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ABSTRACT 
This is the continuation of our studies on beta-glucosidase, which plays an important role in 
biological processes and recently strong interests focus on their potential role in biofeul 
production. In order to develop simple methods to predict the optimal working condition 
for beta-glucosidase, we used a 20-1 feedforward backpropagation neural network to screen 
possible predictors to predict the temperature optimum of beta-glucosidase from 25 ami-
no-acid properties related to the primary structure of beta-glucosidases. The results show 
that the normalized polarizability index and amino-acid distribution probability can predict 
the temperature optimum of beta-glucosidase, which highlights a cost-effective way to pre-
dict various enzymatic parameters of beta-glucosidase. 

 

1. INTRODUCTION 
The β-glucosidase (EC 3.2.1.21) plays an important role in biological processes because it cuts the 

β-bond linkage into glucose molecules [1]. For example, mutations in the gene of lysosomal enzyme acid 
beta-glucosidase can lead to human metabolic disorder Gaucher disease characterized by deficient activity 
of the enzyme [2, 3]. β-glucosidase can deglycosylase isoflavones to their aglycone forms, which provides 
wide applications in food and pharmaceutical industries [4]. Recently, more and more interest on its po-
tential role on biofeul production because cellulose is a linear biopolymer of glucose molecules connected 
by β-1,4-glycosidic bonds, of which enzymatic hydrolysis requires mixtures of hydrolytic enzymes includ-
ing endoglucanases, exoglucanases (cellobiohydrolases), and β-glucosidases [5]. Therefore, great efforts 
have been made to develop renewable biofuel by enzymatically hydrolyzing carbohydrate polymers in 
biomass to sugars and fermenting them to ethanol [6]. 

Generally speaking, the optimal working conditions for enzymes are determined through the experi-
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mental approaches, which are costly and time-consuming. Nowadays, the experimental speed apparently 
lags the speed of increase of enzymes in database because in 2002 there were only 789 enzymes docu-
mented in the Comprehensive Enzyme Information System BRENDA [7, 8]. However, there are enzymes 
from 33,721 organisms currently. In this situation, it is easily found that many enzymes have their se-
quence information but lack their optimal working conditions. Thus it is intriguing to develop methods to 
predict the optimal working conditions of enzymes based on their primary structure, and recently we have 
conducted several studies on predicting functional parameters of enzymes using amino acid properties, 
including pH optimum [9-12], temperature optimum [11-15], Michaelis-Menten constant [16-18] and 
turnover number [19]. However, more studies are needed in order to get solid conclusions. The aim of this 
study is to find out the predictors that are useful to predict the temperature optimum of β-glucosidase. 

2. MATERIALS AND METHODS 
2.1. Data 

From the Comprehensive Enzyme Information System BRENDA, 37 β-glucosidases (EC 3.2.1.21) 
have their sequence information under the category of temperature optimum, of which one β-glucosidase 
was documented with its mutant [20, 21]. Also, two temperature values are documented in the 
β-glucosidases B5TWK3 at 22˚C and 37˚C [22] and Q12715 [23] at 65˚C and 70˚C. In total, this databank 
provides 40 matched sequences and temperature values of β-glucosidases. The amino-acid sequences of 
β-glucosidases are obtained from the Universal Protein Resource (UniProt) [24]. 

2.2. Possible Predictors 

Table 1 lists the amino acid properties to be scanned, which involve the characteristics of charge, hy-
drophilicity or hydrophobicity, size and functional groups, and they are crucial for protein structure and 
protein–protein interactions [25]. Some properties are related to primary structure of enzymes and include 
the spatial properties [26, 27] listed in rows 2 - 5 in Table 1; hydrophobic properties [28-30] listed in rows 
6 - 10 in Table 1; electronic properties [31] listed in rows 11 - 17 in Table 1, and the secondary structure 
predictions [32] listed in rows 18 - 24 in Table 1. All of these properties have a particular number to a cer-
tain amino acid in proteins, thus each amino acid has a fixed value, which surely cannot represent differ-
ent β-glucosidases. Because each β-glucosidase has its own amino-acid composition, we multiply the val-
ues listed in Table 1 by their amino-acid composition for each β-glucosidase. 

