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Abstract 
A vibrational statement, method and algorithm to assess the damping capac-
ity of structurally inhomogeneous viscoelastic mechanical systems, consisting 
of a package of rectangular plates and shells with point relations and concen-
trated masses at different rheological properties of deformable elements, are 
proposed in the paper. To describe rheological properties of the material, the 
linear hereditary Boltzmann-Volter theory was used. To assess the damping 
capacity of the system, the problem in question in each case was reduced to 
solving the proper problems of algebraic equations with complex parameters 
solved by the Muller method. The accuracy of the methods was demonstrated 
by comparing the calculated results with known published data and a numer-
ical experiment. Complex natural frequency of the system was used to assess 
the damping capacity of inhomogeneous viscoelastic systems. Various eigen-
value problems have been solved for structurally inhomogeneous mechanical 
systems consisting of a package of plate and shell systems with concentrated 
masses and shock absorbers. A number of new mechanical effects have been 
discovered, related to the manifestation of the damping capacity of mechani-
cal systems under consideration. 
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1. Introduction 

Currently, many technical structures are widely used shell and plate structures. 
Thin-walled pipes (shells), plates and panels in real conditions, as a rule, interact 
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with other structures and bodies, rely on point rigid and (or) elastic, articulated 
and (or) pinched supports, have point-attached masses. Boundary conditions 
often differ from homogeneous. If under static loads these features cause a local 
redistribution of stress and strain fields, then in dynamic problems point con-
nections significantly affect all the dynamic characteristics of a plate or 
shell—the spectrum of natural frequencies, the forms of natural vibrations, re-
sonant frequencies and amplitudes, etc., for example: 

Leissa [1] [2] developed exact solutions for problems with free vibrational vi-
brations of rectangular plates. 

Boay [3] analyzed the natural frequencies of plates with and without concen-
trated masses using the Rayleigh energy method. 

Avalos et al. [4] dealt with solving vibration problems using a simple mounted 
concentrated mass using the well-known normal mode. 

Xiang et al. [5] used the Ritz method in combination with the variation me-
thod to solve the problem of vibration of rectangular plates, which rely on elastic 
edge supports. 

Laura and Grossi [6] [7] calculated the fundamental frequency coefficient for 
a rectangular plate with edges elastically held against both displacements and 
rotations using polynomial coordinates and the functions of the Rayleigh-Ritz 
method. 

Wu and Luo [8] solved the problem of eigenfrequencies and corresponding 
mode shapes of a uniform rectangular plane of a plate carrying any number of 
point masses using analytical and combined numerical-analytical methods. 

Nicholson and Bergman [9] used the Green’s function in describing natural 
modes for damping oscillatory systems. Gorman [10] solved the problem of free 
vibrations of deformable systems during shear of plates based on homogeneous 
elastic substrates using the modified Galerkin method. This work is devoted to 
the application of the differential quadrature method to the vibration of plates 
resting on elastic bases and bearing any number of spring-loaded masses. 

The design of submarine tunnels is inevitably characterized by the presence of 
attached masses due to structural, strength or operational necessity [11] [12] 
[13]. Such a system “Shell-mass” in operating conditions is subjected to intense 
dynamic, in particular, periodic loads, which requires increased accuracy of cal-
culations [14]. 

Rod systems have a high degree of vibration isolation. E. Skudrzyk [15] con-
sidered vibration isolation of a structure consisting of masses and rods con-
nected in series. Lamellar mechanical systems with point supports and lumped 
masses are also dedicated to the work [16]-[24]. 

To generalize the methods of the above works for a finite number of mechan-
ical systems, consisting of dissipative plates and shells is an impossible task. 

The task is complicated if the plate or shell has hereditary properties, which 
has recently become increasingly relevant, especially in vibration protection sys-
tems [25] [26]. Free vibrations of a dissipative system, which are of a damped 
nature, were studied in [27] [28] [29] [30] [31]. The amplitudes of the vibration 
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modes decrease over time, therefore, such a process, strictly speaking, is not pe-
riodic. But the frequencies of the corresponding forms remain constant, and in 
this sense, the dissipative system can be investigated as a system with its own vi-
brations. 

Of great practical interest are the dynamic problems of dissipative mechanical 
systems, the elements of which have different dissipative properties. In the fu-
ture, such mechanical systems are called structurally inhomogeneous viscoelastic 
systems, the elements of which have different rheological properties. 

An analysis of the work on the natural vibrations of elastic plate mechanical 
systems shows that practically no methods have been developed for the dynamic 
calculation of plate mechanical systems whose elements have different rheologi-
cal properties (structurally inhomogeneous mechanical system). 

Structurally heterogeneous mechanical systems with a finite number of de-
grees of freedom are addressed by I. I. Safarov and et al. [32]. 

In the works of I. I. Safarov and et al. [33] [34] [35] еhe linear problem of the 
natural vibrations of structurally inhomogeneous viscoelastic systems is consi-
dered. The structural heterogeneity of the system is determined by the presence 
of viscoelastic elements with different dissipative properties in it (otherwise it is 
a structurally homogeneous viscoelastic system). 

