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Abstract 
Molecular dynamics simulations of the phase transformation from body- 
centered-cubic (bcc) to face-centered-cubic (fcc) structures were performed. 
A Morse-type function was applied, and the parameters were determined so 
that both fcc and bcc structures were stable for the perfectcrystal model. 
When the fcc structure was superior to the bcc structure, the bcc model 
transformed to fcc. Two mechanisms, based on the Bain and Nishiyama- 
Wasserman (NW) relationships, were considered. Then, point or linear lat-
tice defects, i.e., randomly scattered or regularly aligned vacancies, were in-
troduced. Consequently, bcc models tended to transform to an fcc structure, 
whereas fcc models remained stable. The transformation process was also 
investigated in detail. BCC-to-FCC transformation is often considered as a 
homogeneous process based on changes in the axis lengths, and such a 
process was observed for the perfectcrystal model. Conversely, for the de-
fect models, local heterogeneous deformation patterns, including cylindrical 
domain and planar interface formation, were observed. These behaviors are 
considered to be related to plastic deformation during phase transformation, 
and the validity of the presented model for further investigation was con-
firmed. 
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1. Introduction 
The microstructure of materials strongly affects the macroscopic mechanical 
properties, and controlling the microstructure is important for achieving re-
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quired properties. With steel, heat treatment processes such as quenching, tem-
pering, and annealing are the most effective routes that are indispensable for 
producing useful materials [1]. This process involves intrinsic phase transforma-
tions between austenite, ferrite, and martensite; austenite phase is stable at high 
temperatures, with a face-centered-cubic (fcc) structure, while ferrite and mar-
tensite phases are stable or quasi-stable at room temperature with body-cen- 
tered-cubic (bcc) and body-centered-tetragonal (bct) structures, respectively. 
Heat treatment processes are classified into many detailed subdivisions, and the 
obtained phases are named as pearlite, bainite, troostite, and so on, while the 
fundamental crystal structures are considered to be fcc and bcc/bct. The devel-
opment of heat treatment processes has a long history, but advancement has 
been achieved through trial and error based on enormous experiments. Addi-
tionally, the precise control of not only the microstructure but also the deforma-
tion and stress distribution has been required. In addition to distortion due to 
phase transformation, plastic deformation plays a substantial role in deforma-
tion and is termed transformation plasticity. However, even the fundamental 
mechanism remains unclear, and intensive investigations involving modeling 
the phenomena and clarifying the mechanism have been conducted [2]-[7]. 

Alternatively, computer simulation is an indispensable tool in engineering 
processes. In heat treatment processes of steel, it has become possible to simulate 
macroscopic deformation and stress distribution, where the phase transforma-
tion is usually represented by an empirical kinetic law such as the Johnson- 
Mehl-Avrami-Kolmogorov equation, and the state of a phase is normally repre- 
sented using the volume fraction of eachphase [8] [9]. From a smaller-scale 
viewpoint, it has become possible to simulate the microstructure using a phase 
field model [10] [11], in which two phases are represented by a single variable 
with a value of 0 or 1, and phase transformation is expressed by the domain 
boundary motion. However, these computational simulations are phenomeno-
logical, and the essential phenomena, i.e., change in the crystal structure or 
atomic configuration, are not directly represented. In order to achieve an intrin-
sic understanding and application through more detailed and precise modeling 
and simulation, atomistic investigations are necessary. 

