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Abstract 
This paper investigates the stabilization effect on compressed earth blocks 
(CEB) produced from quartz-kaolinite rich earthen material stabilized with 
0% - 25% calcium carbide residue (CCR). The paper evaluated various phy-
sico-thermal properties of the stabilized CEB and thermal comfort in the 
model building made of CEB masonry. The optical properties of CEB were 
evaluated from the mineral composition of the earthen material and CCR and 
apparent density of the CEB. A simulation was carried out on naturally ven-
tilated model building whose masonry is made of CCR stabilized CEB com-
paring to the so-called conventional cementitious materials such as cement 
blocks and concrete. The results showed a decrease of the apparent density of 
the CEB from 2100 kg·m−3 for unstabilized CEB (0% CCR) to 1600 kg·m−3 for 
25% CCR stabilized CEB. The thermal conductivity and depth of penetration 
of the heat flux on a 24 hours period of CEB respectively decreased from 1 
W·m−1·K−1 and 12.7 cm for 0% CCR-CEB to 0.5 W·m−1·K−1 and 10.2 cm for 
25% CCR-CEB. The emissivity, solar absorptivity and visible absorptivity of 
the CEB respectively decreased from 0.82, 0.82 and 0.82 for 0% CCR-CEB to 
0.80, 0.64 and 0.64 for 25% CCR-CEB. The number of hours of warm and 
humid thermal discomfort was impacted for stabilized CEB based masonry in 
comparison with cement based masonry. The warm discomfort in building 
made of 20% CCR-CEB masonry was 400 hours lesser than that in building 
made of hollow cement blocks masonry. If air conditioning system is used to 
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keep the indoor temperature below 28˚C, the economy of 310,000 CFA francs 
(535 USD) is made every year on energy consumption for cooling in the 
model building made of 20% CCR-CEB masonry, corresponding to 9.6% less, 
with respect to that made of hollow cement blocks masonry. 
 

Keywords 
Calcium Carbide Residue, Compressed Earth Block, Cementitious Materials, 
Energy Plus Software, Thermal Comfort 

 

1. Introduction 

Rational management of energy in buildings is a major issue that should matter 
all development actors. To reach this aim, it is important to evaluate the energy 
performance of buildings so that their optimal designs could be carried out ac-
cordingly. In the perpetual quest for better efficiency, the optimal choice of con-
struction materials plays a crucial role [1] [2]. Burkina Faso, like other Sahelian 
countries, faces the problems related to the use of ecological and thermal com-
fort inducing building materials relative to their accessibility on the local market. 
Indeed, the construction materials known to be ecological or comfortable such 
as renewable materials (timber, recycled timber) and insulation require expen-
sive initial or maintenance cost.  

Thus, cement based materials are the most used for wall constructions in ur-
ban areas, representing about 52% of building made with cement blocks com-
paring to only 28% of those made of earth blocks in Burkina Faso [3]. Among 
various earth blocks based building materials, compressed earth blocks (CEB) 
represent 56% [4]. Cement based materials have worse energy efficiency than 
earthen materials [5] [6] [7] [8]. In addition, the process of production of ce-
ment based materials is very polluting, without mentioning their relatively high 
cost [8]. The choice of CEB is guided by the fact that they are known to be more 
ecological than cement blocks or concrete [9] [10] [11] [12]. CEB are produced 
from raw earthen material that presents certain physical and geotechnical cha-
racteristics, mixed with water, and statically compressed at a pressure of about 
10 bar. These CEB are very often stabilized with cement or lime as well as 
by-product materials to improve their physical, mechanical and durability cha-
racteristics, thus reaching the required standards [13].  

In recent decades, some studies tried to evaluate the thermal comfort in 
building gained from constructing with cement or lime stabilized earth blocks 
[8]. Thermal comfort is defined by ASHRAE [14] by “that condition of mind 
which expresses satisfaction with the thermal environment and is assessed by 
subjective evaluation”. Some industrial and agricultural by-products are known 
to be used as physico-mechanical stabilizers of CEB [15] [16] [17]. This is the 
case of coal-ash, plastic wastes, alkali-treated date palm fibers or cassava peels. 
Some studies using those products as stabilizers highlight their effect on the 
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thermo-physical and mechanical properties of the CEB. Instead of using indus-
trial products (cement, lime) for stabilizing CEB, some researchers try to substi-
tute them with agricultural and industrial by-product such as calcium carbide 
residue (CCR). Recently, the stabilization of CEB with lime rich-CCR in total 
substitution of pure industrial lime revealed its benefits for improving the com-
pressive strength of CEB related to the pozzolanic reaction taking place mainly 
between clay and lime [18] [19]. Nevertheless, previous study did not evaluate 
the influence of CCR stabilization on the thermal performances of CEB. 

