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Abstract 
In this paper, SLAM systems are introduced using monocular and stereo vis-
ual sensors. The SLAM solutions are implemented in both indoor and out-
door. The SLAM samples have been taken in different modes, such as a straight 
line that enables us to measure the drift, in addition to the loop sample that is 
used to test the loop closure and its corresponding trajectory deformation. In 
order to verify the trajectory scale, a baseline method has been used. In addi-
tion, a ground truth has been captured for both indoor and outdoor samples 
to measure the biases and drifts caused by the SLAM solution. Both monocu-
lar and stereo SLAM data have been captured with the same visual sensors 
which in the stereo situation had a baseline of 20.00 cm. It has been shown 
that, the stereo SLAM localization results are 75% higher precision than the 
monocular SLAM solution. In addition, the indoor results of the monocular 
SLAM are more precise than the outdoor. However, the outdoor results of the 
stereo SLAM are more precise than the indoor results by 30%, which is a re-
sult of the small stereo baseline cameras. In the vertical SLAM localization 
component, the stereo SLAM generally shows 60% higher precision than the 
monocular SLAM results. 
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1. Introduction 

Simultaneous localization and mapping (SLAM) is the procedure of building the 
map of the surrounding environment of a vehicle/rover and uses the computed 
map to determine the vehicle/rover location. In the past decade there was active 
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research to solve the SLAM problem using several methods of computations. 
The great majority of work has focused on improving computational efficiency 
while ensuring consistent and accurate estimates for the map and vehicle pose. 
However, there has also been much research on issues such as nonlinearity, data 
association, and landmark characterization, all of which are vital in achieving a 
practical and robust SLAM implementation. SLAM process challenges are cen-
tered on methods enabling large-scale implementations in increasingly unstruc-
tured environments and especially in the GPS denied environment. Indoor 3D 
mapping helps to view the three-dimensional objects and spatial structure on the 
computer efficiently. A precise description about the scene through the sensors 
is required. In the latest research contribution, SLAM has become more popular, 
there are three major categories: visual-based, laser-based and depth-visual 
based. There are the visual-based SLAM solutions such as ORB-SLAM [1] and 
LSD-SLAM [2], where only the image information has been used to develop the 
3D map. As a result, several challenges had to be adjusted such as the scale-drift 
problem [3], and light change effect. The visual-based SLAM can be imple-
mented using different sensors setup such as monocular, stereo, and multiple 
visual sensor. On the other hand, the visual-depth SLAM [4] [5] [6] utilizes an 
integrated depth sensor with visual sensor such as Microsoft Kinect, Intel real 
sense, and Xtion Pro. The visual-depth sensors usually have a limited scan angle 
and range which results in a SLAM computation challenge for the large envi-
ronments [7] [8] [9] [10] [11]. Moreover, Laser-based SLAM can be computed 
in large number of environments with different scale due to the larger laser 
range. Commonly, SLAM can be computed using three paradigms namely: Kal-
man filters, Particle filters and Graph-based [10] [11] [12] [13]. 

Kalman filters have two main parts: prediction and update. In order to solve 
the nonlinear problem, the Extended Kalman Filter (EKF) was put forward. The 
EKF-SLAM can only deal with a single mode. It is successful in medium-scale 
scenes but when it comes to a large map, it becomes computationally intractable. 
Certainly, there is better method solving the nonlinear problem like Unscented 
Kalman Filter (UKF). The Kalman filter and its variants can only model Gaus-
sian distributions, so an approach is needed to deal with the arbitrary distribu-
tions. However, particle filters can deal with the arbitrary distributions by using 
multiple samples. This method deems that the more particles fall into a region, 
the higher the probability of the region is [14]. The posterior probability is 
represented by a set of particles which have been weighted. The particle fil-
ters-based SLAM [7], models the vehicle/rover’s path by sampling and compu-
ting the landmarks given the path. Graph-based SLAM [9] considers that a 
graph is composed of poses and constraints between poses. By constructing a 
graph to minimize the sum of the squared error, in fact, it is a method of opti-
mization that uses linear methods to solve the non-linear problem. In this re-
search, the EKF has been used following the approach of [1] [2] [3] [4] [5]; visu-
al-based and visual-depth SLAM systems are presented. Based on the sensors 
setup and data processing the visual-based SLAM can be either single sensor, 
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(monocular) [10]-[17], or two visual sensors separated by a baseline (stereo), or 
more than two sensor with a setup with a scene overlap that eventually covers 
same target to complete the views and eliminate the blind spots [18] [19] [20] [21]. 
In this research, both monocular and stereo systems have been used to provide a 
visual-based SLAM solution. In addition, a visual-depth based SLAM is presented 
using stereo depth sensors along with a visual monocular sensor [7] [8] [9]. 

In this paper, SLAM system is introduced using monocular, and Stereo visual 
sensors. SLAM solutions are implemented in both indoor and outdoor using ex-
tended Kalman filter. The SLAM samples have been taken in different modes 
such as a straight line that enable us to measure the drift in addition to the loop 
sample that is used to test the closure and its corresponding trajectory deforma-
tion. In order to verify the trajectory scale, a baseline method has been used. In 
addition, a ground truth has been captured for all the samples indoor and out-
door to measure the biases and drifts caused by the SLAM solution. Both mo-
nocular and stereo SLAM data have been captured with the same visual sensors 
which in the stereo situation had a baseline of 20.00 cm. It has been shown that, 
the stereo SLAM localization results are 75% higher precision than the monocu-
lar SLAM solution. In addition, the indoor results of the monocular SLAM are 
more precise than the outdoor. However, the outdoor results of the stereo SLAM 
are more precise than the indoor results by 30%, which a result of the small ste-
reo baseline cameras. In the vertical SLAM localization component, the stereo 
SLAM generally shows 60% higher precision than the monocular slam results. 

