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Abstract 

In this paper, we will use the successive approximation method for solving 
Fredholm integral equation of the second kind using Maple18. By means of this 
method, an algorithm is successfully established for solving the non-linear 
Fredholm integral equation of the second kind. Finally, several examples are 
presented to illustrate the application of the algorithm and results appear that 
this method is very effective and convenient to solve these equations. 
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1. Introduction 

The current research intends to the successive approximation method for solv-
ing nonlinear Fredholm integral equation of the second kind using Maple18. 

Homotopy perturbation technique in [1]. A coupling method of a homotopy 
technique and a perturbation technique [2]. Homotopy perturbation method: 
anew non-linear analytical technique [3]. Asymptotology by homotopy pertur-
bation method [4]. Application of homotopy perturbation method to nonlinear 
wave equations [5]. Homotopy perturbation method for solving boundary value 
problems [6]. New interpretation of homotopy perturbation method [7]. Nu-
merical Solution of Systems of Linear Volterra Integral Equations Using 
Block-Pulse Functions [8]. Numerical Analysis and Volterra Integral and Diffe-
rential Equations [9] [10]. Biorthogonal Systems for Solving Volterra Integral 
equation Systems of the Second Kind [11]. Modified HPM for Solving Systems 
of Volterra Integral Equation of the Second Kind [12]. Analytical and Numerical 
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Methods for Volterra Equations [13]. Numerical Computational Solution of the 
Linear Volterra Integral Equations System Via Rationalized Hear Functions [14]. 
Linear and Nonlinear Integral Equation: Methods and Application [15]. Optimal 
Control Approach for Solving Linear Volterra Integral Equations [16]. Numeri-
cal Solution of System of Two Nonlinear Volterra Integral Equations [17] [18]. 
Adomian Decomposition Method of Fredholm Integral Equation of the Second 
Kind Using Maple and applications in [19] [20]. 
Approximate solutions of linear Volterra integral equation systems with variable 
coeffi cients [21]. Numerical Solution of System of Three Nonlinear Volterra 
Integral Equation Using Implicit Trapezoidal [22]. Solving nth-Order Inte-
gro-Differential Equations Using the Combined Laplace Transfer-Successive 
Approximations Method [23]. Numerical approach based on Bernstein polyno-
mials for solving mixed Volterra-Fredholm integral equations [24]. An inverse 
eigenproblem and an associated approximation problem for generalized reflex-
ive and anti-reflexive matrices [25]. Discrete Adomian Decomposition solution 
of Nonlinear Fredholm Integral Equation [26]. He’s homotopy perturbation 
method: A strongly promising method for solving non-linear systems of the 
mixed Volterra-Fredholm integral equations [27]. On the convergence of Ho-
motopy perturbation Method [28]. The homotopy perturbation method for 
solving neutral functional-differential equations with proportional delays [29]. 
Variational iteration method as a kernel constructive technique [30]. A modified 
homotopy perturbation method for solving the nonlinear mixed Volter-
ra–Fredholm integral equation [31]. A note on the homotopy analysis method 
[32]. Application of homotopy analysis method to the solution of ninth order 
boundary value problems in AFTI-F16 fighters [33]. Modeling spectra of break-
ing waves propagating over beach [34]. Modified Adomian decomposition me-
thod for solving the problem of boundary layer convective heat transfer [35]. 
New version of Optimal Homotopy Asymptotic Method for the solution of non-
linear boundary value problems in finite and infinite intervals [36]. 

Different types of analytical methods and numerical methods were used to 
solve the problem [1]-[36]. In this article we have applied the successive ap-
proximation method used by using the Maple algorithm by applying this algo-
rithm to different examples, including finding the approximate solution and 
then comparing it to the exact solution and finding out the amount of error be-
tween the approximate solution and the exact solution. 

The main objective of this work is to use the successive approximations method in 
solving the nonlinear Fredholm integral equation of the second kind using Maple18. 

The paper is arranged as follows: In Section 2, the successive approximations 
method. In Section 3, numerical examples are also considered to show the ability 
of the proposed method, and the conclusion is drawn in Section 4. 

2. The Successive Approximation Method 

The nonlinear Fredholm integral equation of the second kind 
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( ) ( ) ( ) ( )( ), d
b

a
u x f x K x t F u t tλ= + ∫                 (1) 

where ( )u x  is the unknown function to be determined, ( ),K x t  is the kernel, 
( )( )F u t  is a nonlinear function of ( )u t , and λ  is a parameter. ( )0u x  = any 

selective real valued function, 

( ) ( ) ( ) ( )1 , d , 0.
b

n na
u x f x K x t u t t nλ+ = + ≥∫              (2) 

The question of convergence of ( )nu x  is justified by noting the following 
theorem 

Theorem 1 see [16] If ( )f x  in (1) is continuous for the interval a x b≤ ≤  
and the kernel ( ),K x t  is also continuous in the triangle a x b≤ ≤ ,  a t b≤ ≤  
the sequence of successive approximations ( ) , 0nu x n ≥  converges to the solu-
tion ( )u x  of the integral equation under discussion. 