Experimental technology on a nanometer scale has achieved rapid progress 
using electron and atomic-force microscopy [12] [13], however, direct observa-
tion of dynamic behavior is not yet possible. Molecular dynamics (MD) simula-
tion is useful for exploring the atomic behavior, and various researches including 
on the structural phase transformation have been carried out [14]-[19]. Howev-
er, few studies on the mechanism of the transformation plasticity are reported. 
In this study, we modeled the phase transformation on an atomic scale to cla-
rify the deformation mechanism during phase transformation, including in-
duced plastic behavior. In MD modeling, a choice of potential function is cru-
cial, and this should be carefully demonstrated when a specific material is stu-
died. In this study, we concentrated on capturing a general aspect of the phase 
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transformation between bcc and fcc structures, and a Morse-type potential, for 
which parameters for both fcc and bcc materials are listed [20], was applied. The 
parameter was determined initially so that both fcc and bcc structures are sta-
ble, and then the effects of lattice defects on the transformation process were 
investigated. Three types of defects, i.e., point, partial line, and full-line de-
fects, were considered, though these are all based on vacancies, and their in-
fluence on the stable phase was investigated. Generation of plastic behavior 
during phase transformation was also investigated by observing the dynamic 
process. 

2. Crystallographic Relationship between Bcc and Fcc 

The crystallographic relationship between the fcc and bcc structures is usually 
explained as the Bain relationship. Figure 1(a) shows a bcc-based schematic; 
four bcc unit cells are illustrated by green lines, and the corner and body-cen- 
tered atoms are depicted in orange/yellow and blue/light blue, respectively. In 
the bcc lattice, another unit cell is drawn using black lines, in which atoms are 
positioned at the eight corners and the center of each face of the unit cell. The 
top and bottom faces are square with a length of 2L , where L is the edge 
length of the original bcc unit cell, whereas the side faces are rectangles with the 
lengths of L  and 2L  in the vertical and horizontal directions, respectively. 
This structure corresponds to a face-centered-tetragonal (fct). If the length of the 
vertical axis (z in Figure 1) is increased by 2 , or the two perpendicular axes 
are shortened by 1 2 , the cell becomes cubic. Accordingly, the phase trans-
formation from bcc to fcc can occur only by changing the edge length without 
changing the atomic arrangement. 

Another relationship between fcc and bcc structures is Nishiyama-Wasserman 
(NW) relationship, as shown in Figure 1(b). This is usually used to explain 
martensitic (bct) phase transformation, which is interpreted as a bcc-fcc rela-
tionship when combined with a change in the edge length [21]. The crystal plane 
and orientation are related through fcc {111}//bcc {011} and fcc <112> // bcc 
<011>. In Figure 1(b)(i), two bcc unit cells are drawn using green lines, two pa-
rallel (011) planes are drawn using black and red lines, and the 011    direction 
is indicated by an arrow in magenta. Figure 1(b)(ii) shows the atomic arrange-
ment from the direction perpendicular to the (011) plane. Here the black and 
red rectangles in (i) are seen with the half-cell offset. In this plane, a hexagon is 
drawn in blue. From this arrangement, if the atoms in the red rectangular plane 
move in the 011    direction, and if the edge length in the corresponding di-
rection is slightly elongated so that the hexagon becomes regular, then this plane 
becomes the (111) plane with appropriate stacking, and the bcc-to-fcc transfor-
mation is complete. This mechanism requires both the change in edge length 
and relative motion of the atomic layer, but the required edge-length ratio is 
much smaller than that for the Bain relationship. Figure 1(c) illustrates, for vi-
sualization of the expected results, the atomic configuration projected on the 
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Figure 1. Crystallographic relationship between bcc and fcc structures. 

 
x-y and z-y planes when the bcc-to-fcc transformation occurs. The original (001) 
plane becomes the (011) plane of the fcc structure, following the Bain relation-
ship, and a rectangular cell is prominent. However, relative motion of alternate 
layers, represented by black lines, occurs in the NW relationship, giving a 
somewhat disordered impression. The regular unit can be found by selecting a 
45˚ rotated square, depicted in magenta, in which the center atom is shifted to 
one side. In the perpendicular (z-y) plane, the long and short edged rectangular 
cells are alternatively accumulated along the z direction. 

3. Molecular Dynamics Method 

A classical MD method with two-body interatomic potential function was used 
in this study, and the following Newton equation of motion was then solved 
numerically. 