The present study seeks to evaluate the influence of stabilization of CEB with 
CCR on their physical and thermal properties. It further assesses the thermal 
comfort induced in the model building made of CCR-stabilized CEB masonry in 
comparison with the so-called conventional materials (cement blocks, concrete 
and cement-stabilized CEB). The thermal comfort was assessed throughout si-
mulations on model building using the software of EnergyPlus and diagram of 
GIVONI for evaluation of the thermal comfort.  

2. Materials and Methods 
2.1. Processing and Characterization of Raw Materials 

The raw earthen material is a beige clayey soil extracted from the locality of 
Pabré (012˚31.397'N, 001˚34.373'W, and altitude of 297 m). Its lumps were 
crushed to release the elementary particles. It was dried and sieved to remove 
aggregates larger than 5 mm, in order to facilitate homogeneous mixing and in-
teraction with the binder. The binder and stabilizer is calcium carbide residue 
(CCR), an industrial by-product. The CCR was collected from Burkina Industri-
al Gas (BIG) located in Kossodo (012˚25.935'N, 001˚29.374'W, alt. 301 m). It was 
milled and sieved to collect the passing on 125 μm. This CCR was previously 
found to contain more than 40% of calcium hydroxide [18]. Industrial cement, 
CEM IIA 42.5, commercially produced by CIMBURKINA was used as control 
stabilizer of CEB, as reference [6] [8]. Other reference properties of the different 
conventional materials have been taken from the literature.  

The mineral composition was analyzed by the X-ray diffraction technique us-
ing the Brucker D8-Advance Eco 1.5 kW diffractometer equipped with a copper 
anode (Cu Kα λ = 1.54060 Å, 40 kV, 25 mA) and the Lynxeye xe detector in 
coupled 2θ/θ mode. Qualitative and semi-quantitative analysis of the spectra was 
performed using Diffrac.Eva V4.11 and Topas V5 software of Brucker based on 
the rietveld refinement method. 

2.2. Production and Curing of CEB 

Different formulas of CEB were elaborated by adding various mass percentages 
of CCR (0%, 5%, 10%, 15%, 20% and 25%) with respect to the dry mass of ear-
then material. CEB stabilized with 8% cement, which is commonly used for sta-
bilization of CEB in the area of Ouagadougou, were produced as reference. Dry 
materials (earth + CCR/cement) were mixed until achieving homogeneous mix-
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tures. Dry mixtures were mixed with appropriate amount of water, equivalent to 
the optimum water content (OWC of 16% - 20% for 0% - 25% CCR), required 
for achieving the maximum density for each formula. Specimens of CEB were 
produced by manual compression of the wet mixtures in 295 × 140 × 95 mm3 
mold and cured in polymeric bags to minimize the carbonation and loss of 
moisture necessary for the reaction to take place. The curing took place at am-
bient temperature in the laboratory (30˚C ± 5˚C) for 45 days for the specimens 
stabilized with the CCR and 28 days for those stabilized with cement, the period 
required to achieve more than 95% of the reaction [20]. 

2.3. Characterization of the Physico-Thermal Proprieties of CEB 

Cured CEB were dried at 40˚C ± 2˚C until reaching constant mass. Apparent 
density of the dry CEB was determined through hydrostatic weighing and Equa-
tion (1) according to NF P18-459 [21]. Where, ρapp is the apparent density of the 
dry sample (kg·m−3); Mdry is the dry mass of the dry sample (g); watρ  is the den-
sity of water (kg·m−3); Msat.wat is the mass of the saturated sample weighed in wa-
ter (kg); Msat.air is the mass of the saturated sample weighed in air (kg). 

