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Abstract 
This paper mainly investigates the finite-time and fixed-time synchronization 
problem for a class of general output-coupling complex networks with output 
feedback nodes. The fixed-time and finite-time synchronization protocols are 
presented based on continuous controller strategies which can efficaciously 
eliminate chattering phenomenon existing in some previous results. Several 
sufficient conditions ensuring fixed-time and finite-time synchronization are 
derived by employing Lyapunov stability theory, linear matrix inequality (LMI) 
and adaptive technique. Furthermore, aimed at the model of this article, we 
study the problem of adaptive coupling strength in fixed-time synchroniza-
tion which is rarely involved in previous results. Finally, several numerical 
examples are given to illustrate the effectiveness of our results. 
 

Keywords 
Output-Coupling Complex Networks, Fixed-Time Synchronization,  
Finite-Time Synchronization, Continuous Controller 

 

1. Introduction 

Over the past few decades, researches about complex dynamical networks have 
become more and more hot in many fields for its large-scale practicability such 
as information processing, World Wide Web, biological systems, neural net-
works and so on [1] [2] [3] [4]. In particular, the synchronization phenomenon 
considered as a significant collective behavior has been attracted rapidly exten-
sive attention and many excellent works have been reported in [5]-[11] and the 
references therein. 

Regarded as a fundamental problem of cooperative control, synchronization 
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requires all subsystems to converge to a target state or a common value. It is 
worthwhile to note that most of the existing works about synchronization prob-
lems of complex dynamical networks were asymptotic synchronization [5]-[11], 
or exponential synchronization [12] [13], which meant that the synchronization 
could only be actualized within infinite time. In [5], the synchronization prob-
lem of general complex networks under pinning control was considered. Syn-
chronization of an array of linearly coupled memristor-based recurrent neural 
networks with impulses and time-varying delays was investigated in [6]. In [9], 
the cluster synchronization problems of linearly coupled complex networks were 
studied by employing pinning control strategy. The authors of [12] studied the 
exponential synchronization problems of complex-valued complex networks with 
time-varying delays and stochastic perturbations via time-delayed impulsive 
control and coupled stochastic memristor-based neural networks with time-varying 
probabilistic delay coupling and impulsive delay [13]. However, in practice, we 
always expect that the synchronization could be achieved as quickly as possible 
indicating that the system can realize synchronization in a particular time period. 
This can be acquired by utilizing finite-time synchronization strategy proposed 
in [14] which has been demonstrated with many remarkable advantages includ-
ing better robustness, higher precision and faster convergence rate, etc. For its 
prominent effect in improving convergence rate, many finite-time synchroniza-
tion results were presented. [14] investigated the problem of finite-time syn-
chronization for complex networks with nonidentical discontinuous nodes. In 
[15] results concerning the overlapping cluster finite-time synchronization of 
coupled complex networks via adaptive control were presented and its results 
can be applied to common cluster synchronization without overlap. The authors 
of [16] and [17] considered the finite-time synchronization of complex dynami-
cal networks by periodically intermittent control and aperiodically intermittent 
control respectively. In [18], the finite-time cluster synchronization problem for 
complex networks were discussed by employing pinning control. Nevertheless, 
in the above results, the settle-time of finite-time synchronization heavily de-
pends on the initial conditions of all the subsystems yet in some case, the infor-
mation or knowledge of initial states is unknown or not available in advance. 
Furthermore, the settling time will be sufficiently large if the initial conditions 
are very large. These restrictions may limit its wide application in reality to some 
extent. 

Whereupon, to work these constraints out, the fixed-time synchronization was 
proposed in which the settling time of fixed-time synchronization is bounded by 
a constant for arbitrary initial conditions and a lot of corresponding researches 
were done in [19] [20]. In [19], fixed-time cluster synchronization problem of 
general complex dynamical networks was considered with or without pinning 
control. In [19], the fixed-time synchronization theory was utilized to investigate 
complex networks with nonidentical nodes and stochastic noise perturbations 
and a new method which can be used to estimate the settling time was presented. 
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In [20], based on event-triggered control strategy which can significantly reduce 
energy consumption and the frequency of the controller updates, the fixed-time 
synchronization was achieved in term of multi-agent systems with nonlinear 
uncertainties. 

From the viewpoint of coupling among nodes, complex networks mainly be 
divided into two representative types, that is, output-coupling complex networks 
and state-coupling complex networks. In [21], global asymptotic adaptive syn-
chronization problem for a class of output-coupling complex networks was stu-
died by employing adaptive dynamical output feedback controllers. In recent 
years, most of researches focus on state-coupling complex networks while out-
put-coupling complex networks attracts relatively less attention let alone re-
search on fixed-time and finite-time synchronization problems. 

