM simulations, based on 
the given value of (A, M) and other characteristic parameters of the problem;  

2) Calculate the input dose for the injury model via ATBM simulations:  
• run ATBM simulations with the sampled realization of ΘATBM(ω) to calculate 

the strain distribution over space and time ( ),u tε  ;  
• find the maximum extension strain and the maximum compression strain 

from the ATBM simulation results, and calculate the input dose for the in-
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jury model;  
dose for predicting extension fracture:  

( ) ( )( )maxlnE Ex ε=   

dose for predicting compression fracture:  
( ) ( )( )maxlnC Cx ε=   

3) set up the injury model by calculating shape parameters (D50, W) corres-
ponding to the given (A, M);  
extension fracture:  

( ) ( ) ( ) ( )50 , , ,E ED A M W A M   

compression fracture:  
( ) ( ) ( ) ( )50 , , ,C CD A M W A M  

4) apply each injury model on each input dose to calculate the extension frac-
ture probability, the compression fracture probability, and the injury risk cor-
responding to the sampled realization of ΘATBM(ω);  

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

50

50

; ,

; ,

max ,

E E E E

C C C C

N

N

E C

p f x D W

p f x D W

p p pω

=

=

=

  

5) repeat steps 1-4 above, and average the injury risk over independent reali-
zations of ATBM setup ΘATBM(ω).  

( ) ( )( ),A Mp E p ω=   

Mathematically, the risk assessment framework is concisely written as  

1) ( ) ( )
Sample parameters
 to set up ATBM

ATBM,A M ω→Θ   

2) 
( ) ( ){ }( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

ATBM simulations to calculate 
strain distribution

ATBM

Find maximum strain
to calculate the dose 

max max

,

ln , lnE E C C

u t

x x

ω ε ω

ω ε ω ε

Θ →

→ = =



 

3) ( ) ( ) ( )( ) ( ) ( )( )
Calculate shape parameters

of injury model
50 50, , , ,E E C CA M D W D W→   

4) 
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( )
Calculate injury risk50 for realization  

50

, ,

, ,

E E
N

C C

E E

C C
N

p f x D W
p

p f x D W
ω

ω
ω

ω

 =
  → =  

  

5) ( ) ( )

Average injury risk over
independent realizations 

,A Mp pω →                                (13) 

The computational framework summarized above predicts the fracture injury 
risk for a random subject of given age and body mass and for a random ATBM 
setup ΘATBM.  
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8.5. Options for Reducing the Number of ATBM Runs When  
Assessing the Injury Risk of a Population  

Risk assessment calculation based on framework (13) requires a significant num-
ber of ATBM-FEM runs for a subject of given age and body mass (A, M). Each 
ATBM-FEM run is a time evolution simulation of the three-dimensional projec-
tile-body complex using a finite element discretization. Computationally a single 
ATBM-FEM run is already substantially expensive. The calculation of average 
injury risk for a subject of given age and body mass is based on many runs with 
sampled realizations of ΘATBM(ω). If, in addition, we need to average the injury 
risk over many subjects with diverse values of (A, M), then the overall calcula-
tion of the average injury risk for a population will entail a large number of runs. 
Computationally this may be prohibitively expensive. There are two possible 
avenues for reducing the number of ATBM runs needed.  

Option 1: Uncertainty propagation from ATBM setup to ATBM output  
The ATBM-FEM simulation setup is specified by parameter set ΘATBM(ω), 

which is a random variable even at a fixed (A, M). For each realization of ΘATBM(ω), 
the corresponding input dose for the injury model is calculated via ATBM si-
mulations. Let Dose(ΘATBM(ω)) denote the dose corresponding to ATBM-FEM 
setup ΘATBM(ω). Mathematically, this is represented by  

( ) ( )( )

( )( ) ( )( )( )( )

ATBM
simulation

ATBM ATBM

max max

Dose

||

ln , lnE C

ω ω

ε ε ω

Θ → Θ

  

At a fixed (A, M), we use the median of ΘATBM(ω) as a representative ATBM- 
FEM setup.  