. .

dry wat
app

sat air sat wat

M
M M

ρ
ρ

×
=

−
                     (1) 

Thermal effusivity, specific heat capacity, thermal conductivity, thermal diffu-
sivity and depth of penetration of heat flux are the main thermal properties 
measured on the CEB. They are determined using the DEsProTherm (Dispositif 
d’Estimation des Propriétés Thermiques) system presented in Figure 1. The 
measurement of thermal effusivity (E, J·m−2·K−1·s−1/2) was performed on single 
size samples (6 × 4 × 3 cm3). The thickness of 3 cm does not allow the heat to 
cross through the sample. Moreover, the measurement of the heat capacity, 
equivalent of the specific heat (Cp, J·kg−1·K−1), was carried out on samples of size 
6 × 4 × 1 cm3 allowing the heat flux to cross through the sample [22]. Once these 
two parameters were obtained, the thermal conductivity (λ, W·m˗1·K−1), thermal 
diffusivity (a, m2·s−1) and depth of penetration of the heat flux (δp, m) for the 
period of time T (s) of 24 hours were determined using Equations (2), (3) and 
(4), respectively.  

 

 
Figure 1. DesProTherm system for measurement of the 
thermal properties of CEB. 
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2.4. Estimation of the Optical Properties 

The optical properties (emissivity, solar absorptance, visible absorptance) were 
estimated based on the mineral composition of the earthen material and CCR. 
Equation (5) presents the proportionality used to estimate the optical property 
(Op) of CEB with respect to the percent content (Ci) and optical property of the 
reference mineral (Opi) taken from the literature and libraries from Open studio 
and Energyplus [23]-[28]. The values obtained from this approximation were 
comparable with the values reported in the literature for the earthen materials 
[26] [28]. In addition, solar reflectance and visible transmittance values are as-
sumed to be substantially the same [26] [29]. This approach was adopted given 
that the change in formula of CEB (different content of CCR) should logically 
have an impact on their optical properties. Thus, it would not be appropriate to 
consider the same value for all formulas of CEB. Other studies previously pro-
posed alternative methods for determining the optical properties of material, but 
they require some specific equipment for measurement [30]. ‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬ 

( )ip p iO O C= ×∑                        (5) 

2.5. Description of the Model and Simulation Parameters 

The building was modelled using SketchUP 2017 software. Once the model is 
elaborated, the properties of different construction elements, measured in the 
present study and collected from the literature, were defined. EnergyPlus soft-
ware was used for thermal and energy simulation via the plug-in of Open Studio 
2.8.0. XEsoView software was used to visualize the results of the simulation. The 
Givoni diagram was used for evaluation of the number of hours of thermal dis-
comfort. This method was previously used for evaluation of the thermal comfort 
in the Sahelian and tropical contexts [23] [31] [32]. The Givoni diagram can be 
used to assess thermal comfort of occupants of a building by considering the data 
from the climate of the area, the activities of occupants inside the building and the 
expected indoor temperature and humidity [33] [34] [35]. 

The model building is a single-story building with four rooms, floor area of 
185 m2 and main facade toward the South. Figure 2 and Figure 3 respectively 
present the plan view and 3D view of the model building. The building has been 
modeled so that during simulations, only the characteristics of the masonry ele-
ments change from one variant of the model to another. The characteristics of 
the elements used in different variants of the model are summarized in Table 1. 
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The dimensions and positions of the bays are presented on the plane view 
(Figure 1). The windows are made with single glazing and outer doors are made 
of steel. The windows have a height of 1.2 m, placed at 1 m above the ground, 
except those in bathrooms that have a height of 0.7 m, placed at 1.5 m. All the 
doors have height of 2.2 m. Depending on the room and its use, the widths of 
windows and doors range between 0.6 m and 2 m such as shown in Figure 2. 
The model has a 1.5 mm thick corrugated steel sheet for the roofing and a 5 mm 
thick plywood ceiling placed 0.5 m below the roof. Table 2 presents the assump-
tions for the different schedules for the occupation and internal loads in the 
building. Note that these configurations are very common in the Sahelian region 
such as Burkina Faso. The parameters and assumptions made for modelling the 
building are summarized in Table 3.  