Based on occupancy of subpopulations and partitions [33], we have developed a measure to calculate 
amino acid distribution probability according to the following equation: 

( ) ( )0 1 1 2! ! ! ! ! ! ! ! r
n nr q q q r r r r n−× × × × × × × ×   

where ! is the factorial function, r is the number of a type of amino acid, q is the number of partitions with 
the same number of amino acids and n is the number of partitions in the protein for a type of amino acid. 
And its calculation can be available at http://www.gxas.cn/dp.htm. Each type of amino acids has its distri-
bution probability as example shown in Table 2. However, the same type of amino acids can have different 
values in different proteins according to their real distribution pattern along protein sequence [34-38].  

2.3. Predictive Model 

In order to find out possible predictors to predict the temperature optimum of β-glucosidases, a 20-1 
feedforward backpropagation neural network was used as predictive model [39], whose structure is shown 
in Figure 1. In this model, the first layer contains 20 neurons corresponding to 20 inputs (or 20 elements 
of input in neural network terminology), which can be any measure related to 20 types of amino acids. The 
second layer contains a single neuron corresponding to the single output, temperature optimum. The 
transfer functions are tan-sigmoid and linear for two layers. The training algorithm is the resilient back-
propagation, which is the fastest algorithm on pattern recognition in MatLab [40]. 
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Table 1. Features of amino acids used as predictors. A, alanine; R, arginine; N, asparagine; D, aspar-
tic acid; C, cysteine; E, glutamic acid; Q, glutamine; G, glycine; H, histidine; I, isoleucine; L, leucine; 
K, lysine; M, methionine; F, phenylalanine; P, proline; S, serine; T, threonine; W, tryptophan; Y, 
tyrosine; V, valine. σI: Inductive effect scale; HMΔPH: Normalized Mulliken population data for the 
amino-acid side chains in the context of phenol; σR: Resonance effect scale; σα: Normalized polari-
zability index; σF: Field effect index; AI: Additional scale; f(i): Frequency of the 1st residue in turn; f(i 
+ 1): Frequency of the 2nd residue in turn; f(i + 2): Frequency of the 3rd residue in turn; f(i + 3): 
Frequency of the 4th residue in turn. 

Amino acid A R N D C E Q G H I L K M F P S T W Y V 

Mass, 
Dalton 

71.09 156.19 114.11 115.09 103.15 129.12 128.14 57.05 137.14 113.16 113.16 128.17 131.19 147.18 97.12 87.08 101.11 186.12 163.18 99.14 

Surface 
Area, Å2 

115 225 160 150 135 190 180 75 195 175 170 200 185 210 145 115 140 255 230 155 

Residue 
Volume, Å3 

88.6 173.4 114.1 111.1 108.5 138.4 143.8 60.1 153.2 166.7 166.7 168.6 162.9 189.9 112.7 89.0 116.1 227.8 193.6 140.0 

van der 
Waals 

volume, Å3 
67 148 96 91 86 114 109 48 118 124 124 135 124 135 90 73 93 163 141 105 

Residue 
Non-polar 

Surface 
Area, Å2 

86 89 42 45 48 69 66 47 129 155 122 164 137 194 124 56 90 236 154 135 

Residue 
Burial, 

kcal/mol 
2.15 2.23 1.05 1.13 1.20 1.73 1.65 1.18 2.45 3.88 3.05 4.10 3.43 3.46 3.10 1.40 2.25 4.11 2.81 3.38 

Side Chain 
Burial, 

kcal/mol 
1.0 1.1 −0.1 −0.1 0.0 0.5 0.5 0.0 1.3 2.7 1.9 2.9 2.3 2.3 1.9 0.2 1.1 2.9 1.6 2.2 

Hydropathy 
index 

4.5 4.2 −0.8 −0.9 −3.5 −0.7 −1.6 1.8 −3.9 −3.5 −1.3 2.5 −0.4 −3.2 −3.5 2.8 1.9 4.5 3.8 −3.5 

Ranking of 
amino acid 
polarities 

9 15 16 19 7 18 17 11 10 1 3 20 5 2 13 14 12 6 8 4 

pKa 9.69 9.04 8.80 9.60 10.28 9.67 9.13 9.60 9.17 9.68 9.60 8.95 9.21 9.13 10.60 9.15 9.10 9.39 9.11 9.62 