( ) ( )( )0
ATBM ATBMmedian ωΘ = Θ   

We view the corresponding dose, ( )( )0
ATBMDose Θ , as a representative dose of 

the impact situation. As the random setup ΘATBM(ω) fluctuates around the rep-
resentative setup ( )0

ATBMΘ , it is reasonable to expect that the corresponding fluc-
tuations of Dose(ΘATBM(ω)) around ( )( )0

ATBMDose Θ  are normally distributed.  

( )( ) ( )( ) ( )0 2
ATBM ATBMDose Dose ,Nω µ σΘ ΘΘ = Θ +   

Furthermore, it is likely that the parameters ( )2,µ σΘ Θ  are approximately in-
variant with respect to (A, M), or they follow a simple function of (A, M).  

( )2,µ σΘ Θ  = invariant with respect to (A, M) 
Suppose this conjecture is valid and we pre-calculate the value of ( )2,µ σΘ Θ  

by carrying out repeated runs with randomly sampled ATBM-FEM setups. Once 
the value of ( )2,µ σΘ Θ  is known, at each (A, M) we only need a single ATBM 
run with the representative setup, ( ) ( )0

ATBM | ,A MΘ , to capture the distribution of 
Dose(ΘATBM(ω))|(A, M). There is no need to carry out multiple ATBM runs to 
generate samples of Dose(ΘATBM(ω))|(A, M). For the purpose of calculating the 
injury risk, we don’t even need to apply the dose-injury relation to individual 
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samples of Dose(ΘATBM(ω))|(A, M) and then average over them. In the dose propa-
gation uncertain formulation, uncertainty in the input dose Dose(ΘATBM(ω))|(A, M) 
is conveniently incorporated into the injury model by updating the shape para-
meters (D50, W).  

( )

( ) ( )( )

updated
50 50

2updated 2 12 2erf 0.8

D D

W W

µ

σ

Θ

−
Θ

= −

= +
  

With the updated shape parameters, the average injury probability over Dose 
(ΘATBM(ω)) is expressed in terms of the representative dose ( )( )0

ATBMDose Θ  as  

( )( ) ( )( ) ( ) ( )( )0 updated updated
ATBM 50Dose ; ,NE p f D Wω = Θ   

After the injury probability is calculated separately for each of the extension 
fracture and compression fracture, the larger one of the two probabilities gives 
the injury probability of bone fracture.  

In summary, by integrating ATBM-FEM simulations with the versatile dose 
propagation uncertainty formulation, the risk assessment of a subject requires 
only a single ATBM-FEM run to calculate the representative dose based on the 
representative setup ( )0

ATBMΘ . Uncertainty in the ATBM setup ΘATBM(ω) leads to 
uncertainty in the input dose Dose(ΘATBM(ω)). This uncertainty is readily com-
bined with other uncertainties and is reflected in the updated shape parameters 
of the injury model, using the dose propagation uncertainty formulation. There 
is no need to run Monte Carlo style simulations to model this uncertainty. The 
injury risk is calculated by applying the updated injury model on the representa-
tive dose.  

Option 2: Sample ΘATBM(ω) and (A, M) jointly  
Option 1 above reduces the computational cost to a single ATBM run for as-

sessing the injury risk of each subject. It is based on the assumption that the dose 
corresponding to random ATBM setup ΘATBM(ω) is normally distributed around 
the representative dose.  

( )( ) ( )( )0
ATBMATBMDose Dose normal distributionωΘ = +Θ .  

If this assumption is invalid, the risk assessment for a given subject following 
framework (13) will require multiple ATBM-FEM runs. For a population, how-
ever, we can still reduce the total number of ATBM runs needed in risk assess-
ment computation.  

Suppose we need to average the injury risk over many subjects with diverse 
values of (A, M) and over random realizations of ATBM setup ΘATBM(ω). A 
straightforward method completes the job in two steps:  
• For each subject of a given (A, M), draw samples of ATBM setup ΘATBM(ω). 

