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Abstract 
In this paper, we mainly use operator decomposition technique to prove the 
global attractors which in 1 2

0H L×  for the Kirchhoff wave equation with 

strong damping and critical nonlinearities, are also bounded in 2 1
0H H× . 
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1. Introduction 

In this paper, we discuss the regularity of global attractors for the following Kir-
chhoff wave equation 

( ) ( ) ( ) ( )21 in ,tt t tu u u u f u h u g x +− + ∇ ∆ −∆ + + = Ω×       (1.1) 

( ) ( ) ( ) ( )0 10, ,0 , ,0 , ,tu u x u x u x u x x
∂Ω

= = = ∈Ω          (1.2) 

where Ω  is a bounded domain in 3  with the smooth boundary ∂Ω , 
[ ]0,1∈ , ( )f m  and ( )h m  are nonlinear functions and ( )g x  is an external 

force term which is independent of time. 
G. Kirchhoff [1] introduced the Equation (1.1) in 1  without dissipation 

tu−∆  and nonlinear perturbations ( )tf u  and ( )h u , and described the oscil-
lation of an elastic stretched string. Furthermore, if the string is made up of the 
viscoelastic material of rate-type, the equation with the strong damping tu−∆  
appeared [2]. Since 0= , the Equation (1.1) became the following strongly 
damped semi-linear wave equation 

( ) ( ) ( ) ,tt t tu u u f u h u g x− ∆ −∆ + + =                  (1.3) 
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which described the thermal evolution and ( )h u  denoted a source term de-
pending nonlinearly on displacement, ( )tf u  denoted a nonlinearly tempera-
ture-dependent internal source term [3]. With different conditions about the 
growth exponents q and p of the nonlinearities ( )tf u  and ( )h u , some scho-
lars [4] [5] analyzed the longtime behaviour of solutions of (1.3)-(1.2) by the 
global and exponential attractors in a bounded region of 3 . When the nonli-
nearities are of fully supercritical growth, which lead to that the weak solutions 
of the equation lose their uniqueness. Z. J. Yang and Z. M. Liu [6] established the 
existence of global attractor for the subclass of limit solutions of (1.3)-(1.2) by 
using J. Ball’s attractor theory on the generalized semiflow. Recently, I. Chue-
shov [7] founded that the Kirchhoff wave equation with strong nonlinear 
damping was still well-posed and the related evolution semigroup had a fi-
nite-dimensional global attractor in 1 1 2

0
pH H L L+= ×  in the sense of “partial-

ly strong topology”. Without “partially strong topology”, P. Y. Ding, Z. J. Yang 
[8] proved the existence of a finite-dimensional global attractor in the natural 
energy space. And H. L. Ma and C. K. Zhong [9] proved that global attractors for 
the Kirchhoff equations with strong nonlinear damping attracted 1 2

0H H L= ×
-bounded set with respect to the 1 1

0 0H H×  norm. 
Since 0> , the following quasi-linear wave equation of Kirchhoff type 

( )( ) ( ) ( )2
1tt tu u t u u g u f x− + ∇ ∆ + + =              (1.4) 

was studied by M. Nakao, and the author proved the existence and absorbing 
properties of attractors in a local sense [10]. Replacing tu  with tu−∆ , Y. H. 
Wang and C. K. Zhong [11] proved the upper semicontinuity of pullback at-
tractors in non-autonomous case. Then Z. J. Yang and Y. Q. Wang [12] studied 
the longtime behavior of the Kirchhoff type equation with a strong dissipation 
and proved that the continuous semigroup ( )S t  possessed global attractors in 
the phase spaces with low regularity. As for the Kirchhoff wave equation with 
strong damping and critical nonlinearities, Z. J. Yang and F. Da [13] also studied 
the stability for the Kirchhoff wave equation with strong damping and critical 
nonlinearities and proved the existence of global attractors and exponential at-
tractors. Comparing with many researches about the longtime dynamic behavior 
of solutions for the Kirchhoff wave equation with different types of dissipations 
[14]-[23], there are few researches about problem of (1.1)-(1.2). And the attrac-
tor is a key point for studying these properties, we introduce readers to see the 
classical book [24]. 