Note that for the present simulations, the supply of cooling by devices such as 
air conditioners, humidifiers, is initially neglected for evaluating the thermal 
comfort induced by each masonry type. Only interactions between external con-
ditions and materials are considered. The weather file used is that for Ouaga-
dougou. The infiltration airflow rate is set at 0.5 m3·s−1 and mean velocity of the 
air is set at 0.3 m·s˗1. The thermal resistance of the air gap (between the two steel 
sheets that constitute the external doors) is set at 0.16 W·m−1·K−1. The ther-
mo-physical and optical properties of the conventional materials are given in 
Table 3. 

 

 
Figure 2. Plan view of the model building. 

 

 
Figure 3. 3D view of the model building. 
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Table 1. Configurations of different variants of the model building. 

Model Description Thick (cm) 

M1 

Basic model made of hollow cement blocks wall masonry of 40 × 20 × 15 
cm3 with 2 cm plaster (cement mortar) on both sides, a 1.5 mm steel sheet 
roof and a 5 mm plywood ceiling suspended 0.5 m below the roof. The 
external doors are made of steel in configuration of steel sheet-air-steel 
sheet and internal doors with steel frame and simple glazing. 

19 

M2 
Same as M1, except that the masonry is made with plain cement blocks of 
40 × 20 × 20 cm. 

20 

M3 
Same as M1, except that the wall is made of reinforced concrete of 15 cm  
of thickness. 

15 

M4 Same as M1, except that the masonry is made with 8% CEM CEB. 20 

M5 Same as M1, except that the masonry is made with 0% CCR CEB. 20 

M6 Same as M1, except that the masonry is made with 5% CCR CEB. 20 

M7 Same as M1, except that the masonry is made with 10% CCR CEB. 20 

M8 Same as M1, except that the masonry is made with 15% CCR CEB. 20 

M9 Same as M1, except that the masonry is made with 20% CCR CEB. 20 

M10 Same as M1, except that the masonry is made with 25% CCR CEB. 20 

 
Table 2. Planning of occupations and loads in the model building. 

Planning Schedule Activity Hypothesis 

Occupant 
presence 

00 h - 07 h 100% Night and preparation 

07 h - 12 h 0% External activities 

12 h - 14 h 100% Lunch and nap 

14 h - 18 h 50% 
Various activities  
(outdoor and indoor) 

18 h - 00 h 100% Dinner and night 

People activity 
(6 occupants) 

00 h - 04 h 80 W/person Sleeping 

04 h - 22 h 120 W/person Normal activity 

22 h - 00 h 100 W/person Moderated activity 

Lighting 
(8 W∙m−2) 

04 h - 06 h 100% Daybreak 

06 h - 18 h 0% Sun shines 

18 h - 22 h 100% Evening 

22 h - 04 h 0% Night (sleeping) 

Electrical appliances 
and boiler 

Appliances such as refrigerators and heaters are supposed to be  
placed on the outside terraces. There is no boiler room. 

Air infiltration It is assumed that air infiltrates the space 24/7. 

Temperature  
schedule 

Indoor temperature was set at 28˚C, assumed as the temperature for air  
conditioning systems in most households in Ouagadougou (arbitrary  
benchmark for comparison of cost of energy consumption on cooling in  
different models) 
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Table 3. Thermo-physical and optical properties of materials [23]-[28]. 

Properties of 
materials 

Hollow  
block 

Plain 
block 

Concrete 
OBS 

(plywood) 
Plaster  

(mortar) 
Concrete 

(floor) 
Steel  
sheet 

e (cm) 15 20 15 0.5 2 10 0.15 

λ (W·m−1·K−1) 0.9 1.15 2.5 0.14 1.15 1.7 50 

ρ (kg·m−3) 2100 2300 2400 600 1950 2300 7800 

Cp (J·kg−1·K−1) 600 717 900 2300 846 850 115 

αth 0.85 0.87 0.93 0.7 0.85 0.9 0.7 

αs 0.64 0.66 0.7 0.75 0.64 0.65 0.9 

αv 0.64 0.66 0.7 0.75 0.64 0.65 0.9 

 