For each sampled realization of ΘATBM(ω), calculate the corresponding injury 
risk p(ω)|(A, M). Then average the injury risk over independent realizations 
of ΘATBM(ω) to calculate p|(A, M), the injury risk for a subject of the given (A, 
M).  
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• Repeat the computation for each individual subject sampled from the (A, M) 
distribution of the population. Average the injury risk p|(A, M) over sampled 
subjects.  

Overall, we need to take average of the injury risk, p(ω)|(A, M) with respect to 
ω and then with respect to individual values of (A, M) in the population. The 
space of (ω, A, M) is high dimensional. Nevertheless, p(ω)|(A, M) is a scalar 
quantity. The power of Monte Carlo integration over a high dimensional space is 
to sample it jointly instead of sampling each dimension or each subspace sepa-
rately. Following this general rule of Monte Carlo sampling, we view individual 
values of (A, M) in the population as samples of a random variable. We sample 
(A, M, ω) jointly  

( ){ }, , , 1, 2, ,j j jA M j Nω =    

The average injury risk of the population is approximated as  

( ) ( )
1True Approximationaverage Monte Carlo error

approximation

1Average , , 1
N

j j j
j

p p A M O N
N

ω
=

= +∑






          (14) 

Note that the approximation error in Monte Carlo integration is proportional 
to 1 N , regardless of the number of dimensions in the space of (A, M, ω).  

In summary, when we do need to use Monte Carlo simulations to average 
over many random factors, we do so by sampling the high-dimensional space 
jointly, instead of sampling each subspace separately.  

8.6. A Computational Framework for Assessing the Injury Risk  
and Its Uncertainty for a Population  

We consider a population with a given distribution of (A, M). We study the av-
erage injury risk of bone fracture per subject in the population. The average in-
jury risk per subject, denoted by pavg, is interpreted as follows. For a crowd, (n × 
pavg) gives the expected number of injured in the crowd where n is the number of 
subjects hit by projectiles.  

The mathematical meaning of pavg is clear and is expressed in (14): pavg = in-
jury risk averaged over all subjects and over all random realizations of ATBM- 
FEM setup.  

pavg is calculated following the steps below.  
Step 1. Sample (A, M)  
Sample age and body mass (A, M) from the given distribution of (A, M). 
Step 2. Sample ΘATBM(ω)|(A, M)  
Sample the ATBM setup ΘATBM(ω)|(A, M) as follows:  
a) Determine or sample the geometry and properties of the projectile based on 

the given projectile type description;  
b) Determine or sample the geometry and properties of bones and tissues 

based on the sampled value of (A, M) from step 1;  
c) Determine or sample the impact velocity based on the given projectile type 
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and distance description (for example, a subject is hit by a projectile, of a certain 
type, launched from 100 - 200 meters away);  

d) Determine or sample the impact location and impact angle on the subject 
body based on the given impact description (for example, a subject is hit on the 
left upper torso by a projectile of …).  

Step 3. Calculate the input dose for predicting the fracture risk  
Calculate the input dose for the injury model via ATBM simulations as fol-

lows:  
a) Run ATBM simulations with setup ΘATBM(ω)|(A, M) to calculate the 

strain distribution over space and time;  
b) Find the maximum extension strain and the maximum compression strain 

from the ATBM simulation results.  
Step 4. Set up the dose-injury relation for predicting the fracture risk  
Set up the injury model by calculating shape parameters D50(A, M) and W(A, 

M) according to the sampled value of (A, M) from step 1.  
Step 5. Calculate the injury risk corresponding to the sampled (A, M, ω)  
Calculate the injury risk corresponding to the sampled (A, M, ω) by applying 

the dose-injury relation on the input dose generated by the ATBM simulations 
based on the sampled (A, M, ω).  

Step 6. Repeat sampling (A, M, ω), and average the injury risk  
Repeat steps 1-5 above, average the injury risk over independently sampled 

realizations of (A, M, ω), and calculate the uncertainty in the average injury risk. 
For example, we may report the average injury risk in the form of 6% ± 2%.  

