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Abstract 
Let G be a graph and k be a positive integer. We consider a game with two 
players Alice and Bob who alternate in coloring the vertices of G with a set of 
k colors. In every turn, one vertex will be chosen by one player. Alice’s goal is 
to color all vertices with the k colors, while Bob’s goal is to prevent her. The 
game chromatic number denoted by ( )g Gχ , is the smallest k such that Alice 
has a winning strategy with k colors. In this paper, we determine the game 

chromatic number gχ  of circulant graphs ( )1,2nC , 1,
2n
nC   

    
 and ge-

neralized Petersen graphs ( ), 2GP n , ( ),3GP n . 
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1. Introduction 

Game chromatic number was introduced by Bodlaender [1]. The game chro-
matic number is defined as a two person game Alice and Bob, and set of colors 

{ }1, ,X k=  . Players take turns to color the vertices of a given finite graph G, 
where no two adjacent vertices take the same color. The game starts with Alice, 
who wins the game if all the vertices of G are colored. Bob wins the game if at 
any stage of the game, there is an uncolored vertex without any legal colors. 
Suppose that the players use their optimal strategies, the minimum positive in-
teger k such that Alice has a winning strategy is the game chromatic number and 
denoted by gχ . 

The uncolored vertex u is called color i-critical as it is defined in [2], if the 
following holds: 

1) Color i is the only available color for u. 
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2) Vertex u has a neighbor v such that i is available color for v. 
During the game notice the following: If a vertex u is color i-critical and if it is 

Bob’s turn then Bob wins the game. But if it is Alice’s turn then she must defend 
the vertex u and make it not critical by do one of the followings: 

1) Color the vertex u with the color i. 
2) Choose a vertex w such that color i is available color for it and satisfy that it 

is adjacent to all uncolored neighbors of u which i is available color to them, and 
then color w with i. 

3) If u has only one uncolored neighbor w available to color with i then color 
it with another color. 

Through this paper we denoted by :r iA v c←  that Alice in her rth turn col-
ors the vertex vi with a color c X∈ . 

The degree of a vertex v is the number of non-loop edges incident on v plus 
twice the number of loops incident on v. The minimum degree of a graph G de-
noted by ( )Gδ  and the maximum degree is ( )G∆ . A graph G is regular if 
( ) ( )G Gδ = ∆  and it’s r-regular if ( ) ( )G G rδ = ∆ = . 
For integers n, k ( 2n k> ), a generalized Petersen graph ( ),GP n k  as it de-

fined in [3], the vertex set is V U  where { }1 2, , , nV v v v=   and  
{ }1 2, , , nU u u u=   and its edge set is { }1, ,i i i i i i kE v v v u u u+ += , where  

1,2, ,i n=   and subscripts are reduced modulo n. 
Let ,n m  and , , , ,r s q m  be positive integers and let the set  
{ }, , , ,S r s q m=  . A circulant graph ( )nC S  is an undirected graph of n ver-

tices in which the ith vertex is adjacent to the (i + j)th and (i − j)th vertices for each  

j in the set S. The circulant graph 1,2, ,
2

3,nC n 
  


 
 

  gives the complete graph  

nK  and the graph ( )1nC  gives the circle graph nC . Through this paper we 
will denote the vertices set as { } | 1, ,iV v i n= =   by exchanging the subscript 
of the vertex 0v  by nv . For further information on the chromatic number of 
circulant graphs see [4]. 

Obvious bounds of the game chromatic number are ( ) ( ) ( ) 1gG G Gχ χ≤ ≤ ∆ + , 
[1]. In [5], Faigle et al. studied the game chromatic number of tree graphs and 
proved that ( ) 4g Tχ ≤ . In [6], Bartnicki et al. studied the game chromatic 
number of cartesian product of two graphs and showed that  

( ) ( ) ( ){ }max ,g g gGH G Hχ χ χ≥ . 

In [7], Destacamento et al. gave the following results: 
Proposition 1.1 [7]. Let nP  be a path of order 2n ≥  then 

( ) 2; if 2 or 3,
3; otherwise.g n

n
Pχ

=
= 


 

Proposition 1.2 [7]. Let nC  be a cycle of order 3n ≥  then 

( ) 3g nCχ = . 

Proposition 1.3 [7]. Let ,m nK  be a complete bipartite graph then 
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( ) { }
,

2; if min , 1,
3; otherwise.g m n

m n
Kχ

 == 


 

Proposition 1.4 [6]. For any integer 3n ≥ , ( )2 4g nK Cχ = . 
In [4], the following Lemma is mentioned: 
Lemma 1.1 [4]. Let ( ),nC a b  be a properly given circulant and ( )gcd , 1n a = , 

Then the graph ( ),nC a b  is isomorphic to the graph ( )11, modnC a b n− . 

2. Game Chromatic Number of Circulant Graph 
In this section, we found the game chromatic number for ( )1,nC a  where 

2,
2
na   ∈    

. 

