
Open Access Library Journal 
2019, Volume 6, e5661 
ISSN Online: 2333-9721 

ISSN Print: 2333-9705 

 

DOI: 10.4236/oalib.1105661  Aug. 26, 2019 1 Open Access Library Journal 
 

 
 
 

Determining the Radius of the Magnetic  
Vortex Core of YBCO123 and Bi2212 

A. Mukubwa1, Fred Masinde2 

1Department of Science, Technology and Engineering, Kibabii University, Bungoma, Kenya 
2Department of Physical Sciences, South Eastern Kenya University, Kitui, Kenya 

 
 
 

Abstract 
A plasma has been defined as a quasi-neutral gas of charged particles showing 
collective behaviour. Plasmas can support waves depending on the local con-
ditions, the presence of external electric and magnetic fields. A characteristic 
property of plasmas is their ability to transfer momentum and energy via col-
lective motion. An example in this case, is the Langmuir waves where plasma 
electrons oscillate against a stationary ion background. In a superconductor, 
two plasma electrons arise one that is made up of normal electrons and the 
other that is made up of super-electrons. In this study, we consider a system 
of super-electrons forming a super-particle. The motion of the plasma su-
per-particles around a magnetic vortex core has been studied in the YBCO123 
and Bi2212 systems. The results reveal an assemblage of super-particles that 
contain the magnetic flux within the vortex core of radius  
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1. Introduction 

Ginzburg-Landau (GL) theory gives a good account of interactions between 
magnetic field and electric field in a type II superconductor [1]. The theory 
agrees well with the BCS theory. However, the BCS theory is not sufficient to 
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explain the high energy pairing in the High-Tc superconductors. While the 
lower and the upper critical fields of a superconductor have been determined 
using the GL theory, finding the radius of the magnetic vortex core theoretically 
has been a challenge. Therefore, there is need for a new approach in studying the 
motion of charged particles in an electromagnetic field, especially in 
high-superconductor systems. In this study, we consider assemblage of charged 
particles, each moving independently in prescribed electromagnetic fields which 
constitute a plasma [2]. The plasma of charged particles responds inertially to 
electric field perturbations by oscillating at the electron plasma frequency. Exter-
nally imposed electric fields will induce perturbations in the plasma that are com-
binations of the time dependence of the externally imposed field and the electron 
plasma oscillations. The response of charged particles to the electric field force is  

limited by the inertial force d
d

ma m
t

=
v , and is inversely proportional to the  

mass of the charged particle. Thus, the lighter electrons will give the primary in-
ertial response to an electric field perturbation in a plasma [2]. Consequently, 
the electrons give the dominant contribution to the plasma polarization. In the 
Langmuir waves, plasma electrons oscillate against a stationary ion background 
in a normal state of a material [3]. The force experienced by an ith particle in 
motion is given by 

d
d

i
i m

t
=

v
F                            (1) 

where d
d

i
i

x
t

=v  is the velocity of the ith particle. The equation of motion of a 

charged particle in a magnetic field ( B ) due to an electric field ( E ) is given by 
[4], 

( )d
   

d
i q
t m
= + ×

v
E v B                       (2) 

where d
d

i
i

x
t

=v  is the velocity of the ith particle, q is the particle charge and  

( ) i iF q= + ×E v B  is the Lorentz force on the ith particle. The charge and cur-
rent densities respectively are obtained by integrating the distribution function 
over velocity space and summing over species  

( ) ( )3, d , ,i i
i

x t q v f x v t= ⋅∫∑ρ                   (3) 

And 

( ) ( )3, d , ,i i
i

x t q v f x v t= ⋅∑ ∫J v                   (4) 

where ( )    , ,f f x v t=  is the microscopic distribution function whose time deriv-
ative is given by 

( )( ) ( )( )
1

d        
d

N
i i

i i
i

xf f f f x x t t
t t t x t

δ δ
=

∂ ∂∂ ∂ ∂ = + + − − ∂ ∂ ∂ ∂ ∂ 
∑

v
v v

v
        (5) 
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here, v = v  Putting Equation (2) into Equation (5) yields the Klimontovich 
equation given as 

( ) ( )d  
d
f f f q f C f
t t x m v

∂ ∂ ∂
= + ⋅ + + × ⋅ =
∂ ∂ ∂

v E v B              (6) 

This is the plasma kinetic energy. The term ( )C f  is known as the Coulomb 
collision operator on the average distribution function ( )    , ,f f x v t= . The new 
form of Equation (6) becomes 

( ) ( )f qf f C f
t x v m

∂ ∂ ∂  + ⋅ + ⋅ + × = ∂ ∂ ∂  
v E v B              (7) 

For a plasma of particles, Coulomb collision effects over short time scales are 
negligible. Thus, for such plasma processes,  

( ) 0f qvf f
t x v m

∂ ∂ ∂  + ⋅ + ⋅ + × = ∂ ∂ ∂  
E v B               (8) 

The solution to this equation is 

( )1 2 3, , , , Nf f c c c c=                       (9) 

where ic  is the constant of motion. The distribution is kinetically stable when 
the energy   is the constant of motion and the equilibrium constant of distri-
bution depends on it. Fluid moments are obtained by integrating low order 
powers of the product of velocity and the distribution function over velocity 
space in the laboratory frame, that is 

3d : 0,1, 2,iv f i =⋅∫ v                      (10) 

Theoretical Formulation 
For a material in a superconducting state, two particles arise: normal particles 

that consist of normal electrons and the super-particles made up of su-
per-electrons. The motion of the plasma super-particles around a magnetic vor-
tex core contains the magnetic flux within the vortex core. 