Note that the framework described above can readily accommodate the effect 
of gender by sampling (A, M, G) where G denotes the gender of a subject. Ac-
cordingly, in Step 2 above, we need a component model that describes the de-
pendence of bone geometry and properties on (A, M, G); and in Step 4, we need 
a component model mapping (A, M, G) to shape parameters (D50, W) in the 
dose-injury function. These component models are to be developed.  

In summary, the computational framework described above assesses the in-
jury risk of a population by 1) sampling ATBM setup; 2) running ATBM simula-
tions to calculate elasticity-homogenized strain; 3) properly interpreting test data 
to formulate an injury model that maps the elasticity-homogenized strain to the 
bone fracture probability; and 4) applying the injury model to calculate the frac-
ture probability and then averaging over independent samples of ATBM setup. 
The key for properly connecting real test data and ATBM simulations is the 
concept of elasticity-homogenized strain.  

9. Concluding Remarks and Future Work  

We have constructed a computational framework for assessing the bone fracture 
risk of a subject hit by a blunt impact projectile. The framework unifies real test 
data and ATBM simulations by introducing the hypothetical elasticity-homo- 
genized strain as the input dose for predicting injury risk, and by formulating 
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the dose-injury relation based on dose propagation uncertainty. The elastici-
ty-homogenized strain corresponds to the strain quantity calculated in ATBM 
simulations where all bones and tissues are assumed to be perfectly elastic and 
have homogeneous material properties in each part. The very first step in inte-
grating ATBM simulations and real test data is to recognize that the strain cal-
culated in ATBM simulations is different from the strain measured in experi-
ments of real bone samples. This is especially true when we look at the uncer-
tainty and fluctuations in measured strains. As a result, mathematically it is im-
proper to use the calculated strain directly in the place of the measured strain in 
a straightforward empirical injury model. In three-point bending tests, the frac-
ture strain is measured along with the fracture bending moment. The measured 
fracture strain is highly affected by the random local inhomogeneity of bone and 
affected by the uncertainty in measurement gauge attachment location/orientation. 
On the other hand, the measured fracture bending moment is fairly immune 
from the effects of these two factors and consequently it has much smaller rela-
tive fluctuations in the test data. The fracture bending moment is unique to the 
situation of three-point bending tests, and thus, is unsuitable for serving as the 
input dose for predicting injury risk in a general blunt impact situation. Howev-
er, the measured fracture bending moment provides valuable information about 
the effect of biovariability in the hypothetical absence of random local inhomo-
geneity and measurement uncertainty. This information enables us to filter out 
the effects of random local inhomogeneity and measurement uncertainty in the 
measured fracture strain. The filtering yields statistics of the non-observable 
elasticity-homogenized strain at fracture, which is the hypothetical strain at frac-
ture if bones and tissues would remain perfectly elastic with homogeneous ma-
terial properties all the way up to fracture. That is why it is called a hypothetical 
quantity. The dose-injury relation based on the hypothetical elasticity-homo- 
genized strain serves as a bridge for connecting the real test data and the idea-
lized ATBM simulations in a proper mathematical setting.  

The measured strain quantities are naturally affected by random local inho-
mogeneity and measurement uncertainty. The key step in integrating test data 
with ATBM simulations is to interpret test data in terms of the hypothetical elas-
ticity-homogenized strain and subsequently construct an empirical injury model 
with elasticity-homogenized strain as the input dose. The resulting computa-
tional framework performs risk assessment in a sequence of steps: 1) sample 
random realizations of ATBM setup; 2) carry out an ATBM run for each setup 
realization; 3) use the strain distribution from ATBM simulations to calculate 
the input dose for predicting the fracture risk; 4) apply the empirical injury 
model on the input dose to calculate the injury risk corresponding to each reali-
zation of ATBM setup, and finally; 5) examine the distribution of injury risk 
over individual realizations, calculate the average injury risk and calculate the 
uncertainty in the injury risk.  