2. Slam Related Work 

The state-based formulation of the SLAM includes the computation of a joint 
state made up of a vehicle/rover pose and the locations of captured landmarks. 
This problem formulation has a unique structure; the process model only affects 
vehicle/rover pose states while the observation model only makes reference to a 
single vehicle-landmark pair. A large range of strategies have been developed to 
take advantage of this special structure in limiting the computational complexity 
of the SLAM algorithm. There are two categorize of the SLAM techniques that 
aims for improving the computational efficiency namely; optimal or conserva-
tive solutions. The optimal solutions target to reduce required computation and 
resulting in computations and covariances for the full-form SLAM algorithm. 
While the conservative algorithms result in estimates that have larger uncertain-
ty or covariance than the optimal result. Usually, conservative algorithms are 
less accurate but more computational efficiency, therefore, of value in real im-
plementations [19] [20] [21] [22] [23]. 

2.1. Visual-Based Slam 

The accurate reconstruction of the captured scene from sets of ordered images 
has a long history in aerial [24] and close-range photogrammetry [25]. Usually, 
the object and reconstruction setup are well defined and the scene observations 
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using high-resolution cameras are well planed. Thus, the connectivity between 
multiple camera positions is known or easily established and off-line bundle ad-
justment (BA) over the cameras and scene structure is performed yielding accu-
rate results. In addition, initial values for the exterior and interior camera orien-
tations are mostly available from external sensors and accurate calibration. 

2.2. Monocular Slam 

In Monocular SLAM [26] [27] [28] [29] approach every frame is processed 
through the filter to mutually estimate the map landmarks locations and the 
camera pose. This approach has drawbacks of less computation efficiency in 
processing consecutive frames with any new information and the accumulation 
of linearization errors. While the keyframe-based approaches [30] [31] estimate 
the map using selected frames (keyframes) allowing performing accurate BA op-
timizations, as mapping is not tied to framerate. Strasdat et al. demonstrated that 
keyframe-based techniques are more accurate than filtering for the same com-
putational efficiency [32]. The parallel tracking and mapping (PTAM) by Klein 
and Murray [31] introduce the idea of splitting camera tracking and mapping in 
parallel threads. The PTAM demonstrated to be successful for real time aug-
mented reality applications in small environments [33]. The map points of 
PTAM correspond to Factored Solution to (FAST) SLAM corners matched by 
patch correlation. This makes the points only useful for tracking but not for 
place recognition. Also, PTAM does not detect large loops, and the re-localization 
is based on the correlation of low resolution of the keyframes, yielding a low in-
variance to viewpoint. Strasdat et al. [6] presented a large-scale monocular SLAM 
system with a front-end based on optical flow implemented on a GPU, followed 
by FAST feature matching and motion only BA, and a backend based on slid-
ing-window BA [34].  

2.3. Stereo Slam 

Paz et al. [5] was the early stereo SLAM solution based on EKF-SLAM that was 
able to operate in larger environments than other approaches at that time. Most 
importantly, it was the first stereo SLAM exploiting both close and far points 
using an inverse depth parametrization [6] for the latter. They empirically 
showed that points can be reliably triangulated if their depth is less than 40 times 
the stereo baseline. Most modern stereo SLAM systems are keyframe-based [7] 
and perform BA optimization in a local area to achieve capability. The work of 
Strasdat et al. [8] performs a joint optimization of BA (point-pose constraints) in 
an inner window of keyframes and pose-graph (pose-pose constraints) in an 
outer window. By limiting the size of these windows, the method achieves con-
stant time complexity, at the expense of not guaranteeing global consistency. 
The SLAM of Mei et al. [9] uses a relative representation of landmarks and poses 
and performs relative BA in an active area which can be constrained for constant 
time. This SLAM solution is able to close loops which allow expanding active 
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areas at both sides of a loop, but global consistency is not enforced. The recent 
SLAM by Pire et al. [10] performs local BA; however it lacks large loop closing. 
Similar to these approaches’ BA is performed in a local set of keyframes so that 
the complexity is independent of the map size and can be operated in large en-
vironments. When closing a loop, the system aligns first both sides, similar to 
the SLAM solution in [9], so that the tracking is able to continue localizing using 
the old map and then performs a pose-graph optimization that minimizes the 
drift accumulated in the loop, followed by full BA. The recent Stereo LSD-SLAM 
of Engel et al. [11] is a semi-dense direct approach that minimizes photometric 
error in image regions with high gradient. Not relying on features, the method is 
expected to be more robust to motion blur or poorly textured environments.  

3. Methodology 

At the time the vehicle/rover moving the SLAM build a map of the surrounding 
environment and at the same time use this map to estimate its location with re-
spect the landmarks. In SLAM both the trajectory of the vehicle/rover and the 
location of all landmarks are estimated without the need for any a priori know-
ledge of location. Figure 1 shows the SLAM process in which the rover is mov-
ing in a specific environment and capture a set of landmarks, which is used to 
estimate the rover’s location. 