In the scientific literature there are a large number of publications on the 
study of the dynamic characteristics of shells bearing attached masses [36] [37]. 
However, to date, theoretical results are not always consistent with numerical 
and experimental data [38]. For example, in [39] it was found that the decrease 
in the smaller of the split eigenfrequencies is stronger than that predicted by the 
traditional theory [40], but also depends on the geometric parameters of the 
shell [41]. This circumstance requires clarification of the traditional mathemati-
cal model, the development of an effective methodology and algorithm for stud-
ying the vibrations of plate and shell dissipative mechanical systems consisting 
of a package of rectangular plates having point bonds and concentrated masses 
with various rheological properties of deformable elements [42] [43] [44] [45]. 

For a package of plates (or shells) with point bonds and concentrated masses, 
the traditional approach is possible when the directions and coordinates of the 
active and passive loads must be known. 

This is a difficult task. Therefore, the traditional approach is applied for a sin-
gle plate with concentrated masses. For two or more plates with concentrated 
masses and point bonds, a variational approach is applied, which allows one to 
obtain a system of integro-differential equations satisfying boundary conditions 
and allows one to analyze the dissipative properties of the mechanical system as 
a whole. 

To date, the question of assessing the level of oscillations and dissipative 
properties of plates and plate systems of new structural elements of various ap-
paratuses is still insufficiently studied and requires extensive research. Therefore, 
this problem is relevant, requiring its gradual solution. 
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2. Vibrational Statement of the Problem of Natural  
Vibrations for Structurally Inhomogeneous Plate and 
Shell Mechanical Systems with Point Relations and  
Concentrated Masses 

Consider a mechanical system consisting of N isotropic viscoelastic bodies (a 
package of rectangular plates or cylindrical shells) occupying volume nV  and 
restricted by surfaces ( )1,2, ,n n NΩ =  . It is assumed that one linear size of 
each body is much smaller than the other two (the class of plates and shells). For 
each n, homogeneous boundary conditions bo

nΩ  are set on parts of the surface 
of the n-th body; kinematic and dynamic relations are imposed on the remaining 
free surface fr bo

n n nΩ = Ω Ω  at a finite number of points: point-like rigid, elastic 
and (or) viscoelastic hinge-type supports (rigid supports can be the fixed ones), 
rigid elastic and (or) viscoelastic shock absorbers connecting the bodies (at 

1N > ), concentrated masses ( )1,2, ,qnM q Q=  . The arrangement of relations 
and masses on surfaces fr

nΩ  is arbitrary. 
A special case of such a structurally inhomogeneous viscoelastic system is a 

system with elastic and viscoelastic elements. 
Then, the system under consideration is transformed into a non-conservative 

one with complex Eigen frequencies, i.e. R Iiω ω ω= + . The real part of the 
complex natural frequency Rω  means the natural frequency of the system, the 
fictitious part Iω  determines the damping rate of vibrations and has the 
meaning of the coefficient of damping. In the general case, the dissipative 
(damping) properties of the elements of such systems are different. 

Further, in the problems under consideration, it is required to determine the 
natural vibrations frequencies of the inhomogeneous viscoelastic system, and to 
estimate its damping capacity. 

In mathematical statement, a viscoelastic problem is as follows: let all points 
of the n-th body obey the harmonic law of vibrations, i.e. 

( ) ( )0, e , 1, , ; 1, ,n n i t
nj njU x t U x n N j Jω−= = =  ,         (1) 

where ( )0 n
njU x  is the j-th component of the displacement vector of the n-th 

body, J is the number of components of the displacements vector, 

( )1 2 3, ,n n n nx x x x=  is the radius vector of the point of the n-th body, 

R Iiω ω ω= +  is the sought-for complex frequency of the system, Rω  is the 
natural frequency and Iω  is the coefficient of damping ( 0Iω < ). Since each 
component of the displacements vector already has an index n, the latter is not 
used in what follows to designate the components of the radius vector. For rec-
tangular plates J = 1 

( ) ( )0 0
1 1 2, ,n nU x x W x y= , 

and for the shells of revolution J = 3 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0
1 1 2 2 1 2 3 1 2, , , , , , , ,n n n n n nU x x U x y U x x V x y U x x W x y= = = , 

where x, y are the coordinates. 
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Based on the principle of possible displacements, we equate the sum of the 
virtual work of all active forces, including inertial ones, on possible displace-
ments ( )0 ,njU x tδ , to zero 

0a mA A Aσδ δ δ+ + = ,                   (2) 

where , ,a mA A Aσδ δ δ  is a virtual work of the internal forces of the bodies of 
springs, and the forces of inertia, with account for concentrated masses. This 
work can be represented by the following relations: 

1
d

N
n n
mk mk

n
A Vσδ σ δε

=

= −∑ , 

1

1 1 1 1

n nL LN N
n n n n

a l l l l
n l n l

Aδ σ δε σ δε
′−

′ ′
′= = = =

= − −∑∑ ∑∑                (3) 

( ) ( )
1 1 1 1 1

, d ,
n

n

QN J N J
q

m n nj nj qn nj n nj
n j n q jV

A U x t U V M U x t Uδ ρ δ δ
= = = = =

 
= − − 

 
∑ ∑ ∑∑ ∑∫    

where ( )1 2 3, ,q q q q
n n n nx x x x=  are the coordinates, nL  is the number of deformable 

elements (springs or shock absorbers) between the n-th and (n + 1)-th bodies, 

nQ  is the number of concentrated masses on the n-th body, nL′  is the number 
of elastic (viscoelastic) supports on the n-th body, , , , , ,n n n n n n

mk mk l l l lσ ε σ ε σ ε′ ′  are 
the components of stress and strain tensors, respectively, of the n-th body, l-th 
spring (deformable element or shock absorber), and l′ -th elastic (viscoelastic) 
support. 