2

2

d 1 1 d,    
dd

iji
i ij ij

ji i ij

rr
f

m m rt r
φ

= = = −∑F f                (1) 

Here, ri and mi are the position vector and mass of the i-th atom, Fi is the 
force acting on the i-th atom, fij is the interatomic force between the i-th and j-th 
atoms, and φ  is the interatomic potential energy function. In this study, the 
following Morse-type function is applied. 

( ){ } ( ){ }exp 2 2expD r R r Rφ α α = − − − − −             (2) 

Here, D, R, and α are the parameters, and the values for most major metallic 
elements are listed in the literature [20]. Equation (2) is standardized by dividing 
φ  by D and r by R as 
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( ){ } ( ){ }* *exp 2 1 2exp 1r rφ α α∗ ∗ ∗= − − − − − .        (3) 

In this paper, all variables are expressed as the standardized values, except for 
temperature, and the superscript * is omitted. Numerical integration was per-
formed using the conventional velocity Verlet algorithm. 

4. Preliminary Simulation Representing Stable Structures 
4.1. Simulation Model and Conditions 

As a preliminary study, the potential parameter α was varied, and the stable 
structures were explored using the models illustrated in Figure 2. The atoms are 
arranged on lattice points of fcc or bcc structures, and periodic boundary condi-
tions are imposed in all the directions. No defects are introduced in this section. 
The models shown in Figure 2(a) and Figure 2(b) have fcc and bcc structures, 
respectively, in both of which the (001) plane and [001] direction are set on the 
x-y plane and along the z-axis. Additionally, another orientation model is pre-
pared so that the (011) plane and [011] direction become the x-y plane and 
z-axis, respectively, as shown in Figure 2(c). This crystal cell corresponds to the 
rectangular parallelepiped illustrated in Figure 1(a). Models (b) and (c) are es-
sentially the same but are applied to simulations since the result can be affected 
by restriction of the periodicity of the calculation cell. Also, the visibility of the 
transformation mechanism is increased by directly observing the {011} planes of 
the original bcc structure. The model size is 16-16-16 unit cells in the x-y-z di-
rections for the bcc-(001) model, and 12-12-12 for bcc-(011) model and fcc 
models. The difference in the size is based on the number of atoms in a unit cell 
to construct each model, and these sizes were determined for the total number of 
atoms to be close to each other (8192 and 6192, respectively). 

Using these models, MD simulations were demonstrated at a constant tem-
perature under a constant pressure, p = 0. The velocity scaling method was ap-
plied for temperature control with T = 10, 400, and 800 K. Total time step was 
set as 5000 steps, which may not be long enough to distinguish an actual stable 
structure, but this does not matter in this study because the transformation is the 
major objective. 

4.2. Results 

Figure 3 and Figure 4 represent typical results. Figure 3(a) and Figure 3(b) 
show snapshots of the atomic configurations at the initial and final time steps for 
α = 1.50 and T = 10 K, and α = 1.6 and T = 10 K, respectively. For the fcc model, 
change in the atomic configuration was not observed, including with all other 
parameters. For the bcc models, no change occurred for α = 1.50, whereas dras-
tic changes occurred for α = 1.60. Figure 3(b)(i) shows the atomic configuration 
projected on the x-y and z-y planes at the 5000th time step, and Figure 4(a) 
shows the variation in the edge lengths and potential energy, calculated for the 
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Figure 2. Illustration of the simulation models. 

 

 
Figure 3. Stable structures obtained with several parameters and temperatures. 

 

 
Figure 4. Variation in the edge lengths and potential energy. 

 
bcc-(001) model. The model is initially cubic, and three edges have the same 
lengths. However, the x-edge is shortened, and the y and z edges are elongated 
between the 1000th and 2000th time steps. Consequently, the calculation cell 
becomes rectangular. The atomic configurations, shown in the magnified win-
dows, correspond to those illustrated in Figure 1(c), and the edge-length ratio 
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indicated in Figure 4(a) also approximately coincides with the ideal value. 
Therefore, it is confirmed that phase transformation from bcc to fcc has oc-
curred according to the NW relationship. 