Based on these, the purpose of this paper is to prove the global attractor of 
problem (1.1)-(1.2), which attracts every ( ) ( )1 2

0H LΩ × Ω -bounded set that is 
compacted in ( ) ( )2 1

0H HΩ × Ω  by the way in ([25], Theorem 3.1). And we also 
establish the asymptotic compactness of the global attractor by operator de-
composition technique ([24], Theorem 1.1). So these jobs provide a way to re-
search the longtime dynamic behaviour of such Kirchhoff wave equations, and 
also reflect the strong damped properties of tu∆  to some extent. 
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The paper is arranged as follows. In Section 2, we verify some preliminaries. 
In Section 3, we prove the existence of the global attractor. In Section 4, we 
prove the regularity of the global attractor. 

2. Preliminaries 

Let A = −∆  on ( )2L Ω  with ( ) 2 1
0D A H H=  , and A strictly positive on 1

0H . 
We define the spaces ( )2 ,

m
mH D A m

 
= ∈  

 
  are Hilbert spaces with the fol-

lowing scalar products and the norms 

2 2 2, , , .m

m m m

m Hu v A u A v u A u= =                (2.1) 

Let ( )1 10,λ λ λ> <  be the first eigenvalue of A, then B A Iλ= −  with 
( ) ( )D B D A= . 
We define the phase space 1 2

0X H L= ×  with usual graph norm. Let 
( ) ( )fϕ ξ ξ λξ= + , then problem (1.1)-(1.2) becomes 

( ) ( )
21

21 ,tt t tu A u Au Bu u h u gϕ
 
 + + + + + =
 
 

           (2.2) 

( ) ( )0 10 , 0 .tu u u u= =                     (2.3) 

For any s r> , we have the continuous embeddings  s rH H , 

 
( )

6
3 2 3, 0, ,

2
s sH L s−  Ω ∀ ∈  

                 (2.4) 

and the following inequalities hold true: 
Interpolation inequality: if ( )1r s qθ θ= + − , where , , ,r s q s q∈ ≥  and 
[ ]0,1θ ∈ , then there exists a constant 0C >  such that 

1 , .s
r s qu C u u u Hθ θ−≤ ∀ ∈                 (2.5) 

The Generalized Poincare inequality: 
2 2 1

1 1 , ,u u u Hα
α α

λ +
+

≤ ∀ ∈                 (2.6) 

where 1 0λ >  is the first eigenvalue of A. 
The Young’s inequality with ε : Let 0, 0, 0, 1, 1a b p qε> > > > > , and 

1 1 1
p q
+ = , then 

,

q
p qpa bab

p q
ε ε

−

≤ +                     (2.7) 

especially, when 2p q= = , then 
2

2 .
4
bab aε
ε

≤ +                     (2.8) 

The Gronwall inequality (differential form): let ( )η ⋅  is nonnegative conti-
nuous differentiable function (or nonnegative absolutely continuous function), 
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and satisfy 

( ) ( ) ( ) ( ) [ ], 0, ,t t t t t Tη φ η ϕ′ ≤ + ∈                (2.9) 

here ( ) ( ),t tφ ϕ  are nonnegative integrable functions, then 

( ) ( ) ( ) ( ) [ ]0 d

0
e 0 d , 0, .

t ts st s s t Tφη η ϕ∫  ≤ + ∀ ∈  ∫         (2.10) 

Throughout this paper, we will denote by C a positive constant which is vari-
ous in different line or even in the same line and use the following abbreviations: 

( ) 2 1
01, , ,m

p p
L m H HL L u u u u= Ω ⋅ = ⋅ = =  

with 1p ≥ . 
Assumption 2.1. 
1) ( ) ( )1 , 0 0Cϕ ϕ∈ = , and 

( ) ( )10 1 , ,qs C s sϕ −′≤ ≤ + ∈                 (2.11) 

where * 21 = 5
2

Nq p
N
+

≤ ≤ ≡
−

 if 3N =  

2) ( ) ( )1 , 0 0h C h∈ = , 

( ) ( ) ( )1
1liminf , 1 , ,p

s
h s h s C s sλ −

→∞
′ ′> − ≤ + ∈          (2.12) 

where *1 5p p≤ ≤ =  if 3N = . 
3) 