If we only need to estimate the average injury risk, we may reduce the com-
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putational cost dramatically by carrying out only a single ATBM run with the 
median representative setup. The uncertainty in the calculated dose corres-
ponding to uncertainty in ATBM setup is included in the risk assessment for-
mulation by updating the shape parameters (median injury dose and width) of 
the dose-injury relation. This computationally efficient approach is especially 
appropriate and practical in situations where the distribution of ATBM setup is 
only vaguely characterized with significant randomness, rather than precisely 
described.  

The computational framework developed in this study has a robust theoretical 
structure for integrating ATBM simulations and real test data in risk assessment 
calculation. There are, however, many component models in the framework that 
need to be developed and refined. For example, in the dose-injury relation, the 
dependence of shape parameters on age and body mass is tentatively determined 
by fitting to bending test results of 10 humerus samples from cadaver donors of 
average age 55 (out of the 12 samples tested, only 10 had valid measurements in 
all aspects) [3] [4]. The general trend determined in the fitting appears intuitive-
ly reasonable: lower age and/or higher body mass lead to higher injury threshold 
and thus, lower injury risk at a given input dose. Nevertheless, the small sample 
size and the narrow and old age range make the obtained dependence inade-
quate if we use it to predict the median injury dose for a subject of age 20. This 
empirical dependence on age and body mass is only meant to be a placeholder 
until a more sophisticated component model is developed. Similarly, in the ATBM 
simulation setup, the dependence of bone geometry and material properties on 
age and body mass needs to be carefully investigated in a component model.  

The computational framework described above integrates real test data and 
idealized ATBM simulation via the hypothetical elasticity-homogenized strain, 
which is a direct output from ATBM simulations and which serves as the input 
dose in the injury model for predicting bone fracture risk. The most challenging 
part is to filter out the effects of random local inhomogeneity and measurement 
uncertainty, and extract the statistics of the hypothetical elasticity-homogenized 
strain from measured strains in test data. In this study, we accomplished this fil-
tering by comparing the distribution of measured strain with that of measured 
bending moment, which is fairly immune from random local inhomogeneity 
and measurement uncertainty. As a future project, we may consider adopting 
the stress as the input dose for predicting bone fracture risk. When a load is ap-
plied, the strain distribution is highly affected by the local inhomogeneity and 
the measured strain is further affected by the strain gauge attachment uncer-
tainty. In contrast, in standard compression and tensile tests, the stress calcu-
lated from the applied force already reflects the homogenized stress, and thus, is 
fairly immune from the local inhomogeneity. In addition, the stress calculated 
from the applied force has minimal measurement uncertainty. We propose to 
adopt the stress as the input dose in a future version of the risk assessment 
framework. The key component of the framework is an injury model that maps 
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the stress to the fracture probability. We propose to construct this injury model 
based on samples of fracture stress measured in standard compression and ten-
sile tests of relevant bones. The compression tests on human femoral cortical 
bone conducted in [6] provide part of the data. More standard compression tests 
on other bone types and standard tensile tests are needed for building an ade-
quate injury model. The collection of these existing and future standard com-
pression/tensile tests on various bone types will greatly advance our under-
standing of bones under mechanical loads.  
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Appendix A: Fracture Tolerance vs Strain Rate in the  
Exponential Model  

We consider the model in which fracture time tf(σ) decreases exponentially with 
the applied static stress σ:  

( ) 0
0

expft t σσ
σ
− =  

 
 

We study the case of dynamic loading where the applied stress increases with 
the time until fracture. In the main text, we derived the linear relation of fracture 
tolerance (stress) vs logarithm of applied strain rate when the stress rate is pro-
portional to the strain rate. Specifically, we derived (5) based on (7). Here we 
show that (5) actually does not require (7) be globally satisfied during the entire 
loading process. Linear relation (5) is valid when the following conditions are 
satisfied: 
• The stress vs time profile is linear in a time interval near fracture;  
• This time interval contains dominant contribution toward fracture;  
• Contribution toward fracture per unit time increases significantly over this 

time interval; and 
• In this time interval, the stress increase rate is proportional to the strain rate.  