In [22] [23], controllers, unexceptionally, include sign function which plays a 
very important and indispensable role in fixed-time and finite-time synchroni-
zation problems. However, some defects were brought such as chattering phe-
nomenon [22] [23] mainly caused by the discontinuity of sign function which 
will do harm to the property of apparatus. Thus, in [10], to overcome these draw-
backs and weaken chattering effect, a saturation function was utilized yet actual-
ly this effect cannot be intrinsically avoided. In [15], an adaptive controller which 
did not contain sign function was designed, and the chattering phenomenon was 
easily and successfully erased. However, the controller mentioned in [15] was 
still discontinuous, namely, the chattering effect still existed in controller. In [24], 
a controller excluding sign function was designed, however, the controller in [24] 
is still discontinuous. 

As everyone knows, coupling strength among the nodes of complex networks 
plays a very significant role in the problem for the synchronization problem of 
complex networks. In general, by strengthening the effect of coupling to realize 
the synchronization for complex networks is a basic and prime idea. However, 
under this condition, the coupling strength is always expected to be as large as 
possible. Nonetheless, in practice, it is impractical that the coupling strength can 
be arbitrarily enhanced large. On the one hand, the complex networks with too 
large coupling strength cannot describe the real system. On the other hand, 
strengthening the effect of coupling strength, to some degree, may increase the 
cost in engineering field. Therefore, it is necessary and desirable to find a suita-
ble and applicable coupling strength. A natural and effective way to realize this 
goal is to utilize adaptive technique [9]. In [25], the author studied the problem 
of synchronization of coupled connected neural networks with delays and the 
results showed that the theoretical value is usually larger than the value needed 
in practice. In [26], pinning control for complex networks by a single controller 
was investigated, but the coupling strength was required to be very large, which 
was very rigorous and not practical. In [27] [28] [29], the problem of adaptive 
coupling strength is not taken into consideration. To our best knowledge, the 
adaptive coupling strength problem for fixed-time synchronization of complex 
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networks with output nodes is less investigated. In this paper, we will explore 
this problem deeply. 

Motivated by the above discussion, the main novelties are enumerated as fol-
lows: 1) the fixed-time and finite-time synchronization problem for a more gen-
eral complex dynamical networks with output feedback nodes are studied; 2) to 
avoid chattering phenomenon existing in previous works, a continuous control-
ler is designed to realize synchronization; 3) the synchronization criterions in 
this paper are suitable for directed and undirected complex networks; 4) the 
adaptive coupling strength problem for fixed-time synchronization of complex 
networks with output nodes is studied first time. 

The rest of this paper is organized as follows. In Section 2, the model of out-
put-coupling complex networks, some lemmas, assumptions and definition are 
presented. The sufficient criterions ensuring fixed-time synchronization and fi-
nite-time synchronization of complex networks are derived in Section 3 and Sec-
tion 4 respectively. In Section 5, the adaptive coupling strength problem for 
fixed-time synchronization of complex networks is investigated. In section 6, 
some numerical simulation examples are given. 

2. Problem Formulation and Preliminaries 

Notations: nR  and n nR ×  denote the set of n-dimension vector and n n×  real 
matrix respectively. The superscript “T” denotes the transpose of vectors and 

matrices. For the matrix n nA R ×∈ , 
T

2
s A AA +
= , ( )min Aλ  and ( )max Aλ  de-

note the minimum eigenvalue and maximum eigenvalue of matrix A, respec-
tively. Let { }1,2, , N=  . [ ]diag n n

i n
Rα ×∈  is the diagonal matrix with di-

agonal entries ( )1,2, ,i i nα =  . n n
nI R ×∈  is the identity matrix. For the vector 

[ ]T1, , nx x x=  , 
T

1 , ,p p p
nx x x =   . The Euclidean norm in nR  is denoted as 

⋅ , i.e. Tu u u=  for nu R∈ . 

In this paper, we consider the following output-coupling complex networks 
with output nodes:  

( ) ( ) ( )( ) ( ) ( )

( ) ( )
1

,

,

N

i i i ij i i
j

i i

x t Ax t f y t c g y t u t

y t Cx t i
=

 = + + Γ +

 = ∈

∑



          (1) 

where ( ) n
ix t R∈  is the system state variables of the ith dynamical node, 

( ) m
iy t R∈  is the output variables of the ith dynamical node, : n nf R R→  is a 

continuous function governing the dynamics of ith isolated nodes, 0c >  is a 
coupling strength, ij N N

G g
×

 =    is the weight configuration matrix of the com-
plex networks, n mR ×Γ∈  is the inner coupling matrix and m nC R ×∈  is the 
output matrix, ( ) n

iu t R∈  is the controller designed for the system (1). For 
i j≠ , 0ijg >  if and only if there is a connection from node i to the node j, and 
the diagonal elements are defined as  
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1,
.