σI 0.05 −0.26 −0.14 0.51 −0.01 0.68 −0.10 0.00 −0.01 0.06 0.02 −0.16 0.08 0.04 0.00 −0.03 −0.05 0.06 0.05 0.01 

HMΔPH 0.05 −0.75 −0.20 1.80 −0.01 1.25 −0.07 0.00 0.21 0.08 0.07 −1.11 −0.04 0.06 0.10 −0.05 −0.03 0.15 0.02 0.09 

σR 0.00 −0.49 −0.06 1.29 0.01 0.57 0.03 0.00 0.22 0.02 0.05 −0.95 −0.12 0.02 0.10 −0.02 0.02 0.09 −0.03 0.08 

σα −0.01 −0.08 −0.04 −0.03 −0.03 −0.04 −0.05 0.00 −0.06 −0.04 −0.04 −0.05 −0.05 −0.08 −0.04 −0.02 −0.03 −0.12 −0.09 −0.03 

σF 0.05 0.27 −0.56 −1.77 0.06 −1.14 −0.35 0.00 −0.58 0.04 −0.03 0.51 −0.30 −0.45 0.02 −0.38 −0.44 −0.24 −0.42 −0.04 

AI 0.05 0.26 0.24 0.51 0.01 0.68 0.10 0.00 0.01 0.06 0.02 0.16 0.08 0.04 0.00 0.03 0.05 0.06 0.05 0.01 

P(α − helix) 142 98 101 67 70 151 111 57 100 108 121 114 145 113 57 77 83 108 69 106 

P(β − sheet) 83 93 54 89 119 37 110 75 87 160 130 74 105 138 55 75 119 137 147 170 

P(turn) 66 95 146 156 119 74 98 156 95 47 59 101 60 60 152 143 96 96 114 50 

f(i) 0.060 0.070 0.147 0.161 0.149 0.056 0.074 0.102 0.140 0.043 0.061 0.055 0.068 0.059 0.102 0.120 0.086 0.077 0.082 0.062 

f(i + 1) 0.076 0.106 0.110 0.083 0.050 0.060 0.098 0.085 0.047 0.034 0.025 0.115 0.082 0.041 0.301 0.139 0.108 0.013 0.065 0.048 

f(i + 2) 0.035 0.099 0.179 0.191 0.117 0.077 0.037 0.190 0.093 0.013 0.036 0.072 0.014 0.065 0.034 0.125 0.065 0.064 0.114 0.028 

f(i + 3) 0.058 0.085 0.081 0.091 0.128 0.064 0.098 0.152 0.054 0.056 0.070 0.095 0.055 0.065 0.068 0.106 0.079 0.167 0.125 0.053 
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Figure 1. 20-1 feedforward backpropagation neural network to model the relationship between 20 
pieces of information on primary structure of β-glucosidase, which are labeled using the symbols of 
20 types of amino acids, and its temperature. Each diamond presents a neuron. IW{1} is the input 
weights, LW{2,1} is the layer weights to the second layer from the first layer. b{1} and b{2} are the 
biases related to each neuron at the first and second layers. 
 
Table 2. Difference between normalized polarizability index (σα) and amino acid distribution 
probability in β-glucosidases A9UIG0 and Q4U4W7. 

Amino Number σα σα × Number Distribution probability 
Acid A9UIG0 Q4U4W7 A9UIG0 Q4U4W7 A9UIG0 Q4U4W7 A9UIG0 Q4U4W7 