Some of the velocity moments of the distribution function f are listed below 
Density of states:  

3dN vf= ∫                         (11) 

Flow velocity:  

31 dV v f
N

= ⋅∫ v                      (12) 

Average Kinetic energy (meV):  
2 2

3d
3 2

r rmv mvN v f
 

= = 
 
∫                 (13) 

Pressure (NM−2):  
2

3d
3

rmvp v f N= =∫                     (14) 

Pressure Tensor (NM−2):  
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( )3d r rv m f p pπ π= = + = +∫P v v Ι                 (15) 

A system of interacting super-particles consists of a number (n) of electrons 
each carrying a charge e. The total charge of the super-particle will be denoted 
by Q. Physical properties of plasma such as energy can be generated from the 
velocity moment of the plasma kinetic equation of the super-particles that is ex-
pressed as 

( ) ( )3d 0f Qvg f f
t x m

∂ ∂ ∂  + ⋅ + ⋅ + × =  ∂ ∂ ∂   
∫ v v E v B

v
       (16) 

where, ( )g v  is the velocity function for the particles. To find the density 
moment, 1g =  is used while for the momentum moment, g m= v  is used as a 
velocity function. The momentum equation for the plasma super-particles is  

( )3d 0f Qvm f f
t x m

∂ ∂ ∂  + ⋅ + ⋅ + × =  ∂ ∂ ∂   
∫ v v E v B

v
        (17) 

Each part is tackled separately using the commutation property before com-
bining the solutions: 

3 3 dd d
d

f vvm v fm mN
t t t

∂ ∂
= =

∂ ∂∫ ∫v v                (18) 

( )3 3d dvm f v fm p
x x

π∂ ∂
⋅ = = ∇ ⋅ +

∂ ∂∫ ∫v v vv             (19) 

( )

( ) ( )

3

3

d

d d
d

qvm f
m

Qv f m Nq
m

∂  ⋅ + × ∂  
 = + × = − + ×    

∫

∫

v E v B
v

v E v B E v B
v

        (20) 

Substituting the solutions back to Equation (17) we have 

( )mN NQ p
t

π∂
= + × −∇ ⋅ −∇ ⋅

∂
v E v B                (21) 

To determine the perpendicular guiding center (radius) drifts, the perpendi-
cular flow responses are obtained by taking the cross product of the momentum 
equation with the magnetic field B. Thus, Equation (21) becomes 

( ) ( ) mN NQ p
t
∂

× = × + × × − ×∇ ⋅
∂

B v B E B v B B           (22) 

Performing the product yields  

( ) ( ) ( )    0mN NQ NQ V p
t
∂

× − × + ⋅ + ×∇ ⋅ =
∂

B v B E B B B       (23) 

Dividing Equation (23) by 2NqB  we have 

( ) ( ) ( ) ( )2 2 2 2

1 1 1 0m V p
tQB B B NQB
∂

× + × + ⋅ + ×∇ ⋅ =
∂

B v B E B B B  (24) 

Equation (24) gives the total flow velocity of the system 
2

⊥∧= + +V V V V ‖                     (25) 

https://doi.org/10.4236/oalib.1105661


A. Mukubwa, F. Masinde 
 

 

DOI: 10.4236/oalib.1105661 5 Open Access Library Journal 
 

The   indicates the ordering of the various flow components while 

( )2

1ˆV V
B

= = ⋅V b B B‖ ‖                      (26) 

( ) ( )2 2

1 1 p
B NQB∧ = × + ×∇ ⋅V E B B                 (27) 

( )2

m
tqB⊥
∂

= ×
∂

V B v                        (28) 

In this case, ∧V  is the cross flow velocity, V‖  is the parallel flow velocity 
and ⊥V  is the perpendicular flow velocity. The directions, here, are relative to 
the direction of the magnetic flux, which is in the z-direction. Of importance, 
here, is the is the cross flow velocity given as 

( ) ( )2 2

1 1 p
B NQB∧ = × + ×V E B B ∇                (29) 

where,  

( )2

1
d p

NQB
= ×V B ∇                       (30) 