The thickness of the glazing material, e is 0.3 cm, its thermal conductivity, λ is 
0.93 W·m−1·K−1, its solar transmittance at normal incidence, g is 0.86, its visible 
transmittance at normal incidence, τl is 0.9. The front and back side infrared 
hemispherical emissivity, ε of the glazing material is 0.92, its front side solar ref-
lectance at normal incidence FSSR index is 0.07 and its front side visible reflec-
tance at normal incidence FSVR index is 0.08. The back side solar reflectance at 
normal incidence BSSR and back side visible reflectance at normal incidence 
BSVR indexes of this material are null. For the windows and frame of the door, 
the thickness is taken as 1.35 cm, its solar absorptivity and visible absorptivity 
indexes are set at 0.9. The front and back side infrared hemispherical emissivity 
value of the frame is 0.7. The width of the frame is 5 cm and its thermal trans-
mittance Uf value is 3.3 W·m−2·K−1. 

The thermal comfort assessment was based on the analysis computer program 
EnergyPlus 9.1.0 [29] and ASHRAE Standard 55 [14]. EnergyPlus evaluates the 
outdoor air temperature based on the input weather file, the indoor relative hu-
midity and temperature depending on the activity of the occupants and internal 
thermal loads. Then the number of hours of discomfort are assessed based on 
the diagram proposed by Givoni [37]. This diagram presents boundaries of 
comfort zones, which are based on air temperature and air relative humidity 
(Figure 4). The black boundary limits the comfort zone for a null value of the 
velocity of the air. Every point that is inside that boundary represents an hour at 
which 90% of the occupants feel comfortable, according to the Predicted Mean 
Vote (PMV) [14]. The blue boundary limits the comfort zone for a velocity of air 
assumed at 0.3 m·s−1. Depending on the velocity of air, this zone may become 
thinner or larger.  

From the diagram, out of the comfort zones, it can be inferred four zones of 
discomfort. Over the upper limit of the comfort zone is the humid discomfort 
zone. A point localized in that zone is considered non-comfortable hour because 
of high rate of humidity in the air. At the right side of the comfort zone is the 
warm (hot) discomfort zone. A point localized in that zone is considered 
non-comfortable because the temperature of the air is too high. Those situations, 
can cause health problems and harm the occupants body [38]. At the opposite,  
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Figure 4. Givoni’s bioclimatic diagram considering the air velocity of 0.3 m·s−1. 
 
below the lower and left limit of the boundary of the comfort zone, are respec-
tively located the dry and cold zone of discomfort. Those areas are also 
non-comfortable because of low rate of humidity in the air and low temperature 
of the air. The objective is to get most of the points that represents the hours of 
the year in the comfort zone considering a mean velocity of the air of 0.3 m·s−1. 
The other points should preferably be localized next to the comfort zone. The 
relative proximity of hours of discomfort to the comfort zone is assessed through 
the Hygrothermal Index (HI). This index, considering the combined effect of 
temperature and humidity, indicates whether a point is closer to the comfort 
zone or not. The lower the HI, the closer the points are to the comfort zone and 
the lesser aggressive is the discomfort. 

2.6. Evaluation of the Cost of Energy Consumption 

The evaluation of the cost was carried out on the energy that would be con-
sumed when Air Conditioning System (ACS) is used to keep the indoor temper-
ature not higher than 28˚C in each variant of the model building. This calcula-
tion is based on the output amount of energy needed to cool down the indoor 
environment assessed from EnergyPlus. The cost was estimated based on the 
value of the energy needed for cooling at efficiency of the ACS assumed at 83% 
and price of 96 CFA francs (0.17 USD) for 1 kWh of electricity [39]. 

3. Results and Discussions 
3.1. Proprieties of the Materials 

Table 4 presents the mineral composition of the earthen material and CCR. The 
earthen materials mainly contain quartz (63%) and kaolinite (30%) while the 
CCR mainly contains portlandite (43%), calcite and other carbonate minerals 
(50%). The optical properties such as the emissivity, solar absorption and visible 
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absorption of CEB, approximated through the proportionality method, are pre-
sented in Table 5. It shows that the addition of CCR improves the optical prop-
erties of the CEB. The solar transmittance, thermal absorptivity (emissivity of 
the material) and visible absorptivity of the CEB decreased respectively from 
0.82, 0.82 and 0.82 for the non-stabilized (0%) CEB to 0.80, 0.64 and 0.64 for 
25% CCR stabilized CEB (Table 5). 