Similarly, an fcc transformation occurred for the bcc-(011) model. The in-
itially rectangular calculation cell became cubic by stretching the shorter edge (y 
in this case), as shown in Figure 3(b)(ii) and Figure 4(b). The relative configu-
ration of atoms did not change; therefore, it is concluded that an fcc transforma-
tion occurred in accordance with the Bain relationship. In both cases, the poten-
tial energy was decreased; hence, the fcc structure is more stable for α = 1.60. 
Note that the difference in the potential energy between Figure 4(a) and Figure 
4(b) is due to the use of a different value in α. 

The simulated results are summarized in a phase diagram shown in Figure 
5(a), in which, for example, the notation “fcc- > fcc” indicates that the fcc model 
maintained its structure, and “bcc- > fcc” indicates that phase transformation 
from bcc to fcc occurred. The fcc structure was stable for the whole parameter 
range shown in the diagram, and no plots for “fcc->bcc” exist. It is concluded 
that both the fcc and bcc structures are stable or quasi-stable in the range of α≤ 
1.55, while the bcc structures transform to fcc for α ≥ 1.60. Figure 5(b) 
represents the potential energy obtained for fcc and bcc structures at T = 10 K. 
Note that the potential energies of bcc for α ≥ 1.60 are measured before the 
transformation to fcc occurred. The potential energy for fcc phase is slightly 
lower than that for bcc; consequently, the fcc structure is superior to bcc, and the 
bcc is quasi-stable for small values in α. The difference in the potential energy 
becomes larger as the value in α becomes larger. Then the bcc phase is unable to 
retain the structure, and transformation occurs for α ≥1.60. 

5. Effects of Defects on Phase Transformation 

5.1. Simulation Models and Conditions 

Based on the results for perfect crystal models, the models with lattice defects 
were applied to the MD simulations. Models based on a bcc-(001) model are 
shown in Figure 6. The color indicates the potential energy of each atom, and 
the stable atoms in a bulk crystal are depicted in blue, while those around the 
defects are depicted in other colors. Three types of defects, i.e., point, partial line, 
and full-line defects, are introduced. It should be noted that all defects here con-
sist of vacancies; in a point model, vacancies are randomly scattered, and the 
proportion of vacancies is set as 5% or 10% of the lattice points. In a line-defect 
model, the vacancies are aligned on a straight line, and the length is set as 2La or 
3La, where La is the lattice parameter. In a full-line model, the vacancy line tra-
verses the model, resulting in an infinite line through the periodic boundary. 
The defect line is set in the center of the x-y plane, as shown in Figure 6(b) and 
Figure 6(c). In this paper, these models are referred to as Point-5, Point-10, 
Line-2, Line-3, and Line-full models. 

https://doi.org/10.4236/msa.2019.108039


T. Uehara 
 

 

DOI: 10.4236/msa.2019.108039 550 Materials Sciences and Applications 
 

 
Figure 5. Phase diagram obtained using perfect crystal model and potential energy for 
bcc and fcc structures at T = 10 K. 
 

 
Figure 6. Illustration of defect models. 
 

According to the phase diagram in Figure 5(a), both fcc and bcc structures 
are stable for α ≤ 1.55. In this section, similar simulations are performed using 
the defect models, and the effects on the stable structure are examined. The si-
mulation conditions are the same as in the previous section; α is set between 1.20 
and 1.80, T = 10, 400, and 800 K, and the initial configuration is based on fcc, 
bcc-(001), and bcc-(011) models. Three trials are demonstrated for each para-
meter set by varying the random-number series, which is used for defining the 
initial velocity of every atom and is considered to influence the results to a cer-
tain degree. 