To describe viscoelastic properties of a body material with the linear heredita-
ry Boltzmann-Volter theory, physical relations for the n-th viscoelastic element 
of the system are defined as [14] 

( ) ( ) ( )2n n n
mk n mk n mkt t tσ λ δ µ ε= Θ +

                  (4) 

where ,n nλ µ   are the Volter integral operators, replaced below by one operator. 
The Poisson’s ratio nν  in the proposed statement of the problem is assumed 
constant. This means that for a structurally homogeneous viscoelastic system, 
the modes of natural vibrations are equal to the eigenvectors of corresponding 
elastic problem [21] [22]. Expressing ,n nλ µ   by known formulas through 

,n nE ν  , and considering that n n constν ν= = , instead of (4) we get 

( ) ( ) ( )
1 1 2

n n nn n
mk mk mk

n n

E
t t t

ν
σ δ ε

ν ν
 

= Θ + + − 



             (5) 

where nЕ  is the Volter operator of the form [42] [43]: 

( ) ( ) ( ) ( )0
0

d
t

n n EnE t E t R tϕ ϕ τ ϕ τ τ
 

= − − 
 

∫               (6) 

here 0nE  is the instantaneous modulus of elasticity, and EnR  is the kernel of 
relaxation. 

Given (1), the time function in Equality (6) is ( ) ( )expt i tϕ ω= −  at a slowly  

varying amplitude. Assuming the smallness of the integral term ( )
0

dR τ τ
∞

∫ ,  
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using the freeze-etch method [38], the relation (6) is substituted by the approx-
imate one: 

( ) ( ) ( ) ( ) ( )0 1 c s
n j n R n R nE t E i t E tϕ ω ω ϕ ϕ ≅ −Γ − Γ ≡ 
 ,           (7) 

where 

( ) ( ) ( ) ( ) ( ) ( )
0 0

cos d , sin dc s
n R n R n R n RR Rω τ ω τ τ ω τ ω τ τ

∞ ∞

Γ = Γ =∫ ∫ . 

This allows eliminating the integral terms and, ultimately, time from the vi-
brational equation. In symbolic form, it can be represented as 

( )( )0 2, 0njG U xδ ω = .                    (8) 

Write out a specific representation of the functional G, for example, for a 
package of rectangular plates with point relations: 

( )

( ) ( ) ( ) ( )

0 2

2 22 0 2 0 2 0 2 0 2 0

2 2 2 2
1 0 0

1 2 20 0 0
1

1 1 1 1

2

( , ),

1 2 1 d d
2

1 1, , ,
2 2

n n

n n

n

a bN
n n n n n

n n
n

L LN N
l l l l l l

n n n n n n n l n n n n
n l n l

G W x y

W W W W W
D x y

x yx y x y

D W x y W x y C W x y

ω

ν

ω

=

′−
′ ′

′+
′= = = =

  
     ∂ ∂ ∂ ∂ ∂  = − + − − −    ∂ ∂ ∂ ∂ ∂ ∂     

 − − − 

+

∑ ∫ ∫

∑∑ ∑∑

( ) ( ) ( )
22 20 0

1 1 10 0

d d , ,
2 2

n n na b QN N
q q

n n n qn n n n
n n q

h W x y M W x yωρ
= = =

+∑ ∑∑∫ ∫

 

where , ,n n nh a b  are the thickness and linear dimensions of the n-th plate, 
,q q

n nx y  are the coordinates of the n-th concentrated mass, ,l l
n nx y  are the coor-

dinates of the l-th spring (shock absorber), ,l l
n nx y′ ′  are the coordinates of the l′

-th elastic (viscoelastic) support. 
If the n-th plate, l-th spring, and l′ -th support are viscoelastic, then 
, ,n ln l nD C С ′  are represented by the following formulas: 

( ) ( ) ( ), ,n n n R ln ln ln R l n l n l n RD D f C C f С С fω ω ω′ ′ ′= = = , 

where ( ) ( ) ( )1R c R s Rf iω ω ω= −Γ − Γ  is a complex function whose numerical 
coefficients depend on the parameters of the relaxation kernel of corresponding 
viscoelastic elements, ( )( )3 212 1n n n nD E h ν= − , ,ln l nC C ′  is the generalized in-
stantaneous stiffness of the n-th plate, l-th shock absorber and l′ -th support, 
respectively. In the elastic case, , ,n n ln ln l n l nD D C C С С′ ′= = =  where , ,n ln l nD С С ′  
is the generalized stiffness of the n-th plate, l-th shock absorber and l′ -th sup-
port, respectively. A similar functional can be written for the system of the shells 
of revolution. The components of the displacements vector ( )0

njU x  are the 
sought for functions of vibrational Equation (8) and must satisfy the boundary 
conditions on the surface bo

nΩ , 

( )0 0, bo
n nj nL U x x= ∈Ω .                      (9) 

It remains to impose on the system rigid point relations that do not perform 
work under vibrations. The conditions of rigid hinge support of the n-th body in 
point supports Sn are written as 
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( ) ( )0 0 1, , ; 1, , ,s
nj n nU x s S j J= = =               (10) 

where s
nx  are the coordinates of the s-the support of the n-the body. 