Lemma 2.1. For n is odd, ( )1,2 1,
2n n
nC C   ≅     

. 

Proof. Let 
1

2 2
n na − = =  

 and 1b = . Then 

( ) 1 1 1gcd , gcd , gcd ,
2 2 2
1 1 1gcd , gcd ,1 1

2 2 2

n n nn a n n

n n n

− − −   = = −   
   

+ − −   = = =   
   

 

So by Lemma 1.1, ( )11, 1, mod
2n n
nC C a b n−   ≅    

, where 1a−  is an integer satis-

fy that ( )1 1 modaa n− ≡ . Then 1 mod 2a b n− = − . Hence ( )1, 1, 2
2n n
nC C   ≅ −    

 

and ( )1, 1,2
2n n
nC C   ≅    

 because of ( ) ( )1,2 1, 2n nC C≅ − .             □ 

Lemma 2.2. For any integers ,a b , ( ) ( ), 1, 2n nC a b C≅  if ( )gcd , 1n a =  
and ( )2 moda b n≡ . 

Proof. Trivial by Lemma 1.1.                                    □ 

Theorem 2.1. ( )( ) 4 if 4,
1,2

5 if 5.g n

n
C

n
χ

=
=  ≥

 

Proof. We will consider the cases 4,5n = , 6,7n = , 8n =  and 9n ≥ : 
Case 1. 4n =  or 5n = . Then ( )1,2n nC K≅  then ( )( )1,2g nC nχ = . 
Case 2. 6n =  or 7n = . In general ( )1,2nC  are 4-regular graphs so 

( )( )1,2 5g nCχ ≤ . We will prove that no winning strategy for Alice using only 
four colors. Let the color set { }1,2,3,4X =  and without loss of generality, 
suppose that Alice starts with 1v  as the following: 

1 1: 1A v ←  and 1 2: 2B v ←  now the vertices { }2 3 5 6, , ,v v v v  making a cycle 
C4 with only two legal colors {3, 4}. By Proposition 1.2, ( )4 3 2g Cχ = > , so 
Alice will lose the game. 

Case 3. 8n = . Without loss of generality suppose that Alice starts with v1 as 
the following: 1 1: 1A v ←  and 1 2: 2B v ← . Now let us discuss the third move 
which any of the following subcases: 
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1) 2 5: 1A v ←  then 2 8: 3B v ←  and now there are two critical vertices 
{ }2 6,v v  so Alice will lose the game. 

2) 2 8: 2A v ←  then 2 5: 3B v ←  and now there are two critical vertices 
{ }3 7,v v  and Alice also loses the game. 

3) 2 6: 1A v ←  then 2 3: 3B v ←  and now there are two critical vertices 
{ }2 5,v v  so Alice also loses the game. 

4) 2 6: 3A v ←  then 2 5: 4B v ←  and now there are two critical vertices 
{ }3 7,v v  so Alice also loses the game. 

Case 4. 9n ≥ . Without loss of generality, we suppose that Alice start with v1 
as the following: 1 1: 1A v ←  and 1 2: 2B v ← , now let us discuss the third move 
which any of the following subcases: 

1) 2 : 2nA v ←  then 2 7: 1B v ←  and now there is the path { }4 2 3 5 6: , , ,P v v v v  
with only two legal colors {3, 4} and as Proposition 1.1, ( ) 3g nPχ =  so Alice 
will lose the game. 

2) 2 5: 1A v ←  then 2 2: 2nB v − ←  and now similarly of last case there is the 
path { }4 1 2 3: , , ,n nP v v v v−  with only two legal colors {3, 4} and ( ) 3g nPχ =  so 
Alice will lose the game. 

3) 2 : iA v c←  where { }2,3,5,i n∉  and c X∈  then Bob’s second turn B2 
will color in the opposite side one of the vertices { }7 , nv v  and as we show that 
will create a path P4 with only two legal colors so Alice will lose the game. 

So Alice will lose with only four colors if 5n ≥ , then ( )( )1,2 4g nCχ > . 
Hence 

( )( ) 4 if 4,
1,2

5 if 5.g n

n
C

n
χ

=
=  ≥

                    □ 

Proposition 2.1. If ( )gcd , 1n a =  and ( )2 moda b n≡  then 

( )( ) 4 if 4,
,

5 if 5.g n

n
C a b

n
χ

=
=  ≥

 

Proof. Immediately by Lemma 2.2.                                □ 

Theorem 2.2. 
3 if 6,

1, 4 for even 6,
2

5 otherwise.
g n

n
nC nχ

=
     = ≠       



 

Proof. For 5n ≥ , we have three cases: 
Case 1. 6n = , We have 3,3K  and by Proposition 1.3, get ( )3,3 3g Kχ = . 
Case 2. ( )0 mod 2n =  and 6n ≠ , it is 3-regular graph so 3∆ = . Hence 

1, 4
2g n
nCχ

    ≤      
. Now, suppose the color set is { }1,2,3X = . Without loss 

of generality let 1 1: 1A v ←  and 1 : 2tB v ←  where 
2
nt = . Then we have two 

critical vertices { }1,t nv v+  as it is appeared in Figure 1. Then whatever the move 

A2, Alice will lose the game so 1, 3
2g n
nCχ    >  

  
, therefore 1, 4

2g n
nCχ    =  

  
. 