Figure 1 shows thevehicle/rover measuring relative observations of some un-
known landmarks with the SLAM sensor setup. The state vector kx  describing 
the location and orientation of the vehicle/roverat time k, while the control vec-
tor ku  is applied at time k − 1 to move the vehicle/rover to a state kx  at time 
k. im  is a vector describing the location of the ith landmark which true location 
is presumed time invariant. ikz  is an observation measured from the ve-
hicle/rover of the location of the ith landmark at time k. When there are several 
landmark observations at the same time, the observation will be expressed as 

kz . The history of vehicle locations can be described as  
{ } { }0: 0 1 0: 1, , , ,k k k kX x x x X x−= =  and the history of control inputs is  
{ } { }0: 1 2 0: 1, , , ,k k k kU u u u U u−= = . In addition, the landmark location is  

{ }1 2, , , nm m m m=   and the set of landmark observations can described as 
{ } { }0: 1 2 0: 1, , , ,k k k kZ z z z Z z−= =  [29] [30] [31]. 

 

 
Figure 1. Arover moving in a specific environment using SLAM solution. 
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The Simultaneous Localisation and Mapping (SLAM) problem in probabilistic 
form demands that the probability distribution be calculated for all times k as 
( )0: 0: 0, | , ,k k kP x m Z U x . This probability distribution defines the joint posterior 

density of the landmark locations and vehicle/roverstate (at time k) given that 
the measured observations and control inputs including time k along with the 
initial state of the vehicle/rover. Basically, a recursive solution to the SLAM 
problem is required. Beginning with an estimate for the distribution  
( )1 0: 1 0: 1, | ,k k kP x m Z U− − −  at time k − 1, the joint posterior, following an observa-

tion kz , and control ku  is calculated. This calculation needs that a state transi-
tion model and an observation model are defined to describe the effect of the 
control input and observation respectively. The observation model defines the 
probability of taking an observation kz  when the vehicle/roverlocation and 
landmark locations are known. The motion model for the vehicle/rover can be 
formulated as a probability distribution on state transitions in the form 
( )1| ,k k kP x x u− . Therefore, the state transition is assumed to be a Markov 

process in which the next state kx  is independent of both the observations and 
the map, and depends only on the immediately proceeding state 1kx −  and the 
applied control ku  [30]. 

The SLAM algorithm is currently implemented in a standard two-step recur-
sive (sequential) prediction (time-update) as shown in Equation (1) and correc-
tion (measurement-update) form as shown in Equation (2) 

( )
( ) ( )

0: 1 0: 0

1 1 0: 1 0: 1 0 1

, | , ,

| , , | , , d
k k k

k k k k k k k

P x m Z U x

P x x u P x m Z U x x
−

− − − − −= ×∫
         (1) 

( ) ( ) ( )
( )

0: 1 0: 0
0: 0: 0

0: 1 0:

| , , | , ,
, | , ,

| , )
k k k k k

k k k
k k k

P z x m P x m Z U x
P x m Z U x

P z Z U
−

−

=      (2) 

Equations (1) and (2) describe a recursive procedure for calculating the joint 
posterior ( )0: 0: 0, | , ,k k kP x m Z U x  for the vehicle/roverstate kx  and map m at a 
time k depend on all observations 0:kZ  and all control inputs 0:kU  including 
time k. The recursion is a function of a vehicle/rovermodel ( )1| ,k k kP x x u−  and 
an observation model ( )| ,k kP z x m . In addition, the mapping problem could be 
formulated as calculating the conditional density ( )0: 0: 0:| , ,k k kP m X Z U . This 
assumes that the location of the vehicle/rover kx  is known at all different times, 
subject to known of initial location. Then, a map m is constructed by merging 
observations from different locations. On the other hand, the localisation prob-
lem may be defined as calculating the probability distribution  
( )0: 0:| , ,k k kP x Z U m . This assumes that the landmark locations are known with 

certainty and the objective is to calculate an estimate of vehicle/roverlocation 
relative to these landmarks [30] [31]. 

4. Extended Kalman Filter Slam (EKF-SLAM) 

In estimation theory, the extended Kalman filter (EKF) is the nonlinear version 
of the Kalman filter which linearizes about an estimate of the current mean and 
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covariance. The EKF-SLAM describe the vehicle/rover motion and observation 
model as shown in Equations (3) and (4) [28] [29]. 

( ) ( )1 1| , ,k k k k k k kP x x u x f x u w− −⇔ = +                (3) 

where f models vehicle kinematics and where kw  are additive, zero mean un-
correlated Gaussian motion disturbances with covariance kQ . 

( ) ( ) ( )1| , ,k k k k kP x x u z k h x m v− ⇔ = +                (4) 

where h describes the geometry of the observation and where kv  are additive, 
zero mean uncorrelated Gaussian observation errors with covariance kR . With 
these definitions the standard EKF method can be applied to compute the mean 
and covariance of the joint posterior distribution ( )0: 0: 0, | , ,k k kP x m Z U x  as 
shown in Equations (5) and (6) with time-update in Equations (7) and (8) [29]. 

|
0:

ˆ
|

ˆ
k k k

k
k

x x
E Z

m m
   

=   
  

                      (5) 

T

| 0:
|

ˆ ˆ 
|

ˆ ˆ
xx xm k k k k

k k kT
xm mm k kk k

P P x x x x
P E Z

P P m m m m

 − −    
 = =     − −      

        (6) 

( )| 1 1| 1ˆ ˆ ,k k k k kx f x u− − −=                       (7) 

T
, | 1 , 1| 1xx k k xx k k kP f P f Q− − −= ∇ ∇ +                  (8) 

where f∇  is the Jacobina matrix of f evaluated at the estimate 1| 1ˆk kx − − . As the 
landmark are stationary, there will be no need for the time update. In addition, 
Equations (12) and (13) describe the observation update model [29] [30] [31]. 