3. Numerical Examples 

In this section, we solve some examples, and we can compare the numerical re-
sults with the exact solution. 

Example 1. Consider the nonlinear Fredholm integral equation of the second 
kind 

( ) ( ) ( )
2

2
0

1cos d ,
48 12

u x x tu t t
π

= −
π

+ ∫                 (3) 

with the exact solution ( ) ( )cosu x x= . 
Example 2. Consider the nonlinear Fredholm integral equation of the second 

kind 

( ) ( )1 2
0

143 1ln d ,
144 36

u x x tu t t= + + ∫                  (4) 

with the exact solution ( ) lnu x x x= + . 
 

Table 1. Numerical results and exact solution of Nonlinear Fredholm integral equation of 
the second kind for example 1. 

x ( )1 cosExact x=
 ( )

2

0.c 2os 049572 9
8

3
4

0u x=
π

− +
 

1Error Exact u= −  

0.1 0.9950042 0.9943446 0.0006595 

0.2 0.9800666 0.9794071 0.0006595 

0.3 0.9553365 0.9546770 0.0006595 

0.4 0.9210610 0.9204015 0.0006595 

0.5 0.8775826 0.8769230 0.0006595 

0.6 0.8253356 0.8246761 0.0006595 

0.7 0.7648422 0.7641827 0.0006595 

0.8 0.6967067 0.6960472 0.0006595 

0.9 0.6216100 0.6209504 0.0006595 

1.0 0.5403023 0.5396428 0.0006595 
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Figure 1. The exact and approximate solutions result of Nonlinear Fredholm integral 
equation of the second kind. 

 
Table 2. Numerical results and exact solution of Nonlinear Fredholm integral equation of 
the second kind for example 2. 

2Error Exact u= −
 

1.34767ln
10000000

u x x= + +
 

2 lnExact x x= +  x 

0.0000001 −2.2025850 −2.2025851 0.1 

0.0000001 −1.4094378 −1.4094379 0.2 

0.0000001 −0.9039727 −0.9039728 0.3 

0.0000001 −0.5162906 −0.5162907 0.4 

0.0000001 −0.1931470 −0.1931472 0.5 

0.0000001 0.0891745 0.0891744 0.6 

0.0000001 0.3433252 0.3433251 0.7 

0.0000001 0.5768566 0.5768564 0.8 

0.0000001 0.7946396 0.7946395 0.9 

0.0000001 1.0000001 1.0000000 1.0 

 

 
Figure 2. The exact and approximate solutions result of Nonlinear Fredholm integral eq-
uation of the second kind. 
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Example 3. Consider the nonlinear Fredholm integral equation of the second 
kind 

( ) ( ) ( )12 2
0

1 1e 3 e d ,
288 36

xu x x x xtu t t= − + + ∫              (5) 

with the exact solution ( ) exu x x= . 
Example 4. Consider the nonlinear Fredholm integral equation of the second 

kind 

( ) ( ) ( )( )12 2
0

1 1e 127 e d ,
144 36

xu x t u u t t= + − + +∫            (6) 

with the exact solution ( ) 1 exu x = + . 
 

Table 3. Numerical results and exact solution of Nonlinear Fredholm integral equation of 
the second kind for example 3. 

3Error Exact u= −
 

1 1e e 0.03519196200
96 288

x xu x x x = − + + 
   

3 exExact x=  x 

0.0000881 0.1104290 0.1105171 0.1 

0.0001762 0.2441043 0.2442806 0.2 

0.0002643 0.4046933 0.4049576 0.3 

0.0003525 0.5963774 0.5967299 0.4 

0.0004406 0.8239201 0.8243606 0.5 

0.0005287 1.0927426 1.0932713 0.6 

0.0006168 1.4090101 1.4096269 0.7 

0.0007049 1.7797278 1.7804327 0.8 

0.0007930 2.2128498 2.2136428 0.9 

0.0008811 2.7174007 2.7182818 1.0 

 

 
Figure 3. The exact and approximate solutions result of Nonlinear Fredholm integral eq-
uation of the second kind. 
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Table 4. Numerical results and exact solution of Nonlinear Fredholm integral equation of 
the second kind for example 4. 