Table 5 furthermore shows that the CCR-stabilized CEB have lower apparent 
density than the non-stabilized CEB and cementitious materials. The apparent 
density varies between 1820 kg·m−3 and 1600 kg·m−3 for 5% - 25% CCR-stabilized 
CEB compared to more than 2100 kg·m−3 for non-stabilized CEB (0% CCR). 
This phenomenon can be partly explained by the fact that the specific density of 
CCR particles (2.49 g·cm−3) is less than that of the earthen particles (2.66 g·cm−3). 
Moreover, the decrease of the apparent density of CEB with CCR stabilization 
can be related to the increase of the OWC (16% - 20%) for production of CEB 
stabilized with 0% - 25% CCR. This resulted in increase of the total porosity of 
CEB from 30% to 40% for 5% - 25% CCR compared to 20% for 0% CCR stabi-
lized CEB. The apparent density and thickness of the envelope materials are very 
relevant parameters for the thermal comfort of the building. 

 
Table 4. Mineral composition of the raw materials. 

Minerals Earthen material CCR 

Quartz 63 3 

K-Feldspar 7 - 

Kaolinite 30 4 

Portlandite - 43 

Aragonite - 21 

Calcite - 16 

Rapidcreekite - 13 

Total 100 100 

 
Table 5. Physical, thermal and optical proprieties of CEB. 

Properties of  
materials 

8% CEM 
CEB 

0% CCR 
CEB 

5% CCR 
CEB 

10% CCR 
CEB 

15% CCR 
CEB 

20% CCR 
CEB 

25% CCR 
CEB 

e (cm) 20 20 20 20 20 20 20 

λ (W·m−1·K−1) 0.78 1 0.69 0.66 0.6 0.47 0.52 

ρ (kg·m−3) 1860 2117 1820 1741 1691 1629 1610 

Cp (J·kg−1·K−1) 846 808 812 876 905 938 848 

αth 0.8 0.82 0.81 0.81 0.8 0.8 0.8 

αs 0.75 0.82 0.78 0.74 0.71 0.67 0.64 

αv 0.75 0.82 0.78 0.74 0.71 0.67 0.64 
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Additionally, the stabilization of CEB with CCR resulted in the decrease of the 
thermal conductivity from 1 W·m−1·K−1 for the 0% CCR-CEB to 0.5 W·m−1·K−1 
for 25% CCR-CEB. These values are much lower than those for materials con-
taining cement (2.5 W·m−1·K−1 for concrete). Furthermore, the heat capacity of 
CCR (0% - 25%) stabilized CEB ranged in 800 - 900 J·kg−1·K−1 compared to 900 
J·kg−1·K−1 for concrete (Table 5). It is important to remind that the thermal 
properties “e, λ, ρ, and Cp” have been measured in the laboratory and the optical 
properties “αth, αs and αv” have been calculated through the method explain in 
paragraph II.4 

3.2. Evaluation of the Thermal Discomfort 

Figure 5 shows the evolution of the percentage of number of hours of thermal 
discomfort, warm, humid, other types, for the reference model (M1) and other 
variants. The total number of hours of thermal discomfort is about 64% for all 
models without air conditioning system. The predominant type of this discom-
fort is humid (wet), then warm and other types (dry and cold). In the area of 
Ouagadougou, it is the hot temperature of the air that worries more when refer-
ring to the thermal comfort of the buildings. The interest of representing the 
planning of occupation (Table 2) that reflects the habits of most people in the 
study area is to reflect the thermal discomfort that approaches the realities of the 
area. Compared to M1, out of all the 10 models, the model M9 (20% CCR-CEB 
masonry) has the lowest number of hours of warm discomfort. 

While Figure 5 shows the cumulative number of discomfort hours, Figure 6 
shows the relative number of hours of discomfort of different models with re-
spect to the model M1. Negative values are favorable in a sense that they indicate 
that the percentage of hours of discomfort decreased. The thermal comfort can 
only be evaluated by the appreciation of the discomfort because it is a subjective 
sensation. The lower the relative discomfort induced from each model, the better 
the masonry behaves in term of the thermal performance comparative to the 
model M1. The model M9 (20% CCR CEB) has the lowest number of hours of 
warm discomfort. It records 21.2% lesser number of hours of warm discomfort 
compared to M1 (cement blocks), equivalent to a total of about 400 hours of 
warm discomfort in the year (Figure 5). 