( ) ( )| | 1
| 1 1

1

ˆ ˆ
ˆ ˆ,

ˆ ˆ
k k k k

k k k k
k k

x x
W z k h x m

m m
−

− −
−

     = + −        
            (9) 

T
| | 1   k k k k k k kP P W S W−= −                     (10) 

where 
T

| 1  k k k kS hP h R−= ∇ ∇ +                     (11) 

T 1
| 1   k k k kW P h S −
−= ∇                       (12) 

where h∇  is the Jacobian of h evaluated at | 1ˆk kx −  and 1ˆ km − . 
The loop-closure, when a vehicle/roverreturns to re-observe landmarks after a 

large traverse, is especially difficult. The association problem is compounded in 
environments where landmarks are not simple points and indeed look different 
from different viewpoints. EKF-SLAM employs linearized models of non-linear 
motion and observation models and so inherits many cautions. Non-linearity 
can be a significant problem in EKF-SLAM and leads to expected, and some-
times dramatic, inconsistency in solutions [24]. Convergence and consistency 
can only be guaranteed in the linear case [28]-[33]. 

5. Results and Discussions 

All SLAM systems introduced in this paper have been implemented in different 
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environment from indoor to outdoor. Several samples have been taken in dif-
ferent trajectory shape such as a straight line that enable us to measure the drift 
in addition to the loop sample that we use it to test the closure and its corres-
ponding trajectory deformation. A ground reference has been captured for all 
the samples to measure the biases and drift caused by the SLAM solution. Figure 
2 shows the results of the monocular loop SLAM solution in indoor environ-
ment. The trajectory and the surrounding captured environment for the indoor 
loop with closure and without closure are shown in Figure 2. 

The results shown in Figure 2 show that the monocular SLAM solution has a 
drift that cause non closure loop as shown in Figure 1(a). The indoor loop mo-
nocular SLAM trajectories without closure and with closure are compared to the 
indoor loop ground truth in Figure 3. The ground truth is very close to a rec-
tangular shape while the Monocular SLAM trajectory suffered from different 
drifts, mostly because the turns, which results in a skewed open rectangular 
shape (Figure 3(c)). However, this drift has been adjusted by applying the loop 
closure algorithm constraints. Loop closures were solved with a pose graph op-
timization with similarity constraints, that was able to correct the scale drift ap-
pearing in monocular SLAM. However, the loop closure constraints location es-
timation causes an additional deformation for the loop with respect to the 
ground truth, as shown in Figure 3(b). In order to adjust the monocular scale 
drift, a well-known object has been used to be used as reference to adjust the 
scale along the trajectory. This procedure produces an initialization drift because 
the camera will be targeted to the ground before the vehicle/rover start to move 
along the trajectory. After few seconds the camera will be rotated to face the 
moving direction of the trajectory. In order to produce a precise mapping solu-
tion, this procedure requires a post processing correction. 
 

    
(a)                                       (b) 

Figure 2. Visual monocular SLAM solution for indoor environment with loop closure (a) 
and without loop closure (b). 

https://doi.org/10.4236/pos.2019.104004


A. Afifi, B. Woo 
 

 

DOI: 10.4236/pos.2019.104004 59 Positioning 
 

       
(a)                     (b)                      (c) 

Figure 3. A comparison between the indoor loop trajectory reference (a) and the visual 
monocular SLAM trajectory with loop closure (b) and without loop closure (c). 
 

The second sample for the indoor monocular SLAM solution was a straight 
line. Figure 4 shows the results for the indoor monocular straight-line SLAM 
trajectory and surrounding environment (Figure 4(b) and Figure 4(c)) and the 
ground truth (Figure 4(a)) which extends to 118.90 m. 

Figure 4 shows that the monocular straight-line SLAM suffered from a drift 
of 3.36% of the total line length. The results of the monocular SLAM show a 
low-density mapping for the surrounding environment. Similar to monocular 
SLAM, stereo SLAM samples have been captured in both loop and line scena-
rios. The results of the stereo loop SLAM trajectory and surrounding environ-
ment for the indoor loop with closure and without closure are shown in Figure 
5(a) and Figure 5(b), respectively. In case of stereo SLAM without loop closure, 
the loop SLAM solution didn’t close itself due to accumulated drift the however 
this drift is less than the monocular SLAM situation. Figure 5(a) shows the ste-
reo SLAM loop with closure constraints.  

Figure 6 shows a comparison between the indoor loop stereo SLAM trajecto-
ries without closure and with closure with the indoor loop ground truth. The 
drift caused by the stereo SLAM solution is less than the drift monocular SLAM 
as shown in Figure 6. In addition, the loop closure deformation effect is less 
than the deformation generated by the monocular SLAM as the stereo loop has 
rectangular shape after the closure and close to the ground truth, as shown in 
Figure 6.  

Figure 7 shows the results of the stereo indoor SLAM straight line trajectory 
with the surrounding environment and the ground truth. It is shown that the 
drift of the stereo trajectory has a drift of 1.85% of the total line length. The re-
sults of the stereo SLAM solution show a higher-density mapping for the sur-
rounding environment than the monocular SLAM.  