( ) ( )2
0 1 0 1, , with ,

X
g L u u X u u R∈ ∈ ≤            (2.13) 

Definition 2.2. Let ( ) 0tS t
≥

 be a semigroup on a metric space ( ),E d . A 
subset A of E is called a global attractor for the semigroup, if A is compact and 
enjoys the following properties: 

1) A is invariant, i.e. ( ) , 0S t A A t= ∀ ≥ ; 
2) A attracts all bounded set of E. That is, for any bounded subset B of E, 

( )( ), 0, as 0.dist S t B A t→ →  

Next we only formulate the following results, which is proved in [13]: 
Lemma 2.3. Let (2.11)-(2.13) be valid. Then problem (2.2)-(2.3) admits a 

unique weak solution u, with ( ) ( ) ( ), ; ;tu u L X C X∞ + +∈   ,  
( )2 1

0;tu L H+∈  . Moreover, this solution possesses the following properties: 
(Dissipativity) 

( )( ) ( ) ( )( )( ) ( )1
0

2 2
0, , d e , 0,kt

t t t tHX t
u u t u u u C R C tτ ϕ τ

∞ −+ + ≤ + ≥∫  (2.14) 

where k denotes a small positive constant, ( )C R  and ( )10 HC C f −=  are 
positive constants. 

Lemma 2.4. Let (2.11)-(2.13) be valid and when ( )25,p h C= ∈  . Then 

( ) ( )1 2
0

2 2 2
0 , 0.t ttH L

u t u t R t+ ≤ >                (2.15) 

Actually, by exploiting (2.11) and (2.14), we can get , tu u  are respectively 
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bounded in 1 2
0 ,H L . 

3. Existence of Global Attractors in H L1 2
0 ×  

For every fixed 0x B∈ , we split the solution ( ) ( ) ( )( ), tS t x u t u t=  into the sum 
( ) ( )ˆˆ t tη ζ+ , where ( ) ( ) ( )( )ˆ ˆ ˆ, tt v t v tη =  and ( ) ( ) ( )( )ˆ ˆ ˆ, tt w t w tζ =  solve the 

Cauchy problems 

( ) ( )

( )

21
2

0 0ˆ ˆ ˆ ˆ ˆ ˆ1 0,

ˆ 0 ,

tt t tv A u Av Bv v h v

x

ϕ

η

  
  + + + + + =    

=


         (3.1) 

( )

21
2 ˆˆ ˆ ˆ ˆ1 ,

ˆ 0 0,

tt tw A u Aw Bw ρ

ζ

  
  + + + =    


=


              (3.2) 

here 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 1 1ˆ ˆ ˆ .t t tg u h u v h v u h uρ ϕ ϕ ϕ     = − + + + + +       

Having set ( ) ( ) ( ) ( ) ( ) ( )0 0 1 1t t tu h u u h u u h uϕ ϕ ϕ   + = + + +    , and satisfying 

( ) ( ) ( ) ( ) ( )
( ) ( )

4 4
0 0 0 0

1

0, , ,

1 .

t t t t t t t t t

t t

u u u C u v C u v u v

u C u

ϕ ϕ ϕ ϕ

ϕ

′≥ ≥ − ≤ − +

≤ +
  (3.3) 

( ) ( ) ( ) ( ) ( ) ( )4 4
0 0 0 10, , 1 .h u u h u h v C u v u v h u C u≥ − ≤ − + ≤ +   (3.4) 

From now on, 0 0, 0c υ >  and 0J  will denote generic constants and a gener-
ic function, respectively, depending only on 0B . 

Theorem 3.1. Let (2.11)-(2.13) be valid, then the solution semigroup ( )S t  
possesses a global attractor   in X. 