If the part of supports is fixed, then the following conditions are added. 

( ) ( )
0

0, 1, , ; 1, ,
s

nj n
ns

n

U x
s S j Jα

α

∂
= = =

∂
             (11) 

where s
nα  is the direction of the unit vector along which the rigid fixing of the 

body is done at the point s
nx . 

In the program implementing the algorithm, condition (11) is considered only 
for the shells of revolution. The presence of rigid posts between the n-th and 
(n+1)-the bodies at 2N ≥  is taken into account by the relationships 

( ) ( ) ( )0 0
1, 0 1, , ; 1, , ,r r

nj n n j n nU x U x r R j J+− = = =         (12) 

where rx  is the coordinate of the r-the post, nR  is the number of posts be-
tween the n-the and (n + 1)-the bodies. At 1N =  conditions (12) are absent. 

Thus, restrictions of the type (10)-(12) are imposed on the displacement vec-
tor. The imposition on the system of point relations is considered using the La-
grange multipliers method. Then the vibrational Equation (8) is rewritten as 

( )( ) ( ) ( )

( ) ( )

0
0 2 0

1 1 1 1 1 1

1
0 0

1,
1 1 1

,

0,

n n

n

sS SN J N J nj ns s s
nj nj nj n nj s

n s j n s j n

RN J
r r r
nj nj n n j n

n r j

U x
G U x U x k

U x U x

α

δ ω λ
α

µ

= = = = = =

−

+
= = =

 ∂ + +
∂

 + − = 

∑∑∑ ∑∑∑

∑∑∑

     (13) 

where , ,s s s
nj nj njkλ µ  are the Lagrange multipliers. It is necessary to find the spec-

trum of complex natural frequencies, k k k
R Iiω ω ω= +  where k

Rω  are the 
frequencies, and k

Iω  are the coefficients of damping of natural vibrations. 

3. Algorithm for the Implementation of the Vibrational  
Method to Solve Viscoelastic Problem of Natural  
Vibrations 

Approximate solution of vibrational Equation (13) is sought using an expansion 
in approximating forms composed of fundamental functions that satisfy the eq-
uation and the given geometric boundary conditions on fr

nΩ  surfaces of each 
body. It is assumed that functions ( )k

nj xΦ  for such bodies are known (for rec-
tangular plates and circular cylindrical shells this is a fundamental sequence of 
beam functions). Then the approximating forms can be constructed as a finite 
expansion in known functions [35] [36]: 

( ) ( )0

1

K
k k

nj nj nj
k

U x xγ
=

= Φ∑ ,                   (14) 

where k
njγ  is the sought for complex coefficient. 

Preliminary ( )k
nj xΦ  can be normalized. The sum (14) automatically satisfies 

the boundary conditions on fr
nΩ  by virtue of terms choice. Varying Equation 

(13) on the generalized coordinates , , ,s s s s
nj nj nj njkλ µ γ , a homogeneous system of 

linear equations is obtained. Dimension of this systems is J N J N′ ′⋅ × ⋅ , where; 
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( )
1

N

n n n
n

N S S R N Kα

=

′ = + + + ⋅∑ ; J is the number of components of the displace-

ments vector ( )0
njU x . Without specific calculations, we write this system in a 

matrix form: 

( ) ( ) ( )
1

2

1 1 1 1 1
0

n n nN L LN N
n n n

n R n ln R ln l n R l n
n n l n l

A f A f A f A Bω ω ω ω ξ
−

′ ′
′= = = = =

 
+ + + − = 

 
∑ ∑∑ ∑∑ , (15) 

where ξ  is a column vector of generalized coordinates; nN -the number of 
viscoelastic bodies of the system; B is a symmetric, degenerate matrix of the ge-
neralized masses of the system; , ,n n n

n ln l nA A A ′ -square matrices of dimension 
J N J N′ ′⋅ × ⋅  consisting of zeros, except for sub matrices of instantaneous 
stiffness of the n-the viscoelastic body, l-the shock absorber and l′ -the viscoe-
lastic support, respectively; A is a symmetric matrix (its sub matrix is A0 of di-
mension J K J K⋅ × ⋅ ); it presents a generalized total stiffness of elastic elements 
of the system, and the sub matrices T

H bA A=  take into account kinematic con-
ditions imposed on the system of rigid point relations. 

Structurally, the matrices A and B are similar to those described in [17] for 
elastic mechanical systems. The generalized stiffness and masses of the n-th elas-
tic element are calculated using the method given in [17], if the elements of the 
system are rectangular plates. If all viscoelastic elements of the system have the 
same rheological properties, then ( ) ( )1 2R Rf fω ω= =  so, the second, third 
and fourth terms in (15) are replaced by one matrix of total instantaneous stiff-
ness of all viscoelastic elements (in case of structurally homogeneous viscoelastic 
system). The degeneracy of the matrix B, as in the elastic problem [17], is due to 
the introduction of additional point relations (rigid supports and posts) into the 
system. By the method described in [17], we eliminate linearly dependent coor-
dinates and bring system (15) to the standard generalized eigenvalue problem. 
The converted matrices have the dimension N N′′ ′′× , where 

( )
1

2
N

n n n
n

N J N J S S Rα

=

′′ ′= ⋅ − + +∑ . Equating the system determinant to zero, we  

obtain the frequency equation, which, unlike the case of elastic problem [17], is a 
complex one, i.e. we obtain a complex problem on eigenvalues. The most effec-
tive way to solve such equations is the Muller method, used here. Without dis-
closing the frequency determinant, we calculate its value at each step for a fixed 
value of R Iiω ω ω= + . As mentioned above, the fictitious part Iω  of the com-
plex value R Iiω ω ω= +  determines the damping rate of vibrations. 