 

 
Figure 5. Percentage number of hours of thermal discomfort for dif-
ferent models. 
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Figure 6. Relative number of hours of thermal discomfort for different mod-
els with respect to M1. 

 
The number of hours of humid discomfort is relatively higher with CEB 

comparative with cement blocks (up to 14.6% higher for the model M9 vs model 
M1). The increasing humidity in the indoor environment can be explained by 
the relative high hygroscopic inertia of the masonry blocks. This was previously 
reported that the moisture content is closely related to the hygroscopic inertia of 
the building material in the studies which tried to show the relation between the 
hygroscopic inertia of the envelop and moisture content in a room [40] [41] 
[42].  

To prevent or minimize the humid discomfort, natural and cost effective 
means exist such as having humidity-controlling salt deposited in the room. 
However, the warm discomfort can only be dealt with by bringing a vector of 
cooling such as air conditioner. In addition, according to the analysis of the Gi-
voni diagram, models M1 and M9 have the same hygrothermal index value of 
1.9, which reflects a relative proximity of discomfort hours to the comfort zone 
compared to other model with higher index, i.e. 2.0 for concrete. 

Figure 7 shows the differences between the temperatures of the indoor envi-
ronment for the models M1 and M9 from the 1st to the 3rd day of the month of 
April (the first 72 hours of the hottest month in Ouagadougou). The results 
show that the average indoor temperature for the model M9 is lower than that of 
the model M1 in most of the time (51% of the time calculated on the base of the 
data plotted on Figure 7). From this difference (“Delta M9-M1”), it can be in-
ferred that the model M9 gets hotter slower than model M1 during the heating 
phases, but it reaches higher temperature. The same analysis can be made on the 
cooling phases, but this time, the model M9 is more suitable. These imply that 
the masonry in model M9 (CEB with 20% CCR) absorbs and releases the heat 
slower than that in model M1 (hollow cement blocks). It is important to note 
that the cooling phases are longer than the heating phases. Furthermore, from 
the heat capacities given in Table 3 and Table 5, it can be inferred that CEB sta-
bilized with CCR have higher heat capacities than cement blocks (938 J·kg˗1·K−1 
for 20% CCR-CEB and 600 J·kg−1·K−1 for hollow cement blocks). This implies 
that CEB can stock 56% more heat than cement blocks.  

Figure 8 further shows that the depth of the penetration of heat flux of the 
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model M9 (9.2 cm) is lower than that of the model M1 (14 cm). The depth of 
penetration indicates, on a time period of 24 hours, how deep the heat flux 
would penetrate into the wall. This implies that the flux of heat takes more time 
to get through the CEB than the cement blocks. This further explains the lag ob-
served on the peak temperature due to the slow process of heating/cooling of the 
CEB (Figure 7). It additionally explains the fact that even if the 20% CCR-CEB 
has a better thermal behavior than the cement blocks, the model M9 reach high-
er indoor temperatures when the outdoor temperature is at its highest level. 
With lower external temperatures, this behavior of the CEB becomes favorable 
for the building, the CEB stores more coolness and deliver it on a longer time.  

On these bases, different formulas of CEB stabilized with CCR are more suita-
ble for maintaining the temperature set in the building much longer than the 
conventional materials such as cement blocks and concrete, and thus would 
economize the energy consumption if any cooling systems were used. Moreover, 
the results suggest that stabilization of CEB with CCR not only improved their 
mechanical performances [18] but also their thermal behavior compared to 
non-stabilized CEB. Indeed, the previous study [18] reported the positive effects 
of stabilizing a clayey soil with the same CCR on the mechanical performances 
of CEB. The results from the present study show the improvement of the ther-
mo-optical properties of CEB. 

 

 
Figure 7. Differences between models M1 and M9 on indoor temperatures. 