N

ii ij
j j i

g g
= ≠

= − ∑  

The initial value of the complex network (1) is ( ) 00 ,i ix x i= ∈ . 

Remark 1: Here, we assume that the weight configuration matrix G is not 
symmetric and irreducible. Therefore, the system (1) can be used to describe the 
directed and the undirected weighted complex networks.  

Remark 2: When the output matrix C is the identity matrix NI , then (1) de-
grade into  

( ) ( ) ( )( ) ( ) ( )
1

,
N

i i i ij i i
j

x t Ax t f x t c g x t u t
=

= + + Γ +∑            (2) 

which has been deeply studied by [18] [19]. Therefore, system (1) is more gener-
al than system (2).  

The goal of this paper is to design suitable controllers ( )iu t  such that the 
states of complex network (1) synchronize into the state of following target sys-
tem within a finite time and fixed time,  

( ) ( ) ( )( )
( ) ( )

,

.

x t Ax t f y t

y t Cx t

∗ ∗ ∗

∗ ∗

 = +


=



                    (3) 

Subtracting (3) from (1), the following error dynamical systems are obtained:  

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )
1

,

,

N

i i i ij j i
j

i i

e t Ae t F t c g t u t

t y t y t i

ψ ψ

ψ
=

∗

 = + + Γ +

 = − ∈

∑



          (4) 

where  

( ) ( ) ( ) ( )( ) ( )( ) ( )( ), ,i i i ie t x t x t F t f y t f y tψ∗ ∗= − = −  

( )ie t  and ( )i tψ  are the state error and output error of the ith node, respec-
tively. Obviously, we have  

( ) ( ) ( ) ( ).i i it Cx t Cx t Ce tψ ∗= − =                  (5) 

Let ( ) ( ) ( ) ( )
TT T T

1 2, , , Ne t e t e t e t =   .  

Definition 1: The network (1) is said to be synchronized onto (3) within a fi-
nite time, if there exists a settling time 0T >  which is dependent on the initial 
value, such that  

( ) 0 for all ,e t t T≡ ≥  

where ( )e t  is the solution of error dynamical system (4).  
Definition 2: The network (1) is said to be synchronized onto (2) within a 

fixed time, if there exists a settling time 0T >  which is independent on the ini-
tial value, such that  

( ) 0 for all ,e t t T≡ ≥  

where ( )e t  is the solution of error dynamical system (8).  
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Lemma 1: [21] If n nA R ×∈  is a real symmetric matrix, then  

( ) ( )T T T
min max , for any .nA x x x Ax A x x x Rλ λ≤ ≤ ∈  

Lemma 2: [14] Suppose that a continuous, positive-definite function ( )V t  
satisfies the following inequality:  

( ) ( ) , 0pV t V t tα≤ − ∀ ≥  

where 0α > , 0 1p< < . Then, for any given 0t ,  

( ) ( )00, ,V t t T x≡ ∀ ≥  

where  

( ) ( )
( )

1

0

0
.

1

pV
T x

pα

−

=
−

 

Lemma 3: [29] Suppose that a continuous, positive-definite function ( )V t  
satisfies the following inequality:  

( ) ( ) ( ) ,p qV t V t V tβ γ≤ − −  

where 0, 0,1 0, 1p qβ γ> > > > > . Then, ( ) 0,V t t T≡ ∀ ≥  with  

( ) ( )
1 1 .

1 1
T

p qβ γ
= +

− −
 

Lemma 4: If 1 2, , , 0nξ ξ ξ ≥ , 0 1ι< ≤ , 1κ > , then  

1

1 1 1 1
and .

n n n n

i i i i
i i i i

n
ι κ

ι κ κξ ξ ξ ξ−

= = = =

   ≥ ≥   
   

∑ ∑ ∑ ∑  

Assumption 1: [26] The function ( )f ∗  is said to satisfy the lipschitz condi-
tion if there exists a positive constant δ  such that  

( ) ( ) .f x f y x yδ− ≤ −                     (6) 

3. Finite-Time Synchronization 

In this section, we will design suitable controllers ( )iu t  such that output-coupling 
complex networks (1) synchronize into (3) with finite time. In order to realize 
this control goal, the controllers are designed as:  

( ) ( ) ( ) , ,i i i iu t e t e t i
θ
φβ= − − ∈                   (7) 

where 0i >  ( i∈ ), θ  and φ  are positive odd integers satisfying θ φ<  
to be determined, and 0β >  is a tunable constant.  

Remark 3: In the previous works, the following controllers were often em-
ployed in the process of realizing finite-time synchronization:  

( ) ( ) ( )( ) ( )( ) ( )1 2 3sign signi i i i iu t e t e t e t e t
θ
φη η η= − − −            (8) 

and  

( ) ( )( ) ( )( ) ( )( ) ( )( )1 0 2 0 sign sign ,i i iu t h x t h x t h x t h x t
θ
φη η   = − − − −       (9) 
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where 1 2 3, ,η η η  are the positive control strength and h is vector valued func-
tion. Apparently, above controllers were discontinuous which may introduce the 
chattering problem and other superfluous behavior to the states of system and 
control messages frequently.  