A 82 74 −0.01 −0.01 −0.82 −0.74 0.0021 0.0015 
R 29 36 −0.08 −0.08 −2.32 −2.88 0.0043 0.0012 
N 56 46 −0.04 −0.04 −2.24 −1.84 0.0202 0.0174 
D 50 50 −0.03 −0.03 −1.5 −1.5 0.0039 0.0180 
C 8 8 −0.03 −0.03 −0.24 −0.24 0.1682 0.0841 
E 35 36 −0.04 −0.04 −1.4 −1.44 0.0218 0.0224 
Q 28 25 −0.05 −0.05 −1.4 −1.25 0.0642 0.0051 
G 94 86 0 0 0 0 0.0006 0.0027 
H 16 11 −0.06 −0.06 −0.96 −0.66 0.0715 0.0808 
I 35 43 −0.04 −0.04 −1.4 −1.72 0.0194 0.0240 
L 58 65 −0.04 −0.04 −2.32 −2.6 0.0002 0.0054 
K 29 29 −0.05 −0.05 −1.45 −1.45 0.0317 0.0317 
M 11 19 −0.05 −0.05 −0.55 −0.95 0.0404 0.0138 
F 34 33 −0.08 −0.08 −2.72 −2.64 0.0285 0.0193 
P 53 65 −0.04 −0.04 −2.12 −2.6 0.0058 0.0010 
S 62 61 −0.02 −0.02 −1.24 −1.22 0.0029 0.0112 
T 57 56 −0.03 −0.03 −1.71 −1.68 0.0023 0.0005 
W 18 16 −0.12 −0.12 −2.16 −1.92 0.0023 0.1362 
Y 41 33 −0.09 −0.09 −3.69 −2.97 0.0142 0.0174 
V 70 74 −0.03 −0.03 −2.1 −2.22 0.0067 0.0008 
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2.4. Validation of Predictions 

Each predictor went through this predictive model with same procedures in order to compare its 
output statistically. Table 3 lists a total of 40 β-glucosidases to be analyzed, of which 25 were used to gen-
erate the weights and biases in neural network as training group, and 15 were used to validate the neural 
network with trained weights and biases as validation group. This is a traditional way used in neural net-
work. Then, the delete-1 observation jackknife was used and each time one observation was left out from 
the sample set for validation, because it is most effective in comparison with independent dataset test and 
subsampling test, and is widely used [41]. Finally, cross-validation was used, and the data were split into 
10 or 4 subsets, which had 4 or 10 cases and was held out in turn as the validation set [42]. 

2.5. Statistics 

One hundred trainings were conducted for each predictor in the predictive model, and their weights 
and biases were used to predict the temperature optimum 100 times. The mean and standard deviation of 
predicted values were compared with the recorded temperature optimum for each β-glucosidase [43], and 
linear regression was also used to evaluate the predicted temperature values with their recorded ones. 

3. RESULTS AND DISCUSSION 
Theoretically, the neural network displayed in Figure 1 can account for various linear and nonlinear 

relationships between amino acid properties of primary structure and temperature optimum of β-glucosidases, 
which can guarantee the screening of various predictors, no matter whether the relationship between pre-
dictors and temperature is linear or nonlinear [39]. 

Technically, the initialization of weights and biases and number of training epochs govern whether 
the neural network can converge during training process, for which the weights and biases were initialized 
by random initialization function, and 250 training epochs were conducted. Only 4 out of 25 amino acid 
properties can be converged and shown in Figure 2, where each line represents that a training process 
contains random initialization of weights and biases with 250 training epochs. As seen, the convergence 
can be reached within 250 training epochs with any random initialization, which lays the foundation to 
guarantee the training process, indicating that these 4 properties can be served as predictors to predict the 
temperature optimum of β-glucosidases. However, it can be found that different predictors have different 
profiles of their convergence and the convergence of profiles of amino-acid distribution probability (bot-
tom panel) reached narrower than others. 

Table 3 demonstrates the comparison of recorded temperature optimum with predicted temperature 
optimum for 40 β-glucosidases. If there is no statistical difference between recorded and predicted tem-
perature optimum, a predictor would be considered workable. Accordingly, if no statistical difference was 
found between recorded and predicted temperature optimum, the predicted temperature optimum is 
marked with asterisk. The last row in Table 3 summarizes the overall performance, where it can be seen 
that the normalized polarizability index (σα) and amino-acid distribution probability works better than 
the other two. 

Figure 3 displays the percentage of β-glucosidases with correctly predicted temperature during the 
training process. As can be seen, the amino-acid distribution probability worked best in training group, 
which resulted that the temperature optimum of all β-glucosidases was correctly predicted, and followed 
by the normalized polarizability index (88%), whereas only the normalized polarizability index reached 
60% of correctly prediction in validation group. Figure 4 visualized the regression between recorded and 
predicted temperature optimum by using these four amino-acid properties as predictors. Figure 5 shows 
the results of delete-1, delete-4 and delete-10 jackknife validations, where it can be seen that both norma-
lized polarizability index and amino-acid distribution probability gave better performance and that there 
was generally no significant difference between different deletions. 