Proof. Estimate (2.14) shows 

( )( ) ( )2
0, e , 0,kt

t X
u u t C R C t−≤ + ≥  

such that the ball ( ) ( ){ }0 0, | ,t t X
B u u X u u R= ∈ ≤  is an absorbing set of the 

semigroup ( )S t  in X for ( )10 0 HR C g −> . 
In order to prove the existence of the global attractors, now we need to prove 

the asymptotic compactness. 
Multiplying the first equation of (3.1) by ˆ ˆtv vγ+  and integrating over Ω , we get 

( ) ( )
21

2
0 0ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 , 0.tt t t tv A u Av Bv v h v v vϕ γ

 
 + + + + + + =
 
 

  

By using ( ) ( )0 00, 0, 0t tu u h u uϕ≥ ≥ ≥  and the generalized Poincare in-
equality, then 

( )
( ) ( ) ( )

2 2 2 2

1 1

2 2
1 0 01

1 d ˆ ˆ ˆ ˆ ˆ ˆ,
2 d

ˆ ˆ ˆ ˆ ˆ ˆd d ,

t t

t t t

v v v v v v
t

v v v v x h v v x

γ λ

γ λ λ γ γ ϕ
Ω Ω

 + + + −  

≤ − + − − −∫ ∫
 

By 1λ λ< , we know 
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( )
( )

2 2 2 2

1 1

2 2 2
11

1 d ˆ ˆ ˆ ˆ ˆ ˆ,
2 d

1 d ˆ ˆ ˆ ˆ ˆ, ,
2 d

t t

t t

v v v v v v
t

v v v v v
t

γ λ

γ λ

 + + + −  

 ≥ + + −  

 

where 0γ >  is small enough such that 

( ) ( )2 22 2 2
11 1

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ, .
2 2t t tE t v v v v v v vγ λ   = + + − +    


    (3.5) 

Actually, noting that ( )0 t̂v Cϕ′ ≥ , and by exploiting (2.8) and (2.12), we de-
duce that 

( ) ( ) ( )

( )

0
0

0

ˆ 0
ˆ ˆ ˆ ˆd d

ˆ 0

ˆ ˆ ˆd

ˆ ˆ, ,

t
t t

t

t t

t

v
v v x v v x

v

v v v x

C v v

ϕ ϕ
ϕ

ϕ

Ω Ω

Ω

−
− = −

−

′= −

≤ −

∫ ∫

∫             (3.6) 

and 

( ) 22 1
0 1

1ˆ ˆ ˆ ˆ ˆ ˆd d .
2 2t t th v v x v v x v vγλ

λ
γΩ Ω

− ≤ ≤ +∫ ∫           (3.7) 

From (3.5)-(3.7), we get 

( ) ( )2 2 21
1 1

d 1ˆ ˆ ˆ , ,
d 2 2t tE t v v v C v v CE t

t
γλ

γ λ λ γ
γ

 ≤ + − + − + − ≤ − 
 

 

where 0γ >  is small enough such that ( 1
1 2

γλ
γ λ λ+ − + ) is negative. Further-

more, by the Gronwall inequality, we can get 

( ) 0
1 21 2
00

0ˆ e .t
H LH L

t c xυη −
××

≤                    (3.8) 

Next multiplying the first equation of (3.2) by 
1 1
4 4ˆ ˆtA Aω γ ω+  and integrating 

over Ω , we get 

21 1 1
2 4 4

1
2 2 2 2 45 5 11

4 4 44

21 1
2 2 2 22 4 55 1 1

44 4 4

21 1
2 4

2 2
51
44

ˆ ˆ ˆ ˆ ˆ1 ,

d 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ,
d 2 2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ,

ˆ ˆ,

d 1 1ˆ ˆ ˆ
d 2 2

tt t t

t t

t t t t

t t

w A u Aw Bw A w A w

w w w w w A w
t

A u Aw A w w w w w

A u Aw A w

w w w
t

γ

λγ

λ γ γ

γ

 
 + + + +
 
 

  
= + + − +      

+ + − − +

+

 ≥ + + 
 







2 2 2 2
55 1 1
44 4 4

ˆ ˆ ˆ ,t tw w wλ γ γ− − +

     (3.9) 

where 0γ >  is small enough. Then we define the energy functional 
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( ) 2 2
511
44

1 ˆ ˆ ,
2 tE t w w = + 
 

                       (3.10) 

At the same time, by the interpolation inequality, we have 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )
( ) ( )

( )
( )

4
3

0
1 2

0

0 0 0 0 1 1

4 44 4
5 51 1 1 1
4 4

11

2
5 50 1 1
4 4

5 50
4 4

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

1 1

ˆ ˆe e 1

ˆ ˆe e 1 e ,

t t tL

t t t

t

t kt
t tH L

t kt kt
t

g v u h v h u u h u

C g C w v u C w v u

C u C u

c x w c w C g u u

c w c w C

υ

υ

ρ ϕ ϕ ϕ
Ω

− −
×

− − −

= + − + − + +

≤ + + + +

+ + + +

≤ + + + + +

≤ + + +

 

and by the embedding 
 3

44H L , then 

( )