Remark 4: The controllers (7) which exclude sign function are continuous. 
Therefore, the chattering phenomenon can be avoided under the controller (7).  

Theorem 1: Suppose that Assumption 1 holds. If there exist positive constants 

i ∈  such that  

( )( )max 0,s
NA I Gλ δχ ∗+ + −Π ≤                  (10) 

where ( )T
max C Cχ λ= , [ ]diag i N

Π =  , ij N N
G g∗ ∗

×
 =   , with ii iig c gϖ∗ =  and 

ij ijg c g∗ =   ( )i j≠ , where ( )max
sCϖ λ= Γ , C= Γ . Then, the controlled 

network (1) is synchronized onto the target state (3) under the controller (7) in a 
finite time:  

( )

( )

2

0
2

2 0
,

2

V
T

φ θ
φ

φ θ
φ

φ

β φ θ

−

+=

−

 

where ( ) ( ) ( )T
1

10 0 0
2

N
i iiV e e

=
= ∑ . 

Proof: Define a Lyapunov function:  

( ) ( )T

1

1 .
2

N

i i
i

V e t e t
=

= ∑  

Calculating the derivative of ( )V t  along the trajectory of system (4), it fol-
lows that  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

T T T

1 1 1 1

T T

1 1

 

.

N N N N
s

i i i i ij i j
i i i j

N N

i i i i i
i i

V t e t A e t e t F t c g e t t

e t e t e t e t
θ
φ

ψ ψ

β

= = = =

= =

= + + Γ

− −

∑ ∑ ∑∑

∑ ∑





 

Based on Lemma 1 Equation (9) and Assumption 1, we have  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2
max

1 1 1

2 2 2

1 1, 1

 ( )

 2 .

N N N
s

i i ii i
i i i

N N N

ij i j i i
i j j i i

V t A e t e t c g e t

c g e t e t e t V t
φ θ φ θ
φ φ

λ δχ ϖ

β

= = =

+ +

= = ≠ =

≤ + +

+ ⋅ − −

∑ ∑ ∑

∑ ∑ ∑



 
 

Denote ( ) ( ) ( )T
1 2, , , NE e t e t e t =   , then  

( ) ( )( ){ } ( )T * 2 2
max 2s

NV t E A I G E V t
φ θ φ θ
φ φλ δχ β
+ +

≤ + + −Π −  

By (10), it follows that  

( ) ( )2 2 2 .V t V t
φ θ φ θ
φ φβ
+ +

≤ −  

By utilizing Lemma 2, we achieve ( )
0

lim 0, 1,2, ,t T ie t i N→ = =  , and the fi-
nite time is estimated by  
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( )

( )

2

0
2

2 0
.

2

V
T

φ θ
φ

φ θ
φ

φ

β φ θ

−

+=

−

 

The proof is completed.  
Especially, if the output matrix C is an identity matrix with appropriate di-

mensions, then we have following result.  
Corollary 1: Suppose that Assumption 1 holds and NC I= . If there exist 

positive constants i ∈  such that  

( )( )max
ˆ 0.s

NA I Gλ δ ∗+ + −Π ≤  

where [ ]diag i N
εΠ =  and ( )ˆ ˆijG g∗ ∗=  with ˆ ˆii iig c gϖ∗ =  and ( )ˆ ˆij ijg c g i j∗ = ≠ , 

where ( )maxˆ sϖ λ= Γ  and ˆ = Γ . Then complex network (1) can achieve fi-

nite-time synchronization under the controller (7).  
Corollary 2: Suppose that Assumption 1 holds, the inner coupling matrix 

NIΓ = , output matrix NC I=  and coupling strength 1c = . If there exists a 
positive constant ε  such that  

( )( )max 0,s
NA I Gλ δ+ − + ≤  

where G is the weight configuration matrix of the complex networks. Then 
complex network (1) can achieve finite-time synchronization under the control-
ler (7).  

4. Fixed-Time Synchronization 

In this section, we will design suitable controllers ( )iu t  such that output-coupling 
complex networks (1) synchronize into the target state (3) within a fixed settling 
time. In order to realize this goal, we suppose  

( ) ( ) ( ) ( ) ,
k
l

i i i i iu t e t e t e t
θ
φξ β γ= − − −                 (11) 

where , , ,k lθ φ  are all positive odd integers satisfying θ φ>  and k l< . 
Remark 5: Obviously, the controllers (11) are continuous and the sign func-

tion is excluded as well. As is well known, the role played by sign function in 
controller is pretty significant, however, it always introduce chattering pheno-
menon to the system and controller which may damage the devices. In literature 
[15] [18] [22] [27], the controller is composed of sign function and state error in 
studying the synchronization problems. In this paper, without utilizing the sign 
function in the controller, the chattering phenomenon is erased successfully.  