Mathematically, these conditions are described as  
1) σ(t) is linear for t > t1 until fracture.  

( ) ( )
( ) ( )

1

1 1 1

,
, until fracture

w t t t
t

w t t t t t
σ

η
 <=  + − >

  

2) The contribution toward fracture from ( ){ }1,0t t tσ < <  is negligible.  

( )1

0
0 0

1 exp d 1
t t

t
t

σ
σ

 
 
 

∫    

3) Let Tf = the fracture time. The contribution per unit time at Tf is signifi-
cantly larger than that at t1.  

For t ≥ t1, the contribution toward fracture per unit time is  

( ) ( )1 1

0 0

1 exp
w t t t

t
η
σ
+ − 

 
 

  

The ratio of the contribution at Tf and that at t1 gives us  

( )1

0

exp 1fT tη

σ

 −
 
 
 

   

4) The stress increase rate η is proportional to the strain rate ε  in [t1, Tf].  
cη ε=   for 1t t>  until fracture . 

To derive relation (5) under these conditions, we first formulate an approx-
imate equation for the fracture time Tf. Using conditions 1 & 2, we express the 
contribution of σ(t) over [0, Tf] approximately as  

( ) ( ) ( )
1

1 1
0

0 0 0 0

1 1exp d exp df fT T

t

t w t t t
t t

t t
σ η
σ σ

+ −   
≈   

   
∫ ∫   
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( ) ( )11 0

0 0 0

1 exp exp 1fT tw t
t

ησ
σ η σ

  −    = −        
 

Condition 3 leads to approximation:  

( ) ( )1 1

0 0

exp 1 expf fT t T tη η

σ σ

   − −
   − ≈
   
   

  

Thus, fracture time Tf satisfies approximately the equation  

( ) ( )110

0 0 0

exp exp 1fT tw t
t

ησ
η σ σ

 − 
  =      

  

Solving for Tf, we obtain  

( ) ( )0
1 0 1

0

1 lnf
t

T t w t
η

σ
η σ
  

− = −     
  

The stress at fracture is  

( ) ( ) ( )( )
( )

0
1 0 0

0

lnf
ft T

t
w t t t

η

η
σ η η σ

σ=

 
= + − =  

 
  

Using condition 4, cη ε=  , we write the stress at fracture as  

( ) ( ) ( ) ( )0 0
0 0 10 0 10

0 0

ln ln 10 log ln 10 logf
t c t cε

σ ε σ σ σ ε
σ σ

   
= = +   

   



    

This is the same as equation (5), which was derived based on much stronger 
assumptions.  

Appendix B: Fracture Tolerance vs Strain Rate in the Power  
Law Model  

We consider the model in which the fracture time tf(σ), as a function of applied 
static stress σ, follows a power law.  

( ) 0
0

b

ft t σσ
σ

−
 =  
 

  

where  
σ0: a characteristic stress;  
t0: time to fracture at applied stress σ0 (t0 depending on the selection of σ0).  
With the power law model, the cumulative contribution toward fracture from 

the applied stress profile {σ(t)} over time interval [0, T] is  

( ){ } ( )
0

0 0

1contribution of ,0 d
b

T t
t t T t

t
σ

σ
σ

 
< < =  

 
∫   

We derive the relationship between the applied strain rate and the observed 
fracture stress when the stress and strain are locally proportional in a time in-
terval leading to fracture. Specifically, we assume that the loading satisfies the 
conditions below:  
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1) The stress vs time profile is linear in a time interval leading to fracture. 
That is, σ(t) is linear for t > t1 until fracture:  

( ) ( )
( ) ( )

1

1 1 1

,
, until fracture

w t t t
t

w t t t t t
σ

η
 <=  + − >

  