In engineering, an estimated logarithmic decrement of vibrations is assessed 
using Iω , and determined [23] as follows 

2 I

R

ω
δ

ω
π

= −  

4. Evaluation of the Practical Convergence of the Algorithm 
and the Reliability of Numerical Results on the Problems 
of Natural Vibrations of Dissipative Mechanical Systems 

In this section we will not consider the question of strict convergence of the me-
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thod from a mathematical point of view, since it is not important for the follow-
ing reasons. The energy approach used in the statement of the problem is essen-
tially the Ritz method, the convergence of which is proved, for example, in [25] 
[28]. Accounting with the help of Lagrange multipliers of point bonds superim-
posed on plates is also a well-known method for finding a conditional extre-
mum. Superimposed point relationships affect the rate of convergence, but not 
the convergence itself. To illustrate the convergence of the method, we compare 
the data available in the literature (theoretical and experimental) with the results 
of calculations by the described method that we obtained. 

In [25] [28], a relation was obtained that allows (in a first approximation) to 
calculate the first (main) frequency of a square elastic plate supported at the 
edges, with an attached mass M in the center: 

2

1 2 2

2 .
4
D

a h M a
ω

ρ
π

=
+

                     (16) 

Studies have shown that the first approximation (for supported on the edges 
of the plate) is quite close to the exact one. So, an increase in the number of 
members of fundamental functions to K = 16 “clarifies” the main frequency by 
only 1% - 2%; if the mass of the attached load is commensurate with the weight 
of the plate, the relative error is slightly larger (up to 6%) for K = 16. 

At the edges of the free square plate is supported by four symmetrical sup-
ports located diagonally. For such problems, to determine the fundamental nat-
ural frequency, a theoretical and experimental formula is given [25] 

1 2 ,D
ha

ωω
ρ

=                           (17) 

where is the frequency coefficient determined experimentally depending on the 
location of the supports on the diagonals. Consider the two extreme cas-
es—bearing on one support in the center and bearing in the corners (see Table 
1). Data analysis indicates satisfactory convergence of the method and the de-
pendence of the convergence rate on the number of supports is observed. The 
more point dependencies, the more the convergence rate worsens, i.e. the speed 
of convergence depends on the number of supports. The more point bonds are 
superimposed on the plate, at a fixed row length (14), the greater the error. In 
[28] for symmetric natural vibrations of a duralumin square plate (a = 13 cm, h 
= 0.193 cm) experimental results of the first frequency. 

A square plate with a free circuit, spaced from the corners by a distance of r = 
0.5 cm, is supported at four symmetric points: 

1 2 3 4246; 1290.3; 2815; 3840.ω ω ω ω′ ′ ′ ′= = = =  

When K = 25 in the formula (17), the calculated frequencies are as follows 
[44] [45]: 

1 2 3 4250.7; 1380.3; 2839.8; 4077.3.ω ω ω ω= = = =  

We reduce the initial problem to the following: a square plate is pivotally 
supported along the contour, one of its sides has discrete uniformly located  
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Table 1. The frequencies of the two extreme cases—bearing on the corners and bearing 
on one support in the center in comparison with the formula (16). 

К 6 9 16 25 

Leaning 
in the corners 

ϖ  10.9082 

Kϖ  13.8061 - 11.6074 11.5811 

1%δ  20.1833 - 6.9229 5.7265 

Leaning 
in the center 

ϖ  6.7806 

Kϖ  - 7.2712 7.2397 6.8214 

1%δ  - 7.212 6.7030 0.6573 

 
pinch points in the direction perpendicular to this side. We varied the number of 
fundamental functions of the sum (14) and the number of pinches that must sa-
tisfy (for a pivotally supported plate) the boundary conditions. The relative error 
was calculated by the formula [28]: 

100%
T

ij ij
ij

ij

ω ω
δ

ω
−

= − , 

where T
ijω -is the natural frequency determined exactly; ijω -natural frequency, 

determined approximately; i and j are the number of half-waves of the form 
along the axes 0X and 0Y, respectively. 

Thus, the developed algorithm and the results obtained on the basis of the de-
veloped programs are reliable and the solution converges. The physical inter-
pretation of the graph is as follows: the left branch of the graph is the energy of 
the plate, sufficient for the implementation of close to real (true) forms of vibra-
tion; curve minimum-saturation of the mechanical system with bonds; the right 
branch shows that the total energy of the plate decreases due to an excess of 
bonds, and, at higher frequencies, the shape of the vibrations is more and more 
distorted. 

5. Solution and Analysis of the Problem of Natural  
Vibrations of Structurally Inhomogeneous Viscoelastic 
Systems 

The examples given below are mostly theoretical in nature, but they allow us to 
draw practical conclusions. The problems are solved using the algorithm de-
scribed in paragraph 3 of this paper. 