Remark 6: Referring to [27], a more precise estimated value of settling time 
can be obtained by utilizing the controller (11).  

Remark 7: Some discontinuous controllers designed by signal function and 
error function like  

( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) sign sign  sign ,
p q

i i i i i i i i iu t e t e t e t e t e t e tξ η β γ= − − − −  

where p and q are positive constants satisfying 0 1p< <  and 1q > .  
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( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) sign sign  sign ,
m k
h l

i i i i i i i i iu t e t e t e t e t e t e tξ η β γ= − − − −  

where , , ,m h k l  are all positive odd integers satisfying m h>  and k l< , can 
be employed in the issue of fixed-time synchronization of complex networks. 
However, the chattering problem and other superfluous behavior may be brought 
to the states of system and control messages frequently.  

Theorem 2: Suppose that Assumption1 holds. If there exists positive con-
stants , 1, 2, ,i i Nξ =  , such that  

( )( )max 0,s
NA I Gλ δχ ∗+ + −Ξ ≤                  (12) 

where ( )T
max C Cχ λ= , ( )1 2diag , , , Nξ ξ ξΞ =   and ( )ijG g∗ ∗=  with 

ii iig c gϖ∗ =  and ( )ij ijg c g i j∗ = ≠ . Then, under the controller (11), the con-
trolled network (1) is said to be synchronized onto the target state (3) within a 
fixed time  

( ) ( ) ( )2 2 2

2 2 .
22

l k l k
l l

lT
l k Nn

φ θ
φ

φ

γβ φ θ
+ + +

= +
−−

 

Proof: Define a Lyapunov function as  

( ) ( )T

1

1
2

N

i i
i

V e t e t
=

= ∑  

Calculating the derivative of ( )V t  along the trajectory of error system (4), 
we have  

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T

1 1

T T

1 1 1

T T

1 1

 

.

N N
s

i i i i
i i

N N N

ij i j i i i
i j i

kN N
l

i i i i
i i

V t e t A e t e t F t

c g e t t e t e t

e t e t e t e t
θ
φ

ψ

ψ

β γ

= =

= = =

= =

= +

+ Γ −

− −

∑ ∑

∑∑ ∑

∑ ∑



  

According to Lemmas 1 and Lemma 4, Equation (9) and Assumption 1, we 
have  

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 2 2
max

1 1 1

2

1 1, 1

1 1 1 1

 ( )
N N N

s
i i ii i

i i i
N N N

ij i j i i
i j j i i

l jN N N N
l

ij ij
i j i j

V t A e t e t c g e t

c g e t e t e t

e t e t
φ θ
φ

λ βχ ϖ

β γ

= = =

= = ≠ =

+ +

= = = =

≤ + +

+ ⋅ −

− −

∑ ∑ ∑

∑ ∑ ∑

∑∑ ∑∑



   

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 2 2
max

1 1 1

2 2 2

1 1, 1

2 22

 

2

2 .

N N N
s

i i ii i
i i i

N N N

ij i j i i
i j j i i

l k l kl k
l ll

A e t e t c g e t

c g e t e t e t V t

Nn V t

φ θ φ θ
φ φ

λ βχ ϖ

ρ β

γ

= = =

+ +

= = ≠ =

+ +−

≤ + +

+ ⋅ − −

−

∑ ∑ ∑

∑ ∑ ∑  
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Denote ( ) ( ) ( )
T

1 2, , , NE e t e t e t =   , then  

( ) ( )( ){ }
( ) ( ) ( )

T
max

2 2 2 22

 

2 2 .

s
n

l k l kl k
l ll

V t E A I G E

V t Nn V t
φ θ φ θ
φ φ

λ δχ

β γ

∗

+ + + +−

≤ + + −Ξ

− −



 

By (12), it follows that  

( ) ( ) ( ) ( )2 2 2 222 2 .
l k l kl k

l llV t V t Nn V t
φ θ φ θ
φ φβ γ
+ + + +−

≤ − −           (13) 

By employing Lemma 4, the following estimated value of settling time can be 
achieved  

( ) ( ) ( )2 2 2

2 2 .
22

l k l k
l l

lT
l k Nn

φ θ
φ

φ

γβ φ θ
+ + +

= +
−−

 

This completes the proof.  
Corollary 3: Suppose Assumption 1 holds and output matrix NC I= . If there 

exists positive constants , 1, 2, ,i i Nξ =  , such that  

( )( )max 0,s
NA I Gλ δ ∗+ + −Ξ ≤  

where ( )1 2diag , , , Nξ ξ ξΞ =   and ( )ijG g∗ ∗=  with ii iig c gϖ∗ =  and 

( )ij ijg c g i j∗ = ≠ . Then complex network (1) will realize fixed-time synchroniza-

tion under the controller (11).  
Remark 8: It can be found that from the results of Theorem 2 that the settling 

time is independent on the initial value of state ( )0ix  and ( )0 0x . Further-
more, the settling time can be estimated by the dimension of node n, the design 
parameters and the group order N.  