On the other hand, outdoor SLAM solutions have been introduced including 
monocular, and stereo visual sensors. Figure 8 shows the results for the mono-
cular SLAM solution for the outdoor environment with and without loop clo-
sure. Due to the wide field of view, there are more captured feature than the  
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(a)          (b)             (c) 

Figure 4. A comparison between the indoor straight-line trajectory ground truth (a) and 
the visual monocular line SLAM trajectory (b) and the captured trajectory with the sur-
rounding environment (c). 
 

    
(a)                             (b) 

Figure 5. Visual Stereo SLAM solution for indoor environment with loop closure (a) and 
without loop closure (b). 
 

       
(a)                     (b)                      (c) 

Figure 6. A comparison between the indoor loop trajectory reference (a) and the visual 
stereo SLAM trajectory with loop closure (b) and without loop closure (c). 
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(a)           (b)               (c) 

Figure 7. A comparison between the indoor straight-line trajectory reference (a) and the 
visual stereo line SLAM trajectory (b) and the captured trajectory with the surrounding 
environment (c). 
 

   
(a)                                      (b) 

Figure 8. Visual monocular SLAM solution for outdoor environment with loop closure 
(a) and without loop closure (b). 
 
indoor environments. However, both indoor and outdoor have the same map 
density. Similar to the indoor monocular SLAM solution, the outdoor solution 
suffers from drifts that cause open loop. However, applying the loop closure 
constraints results in a closed loop with less deformation than the indoor loop. 
There is less loop deformation, which may be due to the wide field of view with 
more well distributed captured features. Figure 9 shows the Stereo SLAM tra-
jectories for outdoor environment with loop closure (Figure 9(b)) and without 
loop closure (Figure 9(c)) compared to the outdoor ground truth loop (Figure 
9(a)). The outdoor SLAM straight line is captured with several curves along the 
line to test the drift. 

Figure 10 shows the results of the monocular SLAM line trajectory and sur-
rounding environment compared to the ground truth. It is shown that the mo-
nocular SLAM trajectory has a drift of 10% of the total line length. The outdoor 
drift of the line is higher than the indoor line as the outdoor includes curves. 
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(a)                         (b)                          (c) 

Figure 9. A comparison between the outdoor loop trajectory reference (a) and the visual 
monocular SLAM trajectory with loop closure (b) and without loop closure (c). 
 

       
(a)                   (b)                 (c) 

Figure 10. A comparison between the outdoor line trajectory reference (a) and the visual 
monocular line SLAM trajectory (b) and the captured trajectory with the surrounding 
environment (c). 
 

The outdoor stereo SLAM results are shown in Figure 11 including the tra-
jectory with and without loop closure and the surrounding environment. It is 
shown that the captured map has higher density than the indoor stereo SLAM 
map, due to the wider field of view.  

The stereo outdoor SLAM solution results are shown in Figure 12 including 
the trajectory with and without loop closure compared to the ground truth. The 
loop deformation caused by loop closure constraints in the outdoor stereo 
SLAM is less than the indoor stereo SLAM loop deformation.  

In addition, Figure 13 shows the outdoor results for the stereo line SLAM 
trajectory compared to the ground truth with the surrounding environment. The 
stereo line SLAM solution has a drift of 1.5% of the total line length.  

The horizontal root mean squares error (RMSE) of the SLAM trajectories for 
Monocular, and stereo solutions are shown in Figure 14. As shown in the re-
sults, the indoor results of the monocular SLAM are more precise than the out-
door. However, the outdoor results of the stereo SLAM are more precise than 
the indoor results by 30%, which a result of the small stereo baseline cameras. 
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(a)                                       (b) 

Figure 11. Visual Stereo SLAM solution for outdoor environment with loop closure (a) 
and without loop closure (b). 
 

   
(a)                        (b)                          (c) 

Figure 12. A comparison between the outdoor loop trajectory reference (a) and the visual 
stereo SLAM trajectory with loop closure (b) and without loop closure (c). 
 

       
(a)                     (b)                    (c) 

Figure 13. A comparison between the outdoor straight-line trajectory reference (a) and 
the visual stereo line SLAM trajectory (b). 
 

Figures 16-21 show the error in the vertical localization SLAM results with 
the angular rotation around an x axis, perpendicular to the direction of move-
ment, as shown in Figure 15. 
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(a) 

 
(b) 

 
(c) 

Figure 14. The horizontal localization RMSE for the indoor and outdoor SLAM trajecto-
ry using Monocular, and Stereo of straight line (a), loop without closure (b), and loop 
with closure (c). 
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Figure 15. SLAM orientation axis and the direction of movement. 

 

 
(a) 

 
(b) 

Figure 16. The vertical position error for the monocular line SLAM trajectory (a), and 
the angular rotation around x-axis (b). 
 

Figure 16 and Figure 17 show the vertical monocular localization error in in 
both the straight line and loop trajectories SLAM with the angular rotation 
around x-axis. It is shown that the angular rotation has a jump in the beginning 
which related to the monocular SLAM setup initialization which the camera was 
initially facing downwards towards the ground before being rotated to face the 
direction of movement. However, if we ignore the first few epochs of the trajec-
tory the angular rotation will be corrected. On the other hand, the error in the 
vertical direction of the line increases in a linear pattern, which reach to 3.8% of 
the total trajectory length. In the loop SLAM results, the vertical error is less 
than the line as the trajectory turns the rotation angle changes its direction. 
However, applying the loop closure constraints doesn’t improve the overall pre-
cision. 

https://doi.org/10.4236/pos.2019.104004


A. Afifi, B. Woo 
 

 

DOI: 10.4236/pos.2019.104004 66 Positioning 
 

 
(a) 

 
(b) 

Figure 17. The vertical position error for the monocular loop SLAM trajectory (a), and 
the angular rotation around x-axis (b). 
 