In conclusion, many studies have been focused on revealing the structure-function relationship of en-
zymes [44-46]. This study is consistent with our previous studies [9-19], demonstrating that some predictors  
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Figure 2. Convergence of mean squared error performance function with 100 different initial 
weights and biases generated by random initialization function. 
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Table 3. Comparison between recorded and predicted temperature optimum in 40 of β-glucosidases. 
The predicted temperature optimum was presented as mean ± SD of 100 predictions. AA, the ami-
no-acid composition; AA DP, amino-acid distribution probability. *, no statistical difference with 
the recorded temperature optimum. 

Group 
Accession 
Number 

Recorded 
temperature 

Temperature optimum predicted by 

σα × AA AI × AA f(i) × AA AA DP 

Training Q47RE2 25.0 43.5 ± 7.1 48.4 ± 6.0 49.2 ± 4.8 25.0 ± 0.0* 

 Q25BW5 30.0 43.9 ± 6.6 48.3 ± 5.2 49.2 ± 4.4 30.0 ± 0.0* 

 P15885 30.0 42.7 ± 7.8* 48.2 ± 6.0 48.3 ± 5.3 30.0 ± 0.0* 

 Q59976 30.0 43.5 ± 7.1* 48.4 ± 5.5 49.1 ± 4.8 30.0 ± 0.0* 

 Q08IT7 30.0 44.1 ± 6.1 48.8 ± 4.7 48.6 ± 4.6 30.0 ± 0.0* 

 Q86D78 35.0 42.7 ± 7.2* 48.1 ± 5.4 48.4 ± 5.1 35.0 ± 0.0* 

 Q2WGB4 37.0 44.2 ± 6.1* 48.7 ± 4.1 48.6 ± 4.6 37.0 ± 0.0* 

 A1C3J9 40.0 46.0 ± 4.6* 49.5 ± 3.3 49.1 ± 3.6 40.0 ± 0.0* 

 Q9SLA0 40.0 43.6 ± 6.5* 48.2 ± 5.2* 48.5 ± 4.9* 40.0 ± 0.0* 

 Q875K3 40.0 44.1 ± 6.1* 48.6 ± 4.6* 48.5 ± 5.0* 40.0 ± 0.0* 

 Q6QGY5 40.0 43.2 ± 6.7* 48.2 ± 5.2* 48.5 ± 5.0* 40.0 ± 0.0* 

 P94248 45.0 42.7 ± 7.4* 48.1 ± 5.5* 48.5 ± 5.0* 45.0 ± 0.0* 

 Q9AT27 50.0 44.0 ± 6.7* 48.4 ± 4.9* 48.9 ± 4.6* 50.0 ± 0.0* 

 Q8T0W7 50.0 52.4 ± 3.2* 52.7 ± 5.0* 51.2 ± 1.9* 50.0 ± 0.1* 

 Q4U4W7 50.0 59.3 ± 10.2* 51.8 ± 4.4* 53.6 ± 7.4* 50.0 ± 0.0* 

 P49235 50.0 47.5 ± 4.4* 48.7 ± 4.3* 49.6 ± 3.1* 50.0 ± 0.0* 

 Q9H227 50.0 43.9 ± 6.4* 48.3 ± 5.0* 48.8 ± 4.5* 50.0 ± 0.0* 

 O08331 65.0 59.3 ± 8.9* 53.4 ± 5.7 53.1 ± 6.0* 65.0 ± 0.0* 

 Q12715 65.0 59.7 ± 8.9* 54.1 ± 7.4* 53.5 ± 6.5* 65.0 ± 0.1* 

 A9UIG0 70.0 60.6 ± 9.8* 54.2 ± 7.6 53.9 ± 7.4 70.0 ± 0.1* 

 Q9P8F4 70.0 62.5 ± 11.7* 55.2 ± 9.7* 54.1 ± 8.0* 70.0 ± 0.1* 

 Q7Z9M5 70.0 61.8 ± 10.7* 54.2 ± 7.7 54.0 ± 7.6 70.0 ± 0.1* 

 Q8TGI8 71.5 58.6 ± 7.9* 52.9 ± 5.3 53.3 ± 6.1 71.5 ± 0.1* 

 Q746L1 88.0 64.9 ± 14.3* 55.2 ± 9.9 54.0 ± 8.5 88.0 ± 0.0* 

 B9K7M5 95.0 66.5 ± 16.0* 55.0 ± 9.5 53.8 ± 7.9 95.0 ± 0.0* 
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Continued 