Remark 9: In reality, one can comprehend the theoretical basis why we design 
controller 11 from Theorem 1 and the proof process of Theorem 1. When 

0β γ= = , the controller ( ) ( )i i iu t e tξ= −  which is widely used in [25] can en-

sure that the complex networks 1 achieves asymptotical synchronization that can 

be seen from (12) where ( ) ( )( ){ }T
max

ˆs
nV t E A I G Eλ δ ∗≤ + + −Ξ , where ma-

trix ( )( )max
ˆs

nA I Gλ δ ∗+ + −Ξ  is negative definite. As for they part p
ieβ−  and 

the part q
ieγ− , they play the role which control the complex networks such that 

( ) 1V t =  in a fixed time 1T  when ( ) 1V t >  and ( )V t  approaches to zero in a 

fixed time 2T  when ( ) 1V t ≤  respectively. Therefore, to some degree, the set-

tle time T is the sum of 1T  and 2T .  
Remark 10: It is clear that the settling time of Theorem 2 is different from the 

settling time of Theorem 1 and results in [5] [9] which are dependent on the ini-

tial value of ( )0ie . What’s more, we can easily find that the part ( )ie t
θ
φβ  and 

the part ( )
k
l

ie tγ−  play different roles to realize the fixed-time synchronization 

based on the analysis. 
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Consider the following for comparison purpose:  

( )
( ) ( )

( ) ( )
( )

( ) ( )

2

2

2 , 1,
 

2 , 0 1,
0, 0,

0  0 .

l k
l

h t h t
h t

h t h t
h t

h V

φ θ
φβ

γ

+

+

 
 − ≥

 =  − < < 
  =
 =



               (14) 

where ( )2 2 22 , 2
k l l k

l lNn
θ φ
φβ β γ γ
− − −

= = . Compared (13) with (14), it can be easily 

seen that ( ) ( )0 V t h t≤ ≤ . Consequently, to prove the fixed-time stability of (14), 

we just only need to study the corresponding problem of the zero solution of the 
above system (14). 

Let ( ) ( )2z t h t
φ θ
φ
−

=  when ( ) 1h t ≥ . Then  

( ) ( )

( ) 2
0 0

1 ,0 1

0 .

z t z t

z z h
φ θ
φ

θβ
φ

−

  
= − < ≤    


= =



            (15) 

From (14) and (15), it can be seen that ( )0 0z →  when ( )0h →∞ , and 
( ) 1z t →  for ( ) 1z t → . 

Let ( ) ( )2
l k

lz t h t
−

=  when ( )0 1h t≤ < . Then  

( ) ( )

( )

1 ,0 1

0 1.

kz t z t
l

z

γ  = − − ≤ <  
 

 =



            (16) 

Obviously, it follows that ( ) 1z t →  when ( ) 1h t → , and ( ) 0z t →  for 
( ) 0z t → . 
Accordingly, the global stability of the zero solution of (14) within fixed time 

has been transformed to the following two problems: 1) the solution of (15) ap-
proaches to 1 in a fixed time aT ; 2) the solution of (16) reaches 0 from 1 in a 
fixed time bT . Then, ( ) 0z t →  in a fixed time a bT T T= +  from any initial 
value ( )0z .  

Remark 11: Actually, the fixed time T can be obtained easily if the fixed time 
Ta and Tb can be achieved. In [29], a new approach to obtain the settling time 
was presented according to above analysis.  

5. Adaptive Adjustment of the Coupling Strength 

To our best knowledge, the adaptive coupling strength problem for fixed-time 
synchronization of complex networks with output nodes is less investigated. 
Therefore, with the help of adaptive technique, the coupling strength adaptive 
adjustment will be discussed. Associated with the adaptive coupling law, the 
controlled complex network with output nodes is leaded to:  
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( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )

( ) ( )

1

T

1

,

, ,

.

N

i i i ij i i
j

i i

N

i i
i

x t Ax t f y t c t g y t u t

y t Cx t i

c t e Ce tα

=

=

 = + + Γ +
 = ∈

 = Γ


∑

∑







           (17) 

where α  is a small positive constant and ( )iu t  are same as (11). 
Theorem 3: Suppose that Assumption 1 holds and CΓ  is a positive define 

matrix. Then, the adaptively controlled complex networks can achieve fixed-time 
synchronization with a desirable coupling strength.  