 
(a) 

 
(b) 

Figure 18. The vertical position error for the stereo line SLAM trajectory (a), and the 
angular rotation around x-axis (b). 
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(a) 

 
(b) 

Figure 19. The vertical position error for the stereo loop SLAM trajectory (a), and the 
angular rotation around x-axis (b). 
 

 
(a) 

 
(b) 

Figure 20. The RMSE for the vertical SLAM trajectory using monocular, and stereo of 
straight line (a), and the angular rotation around x-axis (b). 
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(a) 

 
(b) 

 
(c) 

Figure 21. The RMSE positioning for the horizontal and vertical SLAM trajectory using 
monocular, and stereo of straight line (a), loop without closure (b), and loop with closure. 
 

The vertical SLAM localization results are shown in Figure 18 and Figure 19 
for both line and loop trajectories, respectively. It is shown that the error in the 
stereo vertical localization line SLAM is 1.4% of the total trajectory which is al-
most 50% less than the monocular SLAM line results. The angular rotation in 
the stereo SLAM loop suffers from a jump in the beginning similar to the mo-
nocular SLAM system as both system’s setup initialization causes this rotation. 
On the other hand, the error in the vertical loop SLAM localization is less than 
the results of the monocular SLAM results. 

Figure 20 shows the RMSE for the vertical localization component of mono-
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cular, and stereo SLAM solutions for the line, loop closure, and loop without 
closure. It is shown that loop closure of the stereo SLAM solutions has the high-
er vertical localization precision.  

A comparison between RMSE of the horizontal and vertical localization 
components are shown in Figure 21. Generally, the horizontal localization re-
sults are more precise than the vertical results, as shown in Figure 21. 

6. Conclusion 

In this paper, SLAM system is introduced using monocular and stereo visual 
sensors. SLAM solutions are implemented in both indoor and outdoor. The 
SLAM samples have been taken in different modes such as a straight line that 
enable us to measure the drift in addition to the loop sample that is used to test 
the closure and its corresponding trajectory deformation. In order to verify the 
trajectory scale, a baseline method has been used. In addition, a ground truth has 
been captured for all the samples indoor and outdoor to measure the biases and 
drifts caused by the SLAM solution. Both monocular and stereo SLAM data have 
been captured with the same visual sensors which in the stereo situation had a 
baseline of 20.00 cm. It has been shown that, the stereo SLAM localization re-
sults are 75% higher precision than the monocular SLAM solution. In addition, 
the indoor results of the monocular SLAM are more precise than the outdoor. 
However, the outdoor results of the stereo SLAM are more precise than the in-
door results by 30%, which is a result of the small stereo baseline cameras. In the 
vertical SLAM localization component, the stereo SLAM generally shows 60% 
higher precision than the monocular SLAM results. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Mur-Artal, R. and Tardos, J.D. (2014) ORB-SLAM: Tracking and Mapping Recog-

nizable Features. Proceedings of Robotics: Science and Systems, Berkeley, USA. 

[2] Mur-Artal, R. and Tardos, J.D. (2015) Probabilistic Semi-Dense Mapping from 
Highly Accurate Feature-Based Monocular SLAM. Proceedings of Robotics: Science 
and Systems, Rome, Italy. https://doi.org/10.15607/RSS.2015.XI.041 

[3] Mur-Artal, R. and Tardos, J.D. (2016) ORB-SLAM2: An Open-Source SLAM Sys-
tem for Monocular, Stereo and RGB-D Cameras. IEEE Transactions on Robotics, 
33, 1255-1262. https://doi.org/10.1109/TRO.2017.2705103 

[4] Mur-Artal, R., Montiel, J.M.M. and Tardos, J.D. (2015) ORB-SLAM: A Versatile 
and Accurate Monocular SLAM System. IEEE Transactions on Robotics, 31, 
1147-1163. https://doi.org/10.1109/TRO.2015.2463671 

[5] Kerl, C., Sturm, J. and Cremers, D. (2013) Dense Visual SLAM for RGB-D Cameras. 
Conference Intelligent Robots and Systems, November 2013, 2100-2106.  
https://doi.org/10.1109/IROS.2013.6696650 

[6] Fioraio, N. and Konolige, K. (2011) Real Time Visual and Point Cloud Slam. Pro-

https://doi.org/10.4236/pos.2019.104004
https://doi.org/10.15607/RSS.2015.XI.041
https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1109/IROS.2013.6696650


A. Afifi, B. Woo 
 

 

DOI: 10.4236/pos.2019.104004 70 Positioning 
 

ceedings of the RGB-D Workshop on Advanced Reasoning with Depth Cameras at 
Robotics: Science and Systems, Los Angeles, USA. 