4
3

4 4

0

1 1
4 4

1 1
4 4

1 1
4 4

3 3
4 4

2 22 2
5 55 50
4 44 4

ˆ ˆ ˆ,

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ ˆe e 1 e .

t

tL
L L

t

t kt kt
t t

A w A w

A w A w

A w A w

c w c w w w Cυ

ρ γ

ρ γ

ρ γ

δ γδ− − −

+

 
≤ +  

 
 
 ≤ +  
 

≤ + + + + +

      (3.11) 

By exploiting (2.8) and the generalized Poincare inequality, from (3.9)-(3.11), 
we get 

( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

0

0

0

2 2
5 11 0
4 4

2
50
4

2 2 2
51 11 0
44 4

0 1

d ˆ ˆe 1
d

ˆe 1 e

ˆ ˆ ˆe 1 e

e 1 e ,

kt
t t

t kt

t kt
t t

t kt

E t c w w
t

c w C

C w w c C w C

C c E t C

υ

υ

υ

δ λ γ

γδ γ

λ λ γ

−

− −

− −

− −

≤ + − + +

+ + − + +

≤ − + + + − + +

≤ − − + +

 

where 0δ >  is small enough and by 1λ λ< , we get ( ) ( )1 ,Cλ λ γ γδ γ− + + −  
are negative. Then from the Gronwall inequality and noting that  
( ) ( ) ( )( )ˆ ˆ ˆ0 0 , 0 0tζ ω ω= = , we get 

( ) ( ) ( ) ( )1 0 1 0 1 e 1 et kt ktE t c e E C Cν− − −≤ + + ≤ +  

which provides the following estimate 

( ) ( )5 1
4 4

ˆ 1 e ,kt

H H
t Cζ −

×
≤ +                    (3.12) 

From (3.8) and (3.12), we obtain that the evolution semigroup ( )S t  is 
asymptotically compact in X, so the solution semigroup ( )S t  possesses a global 
attractor   in 1 2

0H L× , which 
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( )
0 0

0
0

,
t t t

S t B
≥ ≥

=


  

where 0 0t >  is chosen such that ( ) 0 0S t B B⊂  for 0t t≥ . 

4. Regularity of Global Attractors 

Now we are in a position to state and prove the main result: 
Theorem 4.1. The attractor   of the semigroup ( )S t  on X is bounded in 
2 1

0H H× . 
Proof. Having set x y z= + . For 2 1

0 0,y B z H H∈ ∈ × , we split the solution 
into the sum 

( ) ( ) ( ) ,S t x Y t y Z t z= +  

where ( ) ( ) ( ) ( )( ), tt Y t y v t v tη = =  and ( ) ( ) ( ) ( )( ), tt Z t z w t w tζ = =  solve 
the following equations with initial data ( ) ( )0 , 0y zη ζ= = , 

( )

21
21 0,

0 ,

tt tv A u Av Bv

xη

  
  + + + =    

=


                (4.1) 

and 

( )

21
21 ,

0 0,

tt tw A u Aw Bw ρ

ζ

  
  + + + =    

=


               (4.2) 

where ( ) ( ) ( )tt g u h uρ ϕ= + + . 
Multiplying the first equation of (4.1) by tv vγ+  and integrating over Ω , by 

0>  we get 

( )2 2 22 2 2 2

1 1 1 1

1 d , 0,
2 d 2t t t tv v v v v v v v v

t
γ λ γ λ + + − + + + − ≤  

 

where 0γ >  is small enough such that 

( ) ( ) ( )2 22 2 2 2
2 1 1 1

1 1, .
2 2 2t t tE t v v v v v v v vγ λ = + + − + +  

  

By 1λ λ<  and the generalized Poincare inequality, we deduce that 

( ) ( ) ( )2 22 2
2 1 1 1

d ,
d 2t t

CE t v v v v
t

λ λ γ≤ − − ≤ − +         (4.3) 

then by the Gronwall inequality, we get 

( ) 0
1 21 2
00

0e .t
H LH L

t c yυη −
××

≤                (4.4) 