5.2. Stable Structures for Defect Model 

Figure 7 represents the change in the configuration of atoms in the initial and 
final time steps for typical cases. For the bcc-(001) model, Point-10 and Line-3 
models are shown in Figure 7(a)(i) and Figure 7(ii), respectively. No transfor-
mation was observed for α = 1.50 in the perfect crystal model, but fcc transfor-
mation was observed here. Both structures show the characteristic arrangement 
of the NW relationship as represented in Figure 1(c). Similarly, the bcc-(011) 
models also show an fcc transformation for α ≤ 1.55 with the defect models, and 
the transformation path was the same as for the Bain relationship with the  
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Figure 7. Stable structures obtained for defect models. 

 
perfect crystal models. Typical results for α = 1.55 with Point-10 and α = 1.50 
with Line-3 models are shown in Figure 7(b)(i) and Figure 7(b)(ii), respective-
ly. 

Figure 7(c) represents a special case for a bcc-(011) model with α = 1.55, 
Line-2 defect, and T = 800 K. In this case, the relative motion of the alternate 
layer occurred in the manner illustrated in Figure 1(c) following the NW rela-
tionship. Consequently, a complete (111) plane is observed, as clearly shown in 
the magnified window in Figure 7(c). 

These results are summarized in a phase diagram in Figure 8(a), in which the 
small marks represent the results for a perfect crystal. The results for the defect 
models were only plotted when a bcc-to-fcc transformation occurred. Three tri-
als were executed for each case, and the case was plotted if transformation oc-
curred one or more times. The results for Point-5 and Point-10 models, and 
Line-2 and Line-3 models showed similar trend, and their results are plotted to-
gether. This figure clearly shows that the domain where the fcc structure is stable 
is extended, and the threshold value of α is decreased from 1.60 to 1.45. That is, 
the defects accelerate phase transformation from bcc to fcc structures. Figure 
8(b) represents the potential energy in the defect models for α =1.40 and T = 10 
K, in which the value is the average of all atoms in the calculation cell. Blue and 
red lines represent the value for the perfect bcc and fcc crystal models, respec-
tively. The potential energy for defect models is increased, but the increment is 
small compared to the difference between fcc and bcc. Point-defect models show  
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Figure 8. Phase diagram modified by defect models and potential energy with lattice de-
fects for α = 1.40 and T = 10 K. 

 
higher values than that for line-defect models, but no specific effects on the 
phase transformation was found. Therefore, the initiation of the transformation 
is considered to originate in a local behavior, which is discussed in the next sec-
tion. 

5.3. Plastic Behavior during Phase Transformation 

According to both the Bain and NW relationships, the bcc-to-fcc transformation 
is an overall phenomenon, involving changes in the edge length and/or simulta-
neous sliding of the atomic layer. Therefore, if no local irregularity exists, phase 
transformation progresses homogeneously. However, defects may induce local 
irregular behavior; in some of the simulations, notable patterns, which may be 
related to plastic deformation, were observed. 

Figure 9 represents the variation in atomic arrangement during phase trans-
formation obtained for a bcc-(001) model, Line-3 defect, α = 1.55, and T = 10 K. 
Parts (a) and (b) show a snapshot on the z-y plane and a 3-D view, respectively. 
Note that the lined efect is on the x-y plane, part (a) corresponds to the side 
view, and every opposing face is connected through a periodic boundary. The 
color indicates the potential energy of each atom; the atoms on the regular lattice 
points are colored light blue, and the atoms at the irregularly arranged sites ap-
pearin different colors. 

The phase transformation is initiated around the 1500th time step, and then a 
circular pattern is generated on the z-y plane, as shown in Figure 9(a)(iii). This 
domain is cylindrical, as shown in the 3-D view, and it grows larger as time 
passes. Subsequently, the cylindrical faces touch one another at about the 3500th 
time step, and the domain coalesces. Finally, two domains separated by parallel 
domain boundaries are generated. Interestingly, the origin of the cylindrical 
domain formation is not the defect itself but is separated from the defect. 