Case 3. ( )1 mod 2n =  for 5n ≥ . By Lemma 2.1, we have  
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Figure 1. A1: v1←1, B1: vt←2. Two critical vertices {vn, vt+1}. 

 

( )1, 1,2
2n n
nC C   ≅    

. So 1, 5
2g n
nCχ

    =      
 for odd 5n ≥ .           □ 

3. Game Chromatic Number of Petersen Graph 

Theorem 3.1. For 6n ≥  and { }1,2,3k ∈ , we have ( )( ), 4g GP n kχ = . 
Proof. We know that generalized Petersen graphs are 3-regular graphs, so 

( )( ), 4g GP n kχ ≤ . Here we are going to prove that Alice doesn’t have any win-
ning strategy with only three colors by discussing the possible moves for each 
player. Assume the color set’s cardinality is 3 as { }1,2,3X = . 

Case 1. 1k = . Petersen graph ( ),1GP n  is isomorphic to the cartesian prod-
uct of K2 and a cycle Cn. By Proposition 1.4, we get 

 
( )( ) ( )2, 4g g nGP n k K Cχ χ= = . 

Case 2. 2k = . In general Alice has two choices to starts the game: 
First choice: Alice starts with a vertex of the outer cycle: 
Without loss of generality, let 1 1: 1A v ←  then 1 3: 2B v ← ; then v2 is critical 

vertex so Alice is forced to defend it in her second turn. So we will discuss 
second turn of Alice: 

Subcase 2.1. 2 2: 3A v ← ; then 2 : 2nB u ←  and this makes two critical ver-
tices { }2,nv u  and Alice cannot defend them together, for example if she de-
fends vn and then after Bob turn will be no legal colors for u2 so she will lose the 
game. 

Subcase 2.2. 2 2: 1A u ← ; then 2 5: 1B v ←  that makes v4 a critical vertex so 
Alice will be forced to defend it by coloring it’s unique uncolored neighbor in 
her third move. Notice here if Alice colors v4 that will make u4 critical so Alice 
lose. Now whatever Alice’s third move is, 3 3: 3B u ← ; then we have two critical 
vertices {u1, u5}. So Alice loses with three colors in this situation too. 

Second choice: Alice starts with a vertex of the inner cycle: 
Without losing of generality let 1 1: 1A u ← ; then 1 2: 2B v ← ; then v1 is crit-

ical vertex so Alice is forced to defend it in her second turn. So we will discuss 
second turn of Alice: 

Subcase 2.3. 2 1: 3A v ← ; then 2 1: 2nB u − ←  and this makes two critical 
vertices { }1,n nv u −  and Alice cannot defend them together so she will lose the 
game. 

Subcase 2.4. 2 : 1nA v ← ; then 2 4: 1B u ←  that makes u2 a critical vertex. 
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So, Alice will be forced to defend it by coloring its unique uncolored neighbor in 
her third move. Also notice here if Alice colors u2 that will make un critical so 
Alice lose. Now whatever Alice’s third move is, 3 3: 3B v ← ; then we have two 
critical vertices {u3, v4}. So Alice loses with three colors in this situation. As we show 
with 3 colors, Alice doesn’t have any winning strategy; then ( )( ), 3g GP n kχ > . 

Case 3. 3k = . Also Alice has two choices to start the game: 
First choice: Alice starts with a vertex of the outer cycle: 
Without losing of generality let 1 1: 1A v ← ; then 1 3: 2B v ← ; then v2 is crit-

ical vertex. So Alice is forced to defend it in her second turn and whatever the 
second turn of Alice is, then 2 : 2nB u ←  and this makes two critical vertices {vn, 
u3} and Alice cannot defend them together, and then she will lose the game. 

Second choice: Alice starts with a vertex of the inner cycle: 
Without losing of generality let 1 1: 1A u ← ; then 1 2: 2B v ← ; then v1 is crit-

ical vertex. So Alice is forced to defend it in her second turn. Whatever Alice’s 
second turn is, then 2 4: 3B v ←  and this makes two critical vertices {v3, u4}. 
Then Alice cannot defend them together. Hence she will lose the game. 

So as we show with 3 colors, Alice doesn’t have any winning strategy; then 
( )( ), 3g GP n kχ > . Hence ( )( ), 4g GP n kχ =  for 6n ≥  and { }1,2,3k ∈ .  □ 
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