Problem 1. An inhomogeneous system is considered, which consists of rec-
tangular plates with point relations. The kernel of relaxation for deformable vis-
coelastic elements (shock absorbers) is chosen in the form of the Rzhanit-
syn-Koltunov kernel [26] 

( ) 1e tR t A tβ α− −=  

where , ,A α β  are the kernel parameters [24]. The viscosity of the shock ab-
sorber is taken such that its creep strain during a quasistatic process is a small 
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fraction (~12%) of the total strain. 
In the general case, the methods to determine the kernel parameters (16) for 

various materials are given in [26], and in [33], using these methods, specific 
parameters for some materials are given. 

In this case, in specific calculations, the kernel parameters are as follows: 
0.01, 0.1, 0.05A α β= = = . 

In contrast to the elastic problem, the dependence of the two lowest frequen-
cies and corresponding damping coefficients on the magnitude of the instanta-
neous stiffness of the shock absorber was studied here. The stiffness varied from 
10−4 to 10−1. On the right, this range is limited to C2, since at C = C2, the second 
mode changes. 

Figure 1 shows the dependence of the first two frequencies 1 2,R Rω ω  and cor-
responding damping coefficients on the magnitude of instantaneous stiffness of 
the shock absorber C. From the analysis of graphs, it follows that the dissipative 
properties of this system are determined not only by the rheology of its elements, 
but greatly depend on the interaction of natural modes of vibration. This effect is 
expressed in the fact that under certain conditions and to some value of the ri-
gidity of the shock absorber, the mode energetically more capacious (in this case, 
the second one) dissipates less energy than the mode less energy-intensive. Then, 
beginning from some value of instantaneous stiffness of the shock absorber C∗  
(in this case, 35.4 10C∗ −= × ), the process of energy dissipation by natural mod-
es is normalized and proceeds according to the energy hierarchy of modes. 

Real illustration of this effect is the presence of the point of graphs intersec-
tion of the damping coefficients 1

Iω  and 2
Iω  at C C∗= . 

 

 
Figure 1. Dependence of frequencies Rω  and damping coeffi-
cients Iω  on the stiffness of shock absorber C0 for the considered 
mechanical systems. 
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And one more feature: at this point, the difference in damping rates of two 
modes of structure vibrations changes the sign if the spring is viscoelastic (that 
is, the system is structurally inhomogeneous). As in the elastic problem, the Ei-
gen frequencies 1 2,R Rω ω  that are less than 1 2,ω ω  at this point converge. Analy-
sis of the problems of this type showed that the effect of the interaction of Eigen 
modes is observed only in structurally inhomogeneous systems (in this case with 
elastic and viscoelastic elements) and at a noticeable convergence of the real 
parts of the Eigen frequencies 1 2,R Rω ω ; the fictitious parts of the frequencies (the 
damping coefficients) change dramatically (increases or decreases). The absence 
of at least one of these conditions eliminates the manifestation of the effect. 

Physical explanation of the observed effect should be sought in the nature of 
dynamic redistribution of energy of the system between two modes of the prop-
erties described above. 

Now consider what differences exist between structurally homogeneous and 
inhomogeneous viscoelastic systems. 

Structurally homogeneous viscoelastic system (all elements are viscoelastic 
with the same rheological properties) is characterized by the fact that, in formula 
(15), firstly, there is no matrix A (sub matrices AH and Ab can be transferred to 
the next matrix) and, secondly, all functions ( )n Rf ω  are identical. Then the 
system of Equations (15) in the matrix form can be rewritten as:  

( ) 2 0,n
Rf A Bω ω ξ − =                       (18) 

where An is a numerical matrix of total instantaneous stiffness of all viscoelastic 
elements of the system. 

After elimination of linearly dependent components from system (18), the 
transformed matrices of generalized instantaneous stiffness nA  and B  can be 
written in a canonical form, i.e. by special transformation of the generalized 
coordinates they are reduced to a matrix of diagonal form. This means that 
mechanical system is a set of independent partial systems with one degree of 
freedom. In other words, the Eigen modes of such a system are independent and 
can be considered and calculated separately. 

Another situation is formed for a structurally inhomogeneous viscoelastic 
system, for which the matrix of generalized stiffness of elastic elements A is 
added to (18): 

( ) 2 0,RA Bω ω ξ − =                      (19) 

where ( ) ( )R RA A fω ω= + . 
In the general case, for two matrices ( )RА ω  and B (one of which is func-

tional), after eliminating linearly dependent components, it is impossible to si-
multaneously select a non-degenerate coordinate transformation, leading to a 
canonical form. This means that natural modes of such a mechanical system 
cannot be considered separately from each other, i.e. they are interdependent.  
Consequently, under free oscillations, energy exchange occurs between the 
modes. This is seen when the modes have close natural frequencies. Then at the 
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point of approaching of the graphs of natural frequencies 1 2,R Rω ω  (at the point 
C C∗= ), the fictitious parts of the frequency 1

Iω  and 2
Iω  intersect. 

At the intersection point of the graphs (Figure 1) of damping coefficients 1
Iω  

and 2
Iω  both modes dissipate energy in the same way, although they differ 

from each other (up to a phase). Up to the point C C∗=  there is a “transfer” of 
energy from the second mode to the first one, therefore the latter dissipates 
energy more intensively. Past the intersection point, the difference between the 
first Eigen frequencies increases, the interaction of corresponding modes de-
creases, and their dissipative properties take on an ordinary character. 