[7] Hess, W., Kohler, D., Rapp, H. and Andor, D. (2016) Real-Time Loop Closure in 2D 
LIDAR SLAM. IEEE International Conference on Robotics and Automation, Mon-
treal, 20-24 May 2019, 1271-1278. https://doi.org/10.1109/ICRA.2016.7487258 

[8] Zhang, J. and Singh, S. (2014) LOAM: Lidar Odometry and Mapping in Real-Time. 
Robotics: Science and Systems Conference, Berkeley, July 2014.  
https://doi.org/10.15607/RSS.2014.X.007 

[9] Berkeley Localization and Mapping. https://github.com/erik-nelson/blam  

[10] Andújar, D., Escolà, A., Rosell-Polo, J.R., Fernández-Quintanilla, C. and Dorado, J. 
(2013) Potential of a Terrestrial LiDAR-Based System to Characterise Weed Vegeta-
tion in Maize Crops. Computers and Electronics in Agriculture, 92, 11-15.  
https://doi.org/10.1016/j.compag.2012.12.012 

[11] Ehlert, D. and Heisig, M. (2013) Sources of Angle-Dependent Errors in Terrestrial 
Laser Scanner-Based Crop Stand Measurement. Computers and Electronics in Agri-
culture, 93, 10-16. https://doi.org/10.1016/j.compag.2013.01.002 

[12] Hosoi, F. and Omasa, K. (2009) Estimating Vertical Plant Area Density Profile and 
Growth Parameters of a Wheat Canopy at Different Growth Stages Using Three 
Dimensional Portable Lidar Imaging. ISPRS Journal of Photogrammetry and Re-
mote Sensing, 64, 151-158. https://doi.org/10.1016/j.isprsjprs.2008.09.003 

[13] Hosoi, F. and Omasa, K. (2009) Estimation of Vertical Plant Area Density Profiles 
in a Rice Canopy at Different Growth Stages by High-Resolution Portable Scanning 
LIDAR with a Lightweight Mirror. ISPRS Journal of Photogrammetry and Remote 
Sensing, 74, 11-19. https://doi.org/10.1016/j.isprsjprs.2012.08.001  

[14] Osterman, A., Godeša, T., Hocevar, M., Širok, B. and Stopar, M. (2013) Real-Time 
Positioning Algorithm for Variable-Geometry Air-Assisted Orchard Sprayer. Com-
puters and Electronics in Agriculture, 98, 175-182.  
https://doi.org/10.1016/j.compag.2013.08.013 

[15] Rosell-Polo, J.R., Llorens, J., Sanz-Cortiella, R., Arnó-Satorra, J., Ribes-Dasi, M., 
Masip, J., Escolà, A., Camp, F., Solanelles-Batlle, F., Gràcia, F., Gil, E., Val, L., Pla-
nas-Demartí, S. and Palacin-Roca, J. (2009) Obtaining the Three-Dimensional 
Structure of Tree Orchards from Remote 2D Terrestrial LIDAR Scanning. Agricul-
tural and Forest Meteorology, 149, 1505-1515.  
https://doi.org/10.1016/j.agrformet.2009.04.008 

[16] Saeys, W., Lenaerts, B., Craessaerts, G. and De Baerdemaeker, J. (2009) Estimation 
of the Crop Density of Small Grains Using LiDAR Sensors. Biosystems Engineering, 
102, 22-30. https://doi.org/10.1016/j.biosystemseng.2008.10.003 

[17] Weiss, U. and Biber, P. (2011) Plant Detection and Mapping for Agricultural Ro-
bots Using a 3D LIDAR Sensor. Robotics and Autonomous Systems, 59, 265-273.  
https://doi.org/10.1016/j.robot.2011.02.011 

[18] Côté, J.F., Widlowski, J.L., Fournier, R.A. and Verstraete, M.M. (2009) The Struc-
tural and Radiative Consistency of Three-Dimensional Tree Reconstructions from 
Terrestrial Lidar. Remote Sensing of Environment, 113, 1067-1081.  
https://doi.org/10.1016/j.rse.2009.01.017 

[19] Keightley, K.E. and Bawden, G.W. (2010) 3D Volumetric Modeling of Grapevine 
Biomass Using Tripod LiDAR. Computers and Electronics in Agriculture, 74, 
305-312. https://doi.org/10.1016/j.compag.2010.09.005 

[20] Rosell-Polo, J.R., Sanz-Cortiella, R., Llorens, J., Arnó-Satorra, J., Escolà, A., 
Ribes-Dasi, M., Masip, J., Camp, F., Gràcia, F., Solanelles-Batlle, F., Pallejà-Cabré, 

https://doi.org/10.4236/pos.2019.104004
https://doi.org/10.1109/ICRA.2016.7487258
https://doi.org/10.15607/RSS.2014.X.007
https://github.com/erik-nelson/blam
https://doi.org/10.1016/j.compag.2012.12.012
https://doi.org/10.1016/j.compag.2013.01.002
https://doi.org/10.1016/j.isprsjprs.2008.09.003
https://doi.org/10.1016/j.isprsjprs.2012.08.001
https://doi.org/10.1016/j.compag.2013.08.013
https://doi.org/10.1016/j.agrformet.2009.04.008
https://doi.org/10.1016/j.biosystemseng.2008.10.003
https://doi.org/10.1016/j.robot.2011.02.011
https://doi.org/10.1016/j.rse.2009.01.017
https://doi.org/10.1016/j.compag.2010.09.005


A. Afifi, B. Woo 
 

 