4Error Exact u= −
 

21e e 1.051185675
144

xu = − +
 

4 1 exExact = +  x 

0.0001272 2.1050437 2.1051709 0.1 

0.0001272 2.2212755 2.2214028 0.2 

0.0001272 2.3497316 2.3498588 0.3 

0.0001272 2.4916975 2.4918247 0.4 

0.0001272 2.6485941 2.6487213 0.5 

0.0001272 2.8219916 2.8221188 0.6 

0.0001272 3.0136255 3.0137527 0.7 

0.0001272 3.2254137 3.2255409 0.8 

0.0001272 3.4594759 3.4596031 0.9 

0.0001272 3.7181546 3.7182818 1.0 

 

 
Figure 4. The exact and approximate solutions result of Nonlinear Fredholm integral eq-
uation of the Second kind. 

 
Example 5. Consider the nonlinear Fredholm integral equation of the second 

kind 

( ) ( ) ( )( )
2

2
0

1sin 1 d ,
64 48

u x x t u t t
π

= − + +
π

∫               (7) 

with the exact solution ( ) ( )sinu x x= . 
Example 6. Consider the nonlinear Fredholm integral equation of the second 

kind 

( ) ( ) ( )( )2
0

5 1sin 1 1 d
16 12 48

u x x t u u t t
π = + − + + + 

 

π π
∫          (8) 
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Table 5. Numerical results and exact solution of Nonlinear Fredholm integral equation of 
the second kind for example 5. 

5Error Exact u= −
 ( )

2

0.s 1in 543332 6
4

6
6

4u x=
π

− +
 

( )5 sinExact x=  x 

0.0001207 0.0999541 0.0998334 0.1 

0.0001207 0.1987900 0.1986693 0.2 

0.0001207 0.2956409 0.2955202 0.3 

0.0001207 0.3895390 0.3894183 0.4 

0.0001207 0.4795462 0.4794255 0.5 

0.0001207 0.5647632 0.5646425 0.6 

0.0001207 0.6443384 0.6442177 0.7 

0.0001207 0.7174768 0.7173561 0.8 

0.0001207 0.7834476 0.7833269 0.9 

0.0001207 0.8415917 0.8414710 1.0 

 

 
Figure 5. The exact and approximate solutions result of Nonlinear Fredholm integral eq-
uation of the second kind. 

 
Table 6. Numerical results and exact solution of Nonlinear Fredholm integral equation of 
the second kind for example 6. 

6Error Exact u= −
 ( )sin 0.9808838911u x= +  ( )6 1 sinExact x= +  x 

0.0191161 1.0807173 1.0998334 0.1 

0.0191161 1.1795532 1.1986693 0.2 

0.0191161 1.2764041 1.2955202 0.3 

0.0191161 1.3703022 1.3894183 0.4 

0.0191161 1.4603094 1.4794255 0.5 

0.0191161 1.5455264 1.5646425 0.6 

0.0191161 1.6251016 1.6442177 0.7 

0.0191161 1.6982400 1.7173561 0.8 

0.0191161 1.7642108 1.7833269 0.9 

0.0191161 1.8223549 1.8414710 1.0 
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with the exact solution ( ) ( )1 sinu x x= + . 
Example 7. Consider the nonlinear Fredholm integral equation of the second 

kind 

( ) ( ) ( )( )
2

2
0

7 5 1cos d ,
6 144 36

u x x t u u t t
π

+
π

= − + +∫             (9) 

with the exact solution ( ) ( )1 cosu x x= +  
 

 
Figure 6. The exact and approximate solutions result of Nonlinear Fredholm integral eq-
uation of the Second kind. 

 
Table 7. Numerical results and exact solution of Nonlinear Fredholm integral equation of 
the second kind for example 7. 

7Error Exact u= −
 ( )

25cos 1.345517155
144

u x= + −
π

 
( )7 1 cosExact x= +  x 

0.0191161 1.0807173 1.0998334 0.1 

0.0191161 1.1795532 1.1986693 0.2 

0.0191161 1.2764041 1.2955202 0.3 

0.0191161 1.3703022 1.3894183 0.4 

0.0191161 1.4603094 1.4794255 0.5 

0.0191161 1.5455264 1.5646425 0.6 

0.0191161 1.6251016 1.6442177 0.7 

0.0191161 1.6982400 1.7173561 0.8 

0.0191161 1.7642108 1.7833269 0.9 

0.0191161 1.8223549 1.8414710 1.0 
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Figure 7. The exact and approximate solutions result of Nonlinear Fredholm integral 
equation of the Second kind. 

4. Conclusion 

In the paper, a successive approximations method is presented for solving the 
nonlinear Fredholm integral equation of the second kind using Maple18. The 
benefit of our method lies in the fact that, for some nonlinear problems, our 
method is still convergent as illustrated by figures and tables showing match the 
right accuracy, which shows the exact solution with the approximate solution is 
largely identical and noticeable Tables 1-7 represent the exact and numerical 
results of the examples in this article. Figures 1-7 readily show the comparison 
of exact solution and approximate solution. We can see from the figures that the 
approximate solution is very applicable to the exact solution and application is 
displayed through some examples. Numerical results show that the accuracy of 
the solutions obtained is good. 
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