From the above, the following practical conclusion can be made: the damping 
capacity of inhomogeneous viscoelastic systems basically determines the mini-
mum damping coefficient (in this case, the vibrations of this particular mode are 
damped out last); the system’s global (determining) damping coefficient is 1

Iω  
up to the intersection point and then 2

Iω . The optimal, in the sense of damping, 
vibration mode of the structure is at C C∗= , when this global damping coeffi-
cient has a maximal value. 

Problem 2. A similar effect was found for a dissipative inhomogeneous vis-
coelastic structure consisting of two circular coaxially located cylindrical elastic 
shells interconnected by a massless viscoelastic element. Parameters of its relaxa-
tion kernel are [35]: 0.078, 0.1, 0.05A α β= = = . The structure materials consi-
dered here are hypothetical: the instantaneous stiffness of the shock absorber 
changes from 10−2 to 102. Mechanical characteristics of the shells are the same 
and equal to 1, 1, 0.35E ρ ν= = = . Geometric parameters of the first (inner) 
shell are 1 110, 1, 0.1L R h= = = ; of the second (outer) shell:  

1 110, 2, 0.2L R h= = = . On the second shell there is a concentrated mass 
0.5M =  attached at a point 5, 0M MX Y= = . 

The shock absorber connecting the shells has the coordinates of the applica-

tion 
1 2

1 2

5,
2

a a
a a

Y Y
X

R R
ϕ π

= = = = . Shells are hinge supported (Navier conditions) 

[25]. 
Dependence of the frequencies Rω  and damping coefficients Iω  on the ri-

gidity of the shock absorber С0 for the considered mechanical systems is shown 
in Figure 2. From Figure 2 it is clear that the described effect in this problem is 
less pronounced both damping coefficients 1 2,I Iω ω  have a non-monotonic de-
pendence, are close to each other. 

This is explained by the fact that the deformable element less effectively 
damps vibrations of shells, i.e. torsional and longitudinal modes of vibrations 
remain undammed. 

Unlike the previous problem, the global damping coefficient is, in the order of 
succession, not 2

Iω  and 1
Iω , but 1

Iω  and 2
Iω , respectively. The stiffness cor-

responding to the point of intersection of the graphs of damping coefficients is 
an optimal instantaneous stiffness of the shock absorber [27]. 

Problem 3. Consider a mechanical system consisting of two parallel, identical 
(in geometry and mechanical properties) elastic plates ( 11 22 10 N mE = × ,  
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Figure 2. Dependence of frequencies Rω  and damping coefficients Iω  
on the stiffness of shock absorber С0 for the considered mechanical sys-
tems. 

 
3 27.8 10 kg mρ = × , 0.35ν = , 0.001 mh = ), connected by one massless vis-

coelastic deformable element. The parameters of its relaxation kernel are 
0.01, 0.1, 0.05A α β= = =  and instantaneous stiffness is C = 10. 

The plates are of square form ( 0.2 ma b= = ), supported along the contour, 
each having one added mass ( 1 2 0.05 kgM M= = ) [28] [29]. 

The aim of the study is to determine the nature of dependence of damping 
capacity of structure on the location of shock absorber and the masses on the 
area of the plates. 

In this problem, the following option is investigated: a shock absorber is lo-
cated in the center of the plate, the added masses are on the central axis of the 
structure, M1 is attached to the first (lower) plate at 0.04 m from the shock ab-
sorber; on the second (upper) plate a shock absorber is located in the center and 
positions of mass М2 on the second plate are varied along the central axis of the 
structure. 

Figure 3 shows the graphs of dependence of the first two Eigen frequencies 
and their damping coefficients on the location of mass М2. Calculations showed 
a strong dependence of the damping coefficient of the first global mode 1

Iω  on 
the location of the coordinates of mass М2. The damping coefficient of the 
second mode 2

Iω  and natural frequencies 1 2,R Rω ω  remained practically un-
changed. 

The presence of two points on the x-axis, where the first global mode of the 
structure does not damp, is explained by the fact that the wave modes of the  
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Figure 3. Dependence of frequencies Rω  and damping coefficients Iω  
on the location of mass М2. 

 
plate are indistinguishable in this case. When mass М2 is located at these points, 
the plates become identical in terms of inertial and stiffness characteristics [30]. 

If to move the mass М2 on the upper plate in other directions, then the points 
could be found at which the damping coefficient 1

Iω  is zero. Thus, for mass М2, 
there are an infinite number of positions (at fixed positions of the shock absor-
ber and mass M1) in which the first global mode does not damp. These points on 
the second plate form a closed curve (close to a circle). 

Analysis of the results (Figure 3) shows that to damp the first global mode, it 
is necessary to break the symmetry of the plates, for example, by appropriate lo-
cation of the added masses. The symmetry of the right and left branches of the 
graph provides the possibility of obtaining the maximum (and identical) effi-
ciency of the shock absorber with the loads location both on one side (right 
branch) and on both sides of it (left branch). 