Next multiplying the first equation of (4.2) by tAw Awγ+  and integrating 
over Ω , exploiting (2.8) and the Hölder’s inequality, the right side becomes 
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( ) ( )

( ) ( )
( ) ( )

2 52 5

2

52 5

2

,

, , ,

1 d d
2

d d

t

t t t t

t t t t t

t t

Aw Aw

g Aw Aw u Aw Aw h u Aw Aw

g w C u u Aw x C u u Aw x

w C u u Aw x C u u Aw x

ρ γ

γ ϕ γ γ

δ
δ

γ δ

Ω Ω

Ω Ω

+

≤ + + + + +

≤ + + + + +

 + + + + +  

∫ ∫

∫ ∫

 

( ) ( )
( ) ( )

( )
( )

2 2

2 62 6

2

62 6

2

2 122 2 12

2 2

22
02 2

1 1 d 1 d
2

1 d 1 d

1
2 2

,

t t t t

t

t tL L

t

g w C u Aw x C u Aw x

w C u Aw x C u Aw x

Cg C w C w u u

C w C w J t

δ
δ

γ δ

δγ δ
δ δ
δγ δ

Ω Ω

Ω Ω

≤ + + + + +

 + + + + +  

≤ + + + + + Ω

≤ + +

∫ ∫

∫ ∫         (4.5) 

where 0δ >  is small enough, we know ( )0J t  is bounded by (2.13) and lem-
ma 2.3. At the same time, the left side becomes 

21
2

2 2 2 2

2 2 11

21
2 22
2 1

21
222

2 1

2 2 2 22 2

2 21 2 1 1

1 ,

d 1 1 1 ,
d 2 2 2 2

,

,

d 1 1 ,
d 2 2

tt t t

t t

t t t

t t

t t t t

w A u Aw Bw Aw Aw

w w w w w Aw
t

A u Aw Aw w w

A u Aw Aw w w

w w w w w w
t

γ

λγ

λ

γ γ γ

λ γ γ

 
 + + + +
 
 

  = + + − +    

+ + −

+ + −

 ≥ + + − + − 
 







         (4.6) 

then we define the energy functional 

( ) ( )2 2 2 2
3 2 2 11

1 , ,
2 t tE t w w w w w Awγ λ = + + − +  

         (4.7) 

where 0γ >  is small enough such that ( ) ( )2 2
3 21

1
2 tE t w w+

. By combining 

(4.5)-(4.7) and the embedding  2 1
0H H , we get 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2 22
3 022 1

2 2
1 021

2 2
021

d 1
d

,
2

t t

t

t

E t C w C w w J t
t

C w C w J t

C w w J t

δ γδ γ λ γ

λ λ γ

≤ − + − + + +

≤ − + + − +

≤ − + +

 

where 0δ >  is small enough and by 1λ λ< , we get ( ) ( )1 ,C Cλ λ γ γδ γ− + + −  
are negative. From the Gronwall inequality, we get 

( ) ( ) ( )3 0 3 0e 0 ,tE t c E J tν−≤ +  

which provides the estimate 
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( ) ( )2 12 1
00

0 0e .t
H HH H

t c z J tνζ −
××

≤ +                   (4.8) 

From (4.4) and (4.8), for every bounded set 1 2
0B H L⊂ × , we get 

( ) ( )( )( ) 0
1 2 2 1
0 0

0, e 0, as ,t
H L H H

dist S t B B J t C tν−
× ×

≤ → →∞  

so 

( ) ( )( )2 1
0

0 0, .
H H

S t B B J t t t
×

⊆ ∀ ≤  

Then we finish the proof. 

5. Conclusion 

In this paper, we first prove that the Kirchhoff wave equation with strong damping 
and critical nonlinearities possesses a global attractor in ( ) ( )1 2

0H LΩ × Ω . Then 
we split the solution into two parts, one part decays exponentially and the other 
part satisfies asymptotic behaviour in spaces with higher regularity. By the oper-
ator decomposition technique, we get the global attractor which is compactly 
bounded in ( ) ( )2 1

0 .H HΩ × Ω  
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