Another notable pattern is shown in Figure 10, which also shows results for the 
bcc-(001) model, Line-3 defect, and T = 10 K, with α = 1.50. Phase transformation  

(a) Phase diagram              (b) Potential energy with defects
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Figure 9. Initiation of plastic behavior observed in transformation process with the 
bcc-(001) model, Line-3 defect, α = 1.55, and T = 10 K. 

 

 
Figure 10. Initiation of plastic behavior observed in transformation process with the 
bcc-(001) model, Line-3 defect, and T = 10 K, with α = 1.50. 

 
is initiated at about the 1500th timestep, which can be observed from the differ-
ences in the atomic configuration between the 1000th and 1500th time steps. 
Proceeding to the transformation, faint oblique lines are observed at the 1000th 
time step. These become sharper with the transformation at the 1500th time step 
and finally disappear when the transformation is completed by the 5000th time 
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step. It is clear that the line corresponds to a plane in the 3-D view, and this is 
temporarily formed during the transformation. The origin of the plane can be 
tracked back to the defect, as seen in the 3-D view at the 3000th timestep, though 
this is ambiguous at the initiation period around the 1000th time step. 

Similar behavior was observed for the full line models. Figure 11(a) represents 
the result for the same sets of parameters as for Figure 9, for which a circular 
pattern was observed. In this case, an arc can be seen at the 2000th timestep, as 
shown in Figure 11(a)(ii), but a closed circle is not formed, and two parallel 
boundaries are formed at the 3000th timestep. The origin of the generated plane 
can be found at the original defect, which is located at the center of the side edge 
in this figure. Similarly, the result of a comparative calculation using the same 
parameters as in Figure 10 is shown in Figure 11(b). In this case, the same pat-
tern consisting of oblique sharp lines is observed. A minor difference is that the 
line does not disappear completely until the end, and the lines are partially re-
tained. 

5.4. Discussion 

Overall, no specific patterns as shown in Figs 9 and 10 were observed during 
phase transformation for the scattered point defect models, although the total 
number of vacancies was much higher in a Point-10 model than that in a Line-3 
model, and the increase in the potential energy was larger as shown in Figure 
8(b). This is because heterogeneity is higher for aligned vacancies, or a line-defect 
model, than a randomly scattered case. Also, these patterns were not observed 
very frequently for the bcc-(011) models. This is because the Bain relationship 
induced often in the (011) model is rather straight forward, and local irregulari-
ties did not tend to be formed. In MD simulation, however, random inhomo-
geneity is introduced intrinsically, and different results were obtained occasio-
nally. Figure 11(c) shows a result for the bcc-(011) Line-full model with α = 1.50 
and T = 10 K. A unique pattern with crossing lines is generated on the transfor-
mation between the 3000th and 4000th time steps. Some other patterns were also 
observed, and detailed investigation of the universal features will continue. 

6. Conclusion 

Molecular dynamics simulations of the phase transformation from bcc to fcc 
structures were performed using a Morse-type potential, and the effects of lattice 
defects on the phase transformation were investigated. Consequently, it was re-
vealed that the defects influenced the stable structure and accelerated transfor-
mation from bcc to fcc. Different types of lattice defects, such as cylindrical do-
main formation and planar defects, were also generated during phase transfor-
mation, which might result in the initiation of plastic deformation. Further in-
vestigation is necessary to clarify the relationship between the phase transformation 
and induced plastic deformation, and it is concluded that the validity of the 
present model is verified. In addition, we have also reported microstructural 
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Figure 11. Various patterns observed for the full-line models. 

 
change in polycrystalline material under severe plastic deformation [22] [23]. 
Very recently, an interesting study on the transformation mechanism between 
the bcc and fcc structures for a binary-alloy system was reported [24], where the 
transformation is initiated at the two-phase boundary and progresses based on 
the NW relationship. Further modeling combined with these models will lead to 
complete clarification of the transformation and induced plastic behavior. 
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