The effect described shows that the magnitude of dissipative energy of the 
system depends on damping (rheological) properties of the material and on 
structure geometry as a whole. This effect does not manifest itself if the viscoe-
lastic system is dissipative homogeneous [31] [32] 

Problem 4. Consider the structure with the same initial data as in Problem 3. 
The masses are located at distances of 0.04 m on both sides of the massless de-
formable element. The Eigen frequencies of two modes of vibrations are almost 
unchanged. Consider the dependence of frequency and damping characteristics 
of the system on simultaneous displacement of a massless deformable element 
and mass. 
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As in the previous example, there is a point (when the shock absorber is in the 
center) where 1 0Iω = . At this point, the second damping coefficient is a max-
imal one, i.e. 2

Iω . In the presence of concentrated masses the dependence of 
damping properties of the system is so strong that, in the absence of them, the 
damping coefficient 1

Iω  (global one) is zero for any location of the shock ab-
sorber (the corresponding graph is shown in Figure 3). 

Knowledge of the law of variation determining damping coefficient 1
Iω  made 

it possible to make various recommendations of an optimization nature. The op-
timization of the damping properties of structure did not affect the spectrum of 
the lowest frequencies. The instantaneous stiffness of the shock absorber, the 
magnitude of the added mass and viscosity did not vary, since these parameters 
did not (qualitatively) affect the results obtained. Only the quantitative characte-
ristics of the system varied, which is not fundamental. 

The effect revealed in this problem does not manifest itself if to consider a 
dissipatively homogeneous viscoelastic system. 

After analyzing problems 3 and 4, we can conclude that for given damping 
coefficients of the system, it is possible to determine the necessary rheological 
properties of the shock absorber, the size and location of the added masses, its 
instantaneous stiffness and the location of masses and shock absorber in the 
plane of the plates [27]. 

Problem 5. Consider a viscoelastic shell, the rheological properties of which 
are described by a kernel of the form given in (17); the parameters are: 

0.01, 0.1, 0.05A α β= = = . Geometric and mechanical characteristics are: 
1, 1, 0.35, 1, 7, 0.01E R L hρ ν= = = = = = . Coordinates of rigid support are: 
2, 3 2x y= = π . Shell thickness h varied from 0.01 to 0.2. Results of calculations 

for the two lower frequencies 1
Rω  and 2

Rω  of corresponding damping coeffi-
cients 1 2,I Iω ω  are shown in Table 2. 

For comparison, the first two Eigen frequencies of elastic shell 1 2,ω ω  are 
given. A twentyfold increase in the shell thickness increases the first and second 
Eigen frequencies and the damping coefficient by almost 4 times. 

6. Conclusion and Recommendations 
6.1. Conclusions 

1) The mathematical formulation and methods for solving the problem of 
natural vibrations of structurally inhomogeneous dissipatively homogeneous 
and heterogeneous mechanical systems consisting of a package of plates (or 
shells) with point supports and attached masses are formulated. 

2) The convergence of solution is numerically proved depending on the terms 
taken in the sought-for solution (i.e., in solution expansion in fundamental 
functions) and on various parameters of mechanical systems. 

3) The problems of natural vibrations of dissipative homogeneous and inho-
mogeneous lamellar systems with concentrated supports and added masses are 
solved. 
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Table 2. Calculation results for two lower frequencies. 

h 1ω  1
Rω  1

Iω−  2ω  2
Rω  2

Iω−  

0.01 0.0927 0.0872 0.4 × 10−4 0.142 0.135 0.94 × 10−4 

0,1 0.274 0.26 0.34 × 10−3 0.281 0.27 0.44 × 10−3 

0.2 0.339 0.322 0.53 × 10−3 0.502 0.48 0.11 × 10−2 

 
4) To describe dissipative properties of the system as a whole, the concept of 

“global damping coefficient” is introduced. In the case of a structurally homo-
geneous mechanical system, the global damping coefficient is determined by the 
fictitious part of the first (in modulus) complex Eigen frequency. In the case of a 
structurally inhomogeneous mechanical system, the fictitious parts of the first 
and second Eigen frequencies play the role of a global damping coefficient, de-
pending on the stiffness magnitude of a shock absorber. 

5) It is established that optimal damping of vibrations of inhomogeneous sys-
tems occurs when the values of close frequencies of vibration modes converge, 
and the fictitious parts of these frequencies are equal to each other (i.e., at 
C=C*). In this case, both modes of vibrations provide the same energy dissipa-
tion. 

6) It is revealed that for given damping coefficients of the system, it is possible 
to determine the necessary rheological properties of a shock absorber, the size 
and location of the added masses in the plane of the plates, to ensure effective 
control of system vibrations with maximum damping capacity. 

6.2. Recommendations 

1) To reduce the amplitude of the interference of radio electronic equipment 
in resonance mode, we recommend that we use the developed methodology and 
algorithm of structurally inhomogeneous dissipative mechanical systems, which 
effectively reduces the amplitudes of mixing and other force factors to 60%. 

2) Significant intensification of dissipative processes in structurally heteroge-
neous dynamical systems occurs when the corresponding natural frequencies 
approach each other. 

3) The effect of the interaction of various forms of motion of solid bodies has 
a fundamental perspective for the synthesis of structurally heterogeneous ma-
chine-building structures that are optimal in dissipative properties and material 
consumption. 

4) Analytically, to obtain several eigenfrequency modes of structurally hete-
rogeneous dynamic mechanical systems, depending on the physical and geome-
tric parameters, it remains open. 
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