Validation B5TWK3 22.0 63.4 ± 13.0 55.8 ± 11.8 54.4 ± 9.0 60.7 ± 6.7 

 B6ZKM3 30.0 52.0 ± 8.8 50.5 ± 3.6 51.0 ± 3.5 51.6 ± 13.1* 

 O61594 30.0 44.5 ± 5.9 49.3 ± 3.8 49.3 ± 4.0 62.5 ± 10.4 

 Q12601 35.0 47.0 ± 7.5* 49.8 ± 4.2 50.6 ± 4.9 59.3 ± 9.4 

 P96316 35.0 65.4 ± 16.7* 55.6 ± 12.3* 54.5 ± 9.3 65.9 ± 9.8 

 B5TWK3 37.0 63.4 ± 13.0 55.8 ± 11.8* 54.4 ± 9.0* 60.7 ± 6.7 

 P96316 45.0 65.4 ± 16.7* 55.6 ± 12.3* 54.5 ± 9.3* 65.9 ± 9.8 

 Q9H227 V168Y 50.0 43.8 ± 6.4* 48.3 ± 5.0* 48.7 ± 4.5* 46.9 ± 3.8* 

 Q9SPK3 50.0 43.0 ± 7.1* 48.2 ± 5.2* 48.4 ± 5.2* 63.5 ± 9.9* 

 Q9C3Z9 50.0 64.3 ± 16.3* 55.1 ± 10.8* 53.7 ± 7.8* 74.4 ± 10.3 

 Q2UUD6 60.0 58.9 ± 9.9* 54.2 ± 7.8* 53.4 ± 6.6* 62.9 ± 3.7* 

 Q12715 70.0 59.7 ± 8.9* 54.1 ± 7.4 53.5 ± 6.5 65.0 ± 0.1 

 P26208 65.0 48.3 ± 8.0 48.7 ± 4.5 49.6 ± 3.8 57.7 ± 14.8* 

 P10482 80.0 51.4 ± 6.7 50.6 ± 3.1 50.9 ± 2.8 54.3 ± 14.2* 

 Q08638 85.0 67.3 ± 17.4* 55.0 ± 9.8 54.1 ± 8.7 68.7 ± 14.5* 

Total   31 18 18 32 

 

 

Figure 3. Percentage of β-glucosidases with correctly predicted pH. The training and validation 
groups contained 25 and 15 β-glucosidases. 
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Figure 4. Linear regression between recorded and predicted temperature optimum in training and 
validation groups, respectively. Linear regressions for training groups are: (1) Temperature Opti-
mum = 8.2944 × (σα × AA composition) + 0.8352, P < 0.0001; (2) Temperature Optimum = 7.1604 × 
(AI × AA composition) + 0.8563, P < 0.0001; (3) Temperature Optimum = 13.3125 × (f(i) × AA 
composition) + 0.7368, P < 0.0001; (4) Temperature Optimum = 0.0166 × AA distribution probabil-
ity + 0.9997, P < 0.0001. Linear regressions for validation groups are: (1) Temperature Optimum = 
0.4935 × (σα × AA composition) + 36.8632, P = 0.0783; (2) Temperature Optimum = −0.0079 × (AI 
× AA composition) + 59.0869, P = 0.9726; (3) Temperature Optimum = 0.1182 × (f(i) × AA compo-
sition) + 52.6179, P = 0.6118; (4) Temperature Optimum = 0.4216 × AA distribution probability + 
43.9512; P = 0.0071. 
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Figure 5. Percentage of β-glucosidases with correctly predicted temperature. The validation among 
40 β-glucosidases was conducted using MatLab by means of delete-1, delete-4 and delete-10 jack-
knifing. AA, amino-acid. 
 
do have a promising prospective to predict the enzymatic optimal working conditions based on the infor-
mation related to enzyme primary structure. Surely, further efforts are needed to explore a cost-effective 
way to predict various enzymatic parameters of β-glucosidases. 
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