Proof: Define a Lyapunov function as  

( ) ( ) ( )( )2

1

1 1
2 2

N

i i
i

V e t e t c t c
α

Τ

=

= + −∑   

Calculating the derivative of ( )V t  along the trajectory of error system (8), it 
follows that  

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( )

( )( ) ( ) ( )

T

1

T
0

1

1

T

1

1 

 

N

i i
i

N

i i i
i

kN
l

ij j i i i i
j

N

i i
i

V t e t e t c t c c t

e t Ae t f y t f y t

c g t e t e t e t

c t c e t Ce t

θ
φ

α

ψ ξ β γ

=

=

=

=

= + −


= + −


+ Γ − − − 


+ − Γ

∑

∑

∑

∑



  



 

( ) ( ) ( ) ( )( ) ( )( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T
0

1 1

T T

1 1

T T

1 1 1

T T

1 1

 

 

 

 

N N
T

i i i i
i i

N N

i i i i i
i i

N n N

i ij i i i
i j i

kN N
l

i i i i
i i

e t Ae t e t f y t f y t

e t e t c e t Ce t

c t e t g Ce t c t e t Ce t

e t e t e t e t
θ
φβ γ

= =

= =

= = =

= =

≤ + −

− − Γ

+ Γ + Γ

− −

∑ ∑

∑ ∑

∑∑ ∑

∑ ∑



 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )( )( )
( ) ( ) ( )

T T
max

1 1

T T

1

2 2 2 22

 

 

 2 2 .

N N
s

i i i i
i i

N
s

i i i N N
i

l k l kl k
l ll

A e t e t e t e t

e t e t e C c t G I cI e

V t Nn V t
φ θ φ θ
φ φ

λ χ

β γ

= =

=

+ + + +−

≤ +

− + Γ ⊗ + −

− −

∑ ∑

∑   

where ( ) ( ) ( )( )T
1 2, , , ne e t e t e t=  . Then  

( ) ( )( ){ }
( )( )( )( )
( ) ( ) ( )

max

2 2 2 22

 

 

 2 2 .

T s
n

T s
N N

l k l kl k
l ll

V t e A I e

e C c t G I cI e

V t Nn V t
φ θ φ θ
φ φ

λ βχ

β γ
+ + + +−

≤ + −Ξ

+ Γ ⊗ + −

− −



  
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Obviously, we can pick suitable , 1, 2, ,i i N=  , such that  

( )( )max 0.s
nA Iλ δχ+ −Ξ <  

Meanwhile, we also can pick suitable c  such that  

( )( ) 0.s
N Nc t G I cI+ − <  

According to the property of K product [5], namely, if ( )( ) 0N Nc t G I cI+ − <  
and 0CΓ > , then one can easily obtain that  

( )( )( ) 0.s
N NC c t G I cIΓ ⊗ + − <  

Then, the following inequality holds:  

( ) ( ) ( ) ( )
1 1 1 11

2 2 2 222 2 .
p p q qq

V t V t Nn V tβ γ
+ + − −−

≤ − −  

It indicates that ( ) 0, 1,2, ,ie t i N→ =   within fixed time and consequently 
the adaptively controlled complex networks can achieve fixed-time synchroniza-
tion. Besides, ( ) 0, 1,2, ,c t i N→ =

 . it means that ( ) 0c t c→ , here, the 0c  is a 
nonnegative constant. The proof is completed.  

6. Numerical Examples 

In this section, two numerical examples are presented to show the effectiveness 
of the proposed theoretical analysis. Specifically, Example 1 is given to verify 
Theorem 1 and Example 2 is provided to illustrate Theorem 2. 

Now, we consider the following two-dimensional van der pol system [21] 
which is presented as:  

( ) ( ) ( )( )
( ) ( ) , ,

i i i

i i

x t Ax t f y t

y t Cx t i

 = +


= ∈





                  (18) 

where ( ) ( ) ( )( )T
1 2,i i ix t x t x t=  is the state vector and  

0 0
,

0 1
A  
=  
 

 

( )( ) ( )( ) ( )( )( ) ( ) ( )( ) ( )
3

T
1 2

1 , , ,
3i i i i i if y t f y t f y t y t y t y t

  = = − −     
  (19) 

and [ ]1,1C = . The system (18) is a van der Pol oscillator when 1= , and its 
trajectories are bounded. 