 

 
Figure 8. Depth of the penetration of heat flux for different models. 
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3.3. Evaluation of the Cost 

Figure 9 shows the cost of the energy consumed in a year if the air conditioning 
system (ACS) were used to maintain the indoor temperature not higher than 
28˚C during the presence of the occupants. It shows that the model M3 (con-
crete wall model) represent the highest cost of energy consumed through the 
year (6830 USD). The reference model M1 comes second in term of cost of 
energy consumption (6156 USD) while model M9 (CEB with 20% CCR) induces 
the lowest cost (5566 USD) on energy consumption. This further confirms that 
the use of CEB stabilized with CCR improves thermal behavior of the buildings, 
and the higher the CCR content, the better the CEB behaves.  

Figure 10 shows the economy made with each model with respect to the 
model M1. The economy of up to 9.6% that equals to 535 USD (310,000 CFA 
francs) can be achieved if the building in model M9 (20% CCR˗CEB) is air con-
ditioned instead of model M1 (hollow cement blocks). This economy subse-
quently shows the advantage of using CEB stabilized with CCR instead of the 
conventional hollow cement blocks. Furthermore, on the environmental point of 
view, CEB are much more ecological than cement blocks and concrete. By using 
a by-product as stabilizer, CCR-stabilized CEB would basically become more 
ecological than those stabilized with cement. 

 

 
Figure 9. Cost of the energy consumed on cooling by the air conditioning 
system per year. 

 

 
Figure 10. Percentage of money saved on the energy consumption on cool-
ing per year with respect to M1. 
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4. Conclusions 

In this study, different physical and thermal properties were determined on CEB 
stabilized with an industrial by-product (CCR) for simulating their impact on 
the thermal comfort in building. The thermal behavior of 10 variants of a 
4-room apartment model building was evaluated using the EnergyPlus software. 
The results showed that stabilization of CEB with CCR impacts their physi-
co-thermal properties and thus the thermal comfort in the model building. More 
specifically, the following conclusions can be drawn: 
• Increasing the content of CCR decreased the apparent density of CEB in the 

range of 2100 g·cm−3 for non-stabilized CEB to 1600 g·cm−3 for the 25% CCR 
stabilized CEB.  

• The thermal conductivity and depth of penetration of the heat flux decreased 
from 1 W·m−1·K−1 and 12.7 cm for non-stabilized CEB to 0.5 W·m−1·K−1 and 
10.2 cm for 25% CCR-stabilized CEB, respectively. The estimated emissivity 
also decreased from 0.82 for non-stabilized CEB to 0.64 for the 25% 
CCR-stabilized. These values remain lower than those for the cementitious 
materials, implying their structural and thermal advantages in terms of re-
duction of mechanical load and thermal discomfort in buildings.  

• The warm discomfort induced by the CEB stabilized with 20% CCR was 
about 400 hours less than that of the hollow cement blocks. The indoor tem-
perature has also been impacted by the use of CCR-stabilized CEB which fa-
vorably get them closer to 28˚C.  

• The CCR-stabilized CEB revealed their advantages in terms of energy con-
sumption compared to cementitious materials. They induced economy of up 
to 9.6% (310,000 CFA francs per year) on energy consumption for cooling in 
comparison with hollow cement blocks, highlighting their operational bene-
fits. 

Nevertheless, it is necessary to assess the durability and hygrometric proper-
ties of CCR-stabilized CEB, as well as the investment cost, for drawing definitive 
conclusions on their economic and environmental impacts.  
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Definition of Terms 

ACS Air conditioning system 

ASHRAE American society of heating, refrigerating and air-conditioning Engineers 

BSSR Back side solar reflectance at normal incidence 

BSVR Back side visible reflectance at normal incidence 

CCR Calcium carbide residue 

CEB Compressed earth block 

Cp Specific heat 

e Width (thickness) 

FSSR Front side solar reflectance at normal incidence 

FSVR Front side visible reflectance at normal incidence 

g Solar transmittance at normal incidence 

HI Hygrothermal index 

OWC Optimum water content 

Uf Thermal transmittance value on the windows’ frames 

αs Solar absorptivity value (solar absorptance) 

αth Thermal absorptivity value (emissivity of the material) 

αv Visible absorptivity value (visible absorptance) 

ε Front and back side infrared hemispherical emissivity 

λ Thermal conductivity 

ρ Density 

τl Visible transmittance at normal incidence 
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