DOI: 10.4236/pos.2019.104004 71 Positioning 
 

T., Val, L., Planas-Demartí, S., Gil, E. and Palacin-Roca, J. (2009) A Trac-
tor-Mounted Scanning LIDAR for the Non-Destructive Measurement of Vegetative 
Volume and Surface Area of Tree-Row Plantations: A Comparison with Conven-
tional Destructive Measurements. Biosystems Engineering, 102, 128-134.  
https://doi.org/10.1016/j.biosystemseng.2008.10.009 

[21] Sanz-Cortiella, R., Rosell-Polo, J.R., Llorens, J., Gil, E. and Planas-Demartí, S. (2013) 
Relationship between Tree Row LIDAR-Volume and Leaf Area Density for Fruit 
Orchards and Vineyards Obtained with a LIDAR 3D Dynamic Measurement Sys-
tem. Agricultural and Forest Meteorology, 171-172, 153-162.  
https://doi.org/10.1016/j.agrformet.2012.11.013 

[22] Durrant-Whyte, H. and Bailey, T. (2006) Simultaneous Localization and Mapping: 
Part I. IEEE Robotics & Automation Magazine, 13, 99-110.  
https://doi.org/10.1109/MRA.2006.1638022 

[23] Bailey, T. and Durrant-Whyte, H. (2006) Simultaneous Localization and Mapping 
(SLAM): Part II. IEEE Robotics &Automation Magazine, 13, 108-117.  
https://doi.org/10.1109/MRA.2006.1678144 

[24] Kneip, L., Siegwart, R. and Pollefeys, M. (2012) Finding the Exact Rotation between 
Two Images Independently of the Translation. Proceedings of the European Confe-
rence on Computer Vision, Florence, October 2012, 696-709.  
https://doi.org/10.1007/978-3-642-33783-3_50 

[25] Luhmann, T., Robson, S., Kyle, S. and Harley, I. (2006) Close Range Photogramme-
try: Principles, Methods and Applications. Whittles, Dunbeath, 528. 

[26] Davison, A.J., Reid, I.D., Molton, N.D. and Stasse, O. (2007) MonoSLAM: Real-Time 
Single Camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 29, 1052-1067. https://doi.org/10.1109/TPAMI.2007.1049 

[27] Civera, J., Davison, A.J. and Montiel, J.M.M. (2008) Inverse Depth Parametrization 
for Monocular SLAM. IEEE Transactions on Robotics, 24, 932-945.  
https://doi.org/10.1109/TRO.2008.2003276 

[28] Chiuso, A., Favaro, P., Jin, H. and Soatto, S. (2002) Structure from Motion Causally 
Integrated over Time. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 24, 523-535. https://doi.org/10.1109/34.993559 

[29] Eade, E. and Drummond, T. (2006) Scalable Monocular SLAM. IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition, Vol. 1, New York, 
June 2006, 469. 

[30] Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F. and Sayd, P. (2006) Real 
Time Localization and 3d Reconstruction. IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition, Vol. 1, 363-370.  
https://doi.org/10.1109/CVPR.2006.236 

[31] Klein, G. and Murray, D. (2007) Parallel Tracking and Mapping for Small AR 
Workspaces. IEEE and ACM International Symposium on Mixed and Augmented 
Reality, Nara, November 2007, 225-234.  
https://doi.org/10.1109/ISMAR.2007.4538852 

[32] Strasdat, H., Montiel, J.M.M. and Davison, A.J. (2012) Visual SLAM: Whyfilter? 
Image and Vision Computing, 30, 65-77.  
https://doi.org/10.1016/j.imavis.2012.02.009 

[33] Klein, G. and Murray, D. (2008) Improving the Agility of Keyframe-Based SLAM. 
European Conference on Computer Vision, Marseille, October 2008, 802-815.  
https://doi.org/10.1007/978-3-540-88688-4_59 

https://doi.org/10.4236/pos.2019.104004
https://doi.org/10.1016/j.biosystemseng.2008.10.009
https://doi.org/10.1016/j.agrformet.2012.11.013
https://doi.org/10.1109/MRA.2006.1638022
https://doi.org/10.1109/MRA.2006.1678144
https://doi.org/10.1007/978-3-642-33783-3_50
https://doi.org/10.1109/TPAMI.2007.1049
https://doi.org/10.1109/TRO.2008.2003276
https://doi.org/10.1109/34.993559
https://doi.org/10.1109/CVPR.2006.236
https://doi.org/10.1109/ISMAR.2007.4538852
https://doi.org/10.1016/j.imavis.2012.02.009
https://doi.org/10.1007/978-3-540-88688-4_59


A. Afifi, B. Woo 
 

 

DOI: 10.4236/pos.2019.104004 72 Positioning 
 

[34] Portugal, D., Araújo, A. and Couceiro, M.S. (2019) A Guide for 3D Mapping with 
Low-Cost Sensors Using ROS. In: Koubaa, A., Ed., Robot Operating System (ROS), 
Springer, Berlin, 3-23. https://doi.org/10.1007/978-3-030-20190-6_1  

 
 

https://doi.org/10.4236/pos.2019.104004
https://doi.org/10.1007/978-3-030-20190-6_1

	Simultaneous Localization and Mapping Solutions Using Monocular and Stereo Visual Sensors with Baseline Scaling System
	Abstract
	Keywords
	1. Introduction
	2. Slam Related Work
	2.1. Visual-Based Slam
	2.2. Monocular Slam
	2.3. Stereo Slam

	3. Methodology
	4. Extended Kalman Filter Slam (EKF-SLAM)
	5. Results and Discussions
	6. Conclusion
	Conflicts of Interest
	References