6.1. Example 1 

Consider CNs with output nodes as  

( ) ( ) ( )( ) ( ) ( )

( ) ( )

10

1

 , 1, ,10,

i i i ij i i
j

i i

x t Ax t f y t c g y t u t

y t Cx t i
=

 = + + Γ +

 = =

∑



            (20) 

where  
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1 1 0 0 0 0 0 0 0 0
1 2 0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
1 0 0 2 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0

.
0 0 0 1 0 3 0 1 0 1
0 1 0 1 0 0 2 0 0 0
1 0 0 0 0 1 1 3 0 0
1 0 0 0 0 1 1 0 3 0
0 0 1 0 1 0 0 1 0 3

G

− 
 − 
 −
 

− 
 −
 =

− 
 − 

− 
 − 
 − 

 

Selecting the inner-coupling matrix [ ]T1,1Γ =  and the coupling strength 1c = , 
we design the synchronization controller as  

( ) ( ) ( ) , 1, ,10,i i i iu t e t e t i
θ
φβ= − − =                (21) 

We will control the CNs (18) under controllers (21) such that it will be syn-
chronized onto the following target state within finite time:  

( ) ( ) ( )( )
( ) ( )

0 0 0

0 0

,

.

x t Ax t f y t

y t Cx t

 = +


=



                  (22) 

From the analysis of [21], for the function ( )f ⋅ , the parameter δ  can be se-
lected as 21.22 which can satisfy Assumption 1. 

Take ( ) ( )T
1 0 6.321,2x = − , ( ) ( )T

2 0 4.321,4x = − , ( ) ( )T
3 0 2.321,6x = − ,  

( ) ( )T
4 0 0.321,8x = − , ( ) ( )T

5 0 1.679,10x = , ( ) ( )T
6 0 3.679,12x = ,  

( ) ( )T
7 0 5.679,14x = , ( ) ( )T

8 0 7.679,16x = , ( ) ( )T
9 0 9.679,18x = ,  

( ) ( )T
10 0 11.679,20x =  and ( ) ( )T

0 0 0.065,0.1x = . 
Take 1, 3θ φ= =  and step-length = 0.0001. Actually, as long as 

{ }1 2 10min , , ,ξ ξ ξ ξ=   sufficiently large, the CNs (18) are finite-timely synchro-
nized onto (22) under controller (21). In the following numerical simulations, we 
take  

( )diag 55.369,59.341,60.33,55.57,66.01,70.03,71.44,77.2,87.21,88.36 .Ξ =  
Take 1, 3, 5θ φ β= = = , we get 0 0.071T = . Figure 1, Figure 2 show the time 

response of error systems without control and Figure 3 and Figure 4 present 
that the synchronization is achieved in finite time. 

6.2. Example 2 

Consider the networks (21), similar to numerical simulation of Example 1, fixed- 
time synchronization controllers are designed as follows:  

( ) ( ) , 1, ,10.
k
l

i i i i iu t e e e t i
φ
θβ γ= − − − =                  (23) 

Take ( ) ( )T
1 0 6.321,2x = − , ( ) ( )T

2 0 4.321,4x = − , ( ) ( )T
3 0 2.321,6x = − ,  

( ) ( )T
4 0 0.321,8x = − , ( ) ( )T

5 0 1.679,10x = , ( ) ( )T
6 0 3.679,12x = ,  

( ) ( )T
7 0 5.679,14x = , ( ) ( )T

8 0 7.679,16x = , ( ) ( )T
9 0 9.679,18x = ,  

( ) ( )T
10 0 11.679,20x =  and ( ) ( )T

0 0 0.065,0.1x = . 
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Take 5, 3k l= =  and step-length = 0.00005, other relative parameters are as 
same as Example 1. Take 5β γ= = , we obtain settling time 0.06861T = . Fig-
ure 5 and Figure 6 show the time response of error systems without controller 
and Figure 7 and Figure 8 present that the fixed-time synchronization is realized.  

 

 
Figure 1. Time response of synchronization errors without controller (21). 

 

 

Figure 2. Time response of synchronization errors without controller (21). 
 

 

Figure 3. Time response of synchronization errors under controllers (21) 
with 1, 3, 5θ φ β= = = . 
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Figure 4. Time response of synchronization errors under controllers (21) 
with 1, 3, 5θ φ β= = = . 

 

 

Figure 5. Time response of synchronization errors without controller (23). 
 

 

Figure 6. Time response of synchronization errors without controller (23). 
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Figure 7. Time response of synchronization errors under controllers (23) 
with 1, 3, 5, 3, 5, 5k lθ φ β γ= = = = = = . 

 

 

Figure 8. Time response of synchronization errors under controllers (23) 
with 1, 3, 5, 3, 5, 5k lθ φ β γ= = = = = = . 

7. Conclusion 

In this paper, the issue of the fixed-time and the finite-time synchronization for 
a class of general output-coupling complex networks with output feedback nodes 
are discussed. Under the novel continuous controllers, the chattering phenome-
non is eliminated and the fixed-time and finite-time synchronization are achieved 
as well. Then, the adaptive coupling strength problem for fixed-time synchroni-
zation of complex networks with output nodes is investigated. Finally, the avail-
ability of proposed fixed-time and finite-time synchronization frame are dem-
onstrated by several numerical examples. 
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