2) Let Tf = the fracture time. The time interval [t1, Tf] contains dominant con-
tribution toward fracture. In other words, the contribution toward fracture from 

( ){ }1,0t t tσ < <  is negligible:  

( )1

0
0 0

1 d 1
b

t t
t

t
σ
σ

 
 
 

∫ 
  

3) From t1 to Tf, the contribution toward fracture per unit time increases sig-
nificantly:  

( )
( )

( )
( )

1

1 1

1 1

b b

f fT T t

t w t

σ η

σ

   −
   = +      

   

4) In the time interval [t1, Tf] leading to fracture, the stress increase rate η is 
locally proportional to the strain rate ε :  

cη ε=   for 1t t>  until fracture.  
By the definition of fracture time Tf, the cumulative contribution of stress pro-

file {σ(t)} over time interval [0, Tf] is 1. Using conditions 1 & 2, we write it as  

( ) ( ) ( )

( ) ( )
( )

1

1 1
0

0 0 0 0

11
110

0 0 1

1 11 d d

1 1 1
1

f f

b b
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+ −   
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∫ ∫
  

Using condition 3, we further simplify it to  

( ) ( ) ( ) 1

1 10
0

0 0 0 0

1 11 d
1

f

bb
T fw t T tt

t
t b t

ησ σ
σ η σ

+
 + − 
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Thus, the fracture time Tf satisfies approximately the equation  

( ) ( ) ( )
1

1 1 0

0 0

1
b

fw t T t b tη η
σ σ

+
 + − +
  =
 
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Solving for Tf we obtain  

( ) ( ) ( )
1

1
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1 1 0
0

1 b
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b t
w t T t
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η σ
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++ 
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The fracture tolerance, σf(η), is the stress at fracture.  

( ) ( ) ( ) ( ) ( )
1

1
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1 1 0
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Now applying condition 4, cη ε=  , and taking the log on both sides, we ob-
tain  

( ) ( ) ( )0
10 10 0 10 10

0

11 1log log log log
1 1f

c b t
b b

σ ε σ ε
σ
+ 

= + + 
+ + 

    

This is Equation (9) in the main text.  

Appendix C: Behavior of Q(Y)  

For random variable Y, we consider quantity Q(Y) defined as  

( ) ( )
( ) ( )( ) ( )( )

2

2 med ln ln
std
E Y

Q Y Y E Y
Y

 
 ≡ −    

 
  

When Y is a normal random variable with the mean significantly larger than 
the standard deviation to ensure Y being virtually positive, we write it as  

( )0 0 0 0, , ~ 0,1Y Y s Y s Nξ ξ= + 
 

In this case, we derive Q ≈ 1.  

( )( ) ( )( ) ( )0med ln ln med lnY Y Y= =   

( ) ( ) ( ) ( ) ( )2 2
0 0 0 0 0 0 0

1ln ln ln
2

Y Y s Y s Y s Yξ ξ ξ= + ≈ + −   

( )( ) ( ) ( )2
0 0 0

1ln ln
2

E Y Y s Y≈ −   

( ) ( )
( ) ( )( ) ( )( )

2

2 med ln ln 1
std
E Y

Q Y Y E Y
Y

 
 ≡ − ≈    

 
  

When Y is a log-normal random variable, we have  

( )ln ~ normal distributionY , 

( )( ) ( )( )med ln lnY E Y=   

( ) 0Q Y ≡ .  

A log-normal distribution has a heavy tail. When the tail of Y is heavier than 
that of a log-normal, Q takes a negative value. For example, when Y is a log-log- 
normal, we have  

( ) ( )( )ln ~ log-normal distribution ~ exp 0,1Y Nµ σ+  

( )( ) ( )med ln expY µ=   

( )( ) ( )2ln exp 2E Y µ σ= +  

0Q <   

In summary, if Y is close to a normal distribution, we have Q ≈ 1; if Y is close 
to a log-normal distribution, we have Q ≈ 0; if the tail of Y is heavier than that of 
a log-normal distribution, we have Q < 0.  
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