( )2

1
E B
= ×V E B                        (31) 

dV  represents the diamagnetic flow velocity while EV  represents the inte-
raction between the fields. This study revolves around the diamagnetic flow ve-
locity, dV  that describes the motion of super-electrons while exerting pressure 
p on the magnetic flux. This pressure contains the flux along cylindrical vortices. 
The quantity B  is the diamagnetisation of the super-particles. To work out the 
various components of the B∇  tensor, a local Cartesian coordinate system 
with coordinates ˆxe , ˆye  and ˆze  is used such that ˆze  is aligned along b̂  at 
b̂  and ˆxe  pointing towards the centre of the vortex core and perpendicular to 
b̂ . The y-axis of the local co-ordinate, ˆˆ ˆy xe e= ×b  becomes tangential to the 
surface of the vortex core (interface between the flux and the plasma-su- 
per-particles’ flow). Thus, the unit vectors characterizing this local coordinate 
system will be ˆxe , ˆ ˆ

ze = b  and ˆˆ ˆy xe e= ×b . Equation (31) can be evaluated as 
follows: 

( )2

1
d p

NQB
= ×V B ∇                     (32) 

Note that p∇  is one-dimensional in the ˆxe -direction i.e. towards the centre 
of the cylindrical vortex. 

( )2

1 1 1 d0 0
d

d 0 0

ˆ

d

ˆ ˆ
ˆ

x y z

y
pp B

NQB NQB xNQB

x

e e e

p
e × = =  

 
B ∇        (33) 

https://doi.org/10.4236/oalib.1105661


A. Mukubwa, F. Masinde 
 

 

DOI: 10.4236/oalib.1105661 6 Open Access Library Journal 
 

Recall that p N≅  , so that 1
p
=

 , where   is the kinetic energy of the su-

per-particles, at absolute zero temperature and Ek is the excitation energy of the 
quasi particles. Therefore, equation becomes 

1 d
d

ˆd y
p

Q p x
e

e
B

 
=     
 
 

V 
                      (34) 

The quantity 1 1 d
dp

p
L p x

= −  is known as the pressure-gradient scale length 

and is proportional to the radius, r of the vortex core, i.e. 

1 1 d
dp

pr
L p x

= = −                          (35) 

The vector ˆye  shows that plasma superfluid moves tangentially to the inter-
face as the flux concentrates about the centre of the vortex. These interactions 

form a cylindrical vortex core of radius 1

p

r
L

=  at diamagnetisation B and flux 

H. The diamagnetisation B is proportional to the 
1

2 0
0 e

cH
HcH H

H
µ

 − 
 + 

 
 

. There-

fore,  

1
2 0

0 e
cH

HcH H
B

H
ηµ

 − 
 + =  

 
                    (36) 

where η  a constant that depends on the material of the superconductor is, H is 
the applied external field, 1cH  is the lower critical field, 2cH  is the upper crit-

ical field, 0µ  is the permeability of free space and 
2c

H b
H

=  is the reduced 

magnetic field [5]. Considering all these cases, Equation (34) becomes 

1

2 0
0

1 e
cH

H
d

cH H Q r
eH

ηµ

 
 
 

 
 
 = −

+     
        

V                 (37) 

When the external magnetic field H is increased, the resulting magnetic flux 
(ф) mounts more pressure on the superelectrons and weakens the 
diamagnetisation. This results into an increase in the radius, r, of the core. At 

2cH H= , the supe-particles are so weak that the magnetic flux permeates the 
whole spectrum of the super-particles causing the superconductivity of the ma-
terial to breakdown and r →∞ . It is important to note that the values of   
are in meV. Consequently, 

1

2 0
0

1 e
cH

H
d

cH H Q r
eH

µη

 − 
 

 
 
 =

+     
        

V                (38) 
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At absolute zero temperature, the thermal velocity of the super electrons is 
zero and therefore, Equation (38) relies on the acoustic velocity. Hence, for a 
super-electron at absolute zero temperature, 

d
pm

=V 
                            (39) 

Hence, using Equations (39) into (38) we get 

1

2 0
0

1 e
cH

H

c

p

Q e
H H

rH m
η µ

 − 
 

 
 
 

= −  
+    

          




              (40) 

From Equation (40), it should be noted that for a three-electron system,  

( )7 8
0 3112.57 10 7.608 10

3 27.3 10em
µ −

−= × = ×
×

 
         (41) 

Substituting 41 into 40, we have  

1
9

2 0

1  e 1.314 10
cH

H

c

Q e
H H r

H
η

 
  − 

 
 = − × ×
 +    

 

             (42) 

If we make an assumption that the boundaries of the vortex core are clear 
when 0B B=  and 0H H= . Therefore, the radius 0r r=  is experimentally de-
termined at this point and 

1

02 0
0 0

0

e
cH

HcH H
B B

H
ηµ

 
−  
  +

= =  
 

                (43) 

At 
1

0
0 0e

cH
HB B µ

 
−  
 = = , 0r r= , 0H H=  and 0

2 0c

H
H H

η
 

=  + 
. Consequently, 

at 0B B= , Equation (42) becomes 

( )
1

0
1

18 2

0

1 1.728 10 e
cH

HQ
e r

 
  −   

= − × 
 

                 (44) 

2. Results and Discussion 

The average kinetic energy (  ) of super-particle consisting of three su-
per-electrons in a YBCO123 system, by calculation, is found to be 24 meV while 
that of Bi2212 is 25.1 meV. Msass of the model 3p em m= . Equations (36) and 
(43) has been used to generate the graphs of diamagnetisation, B  as a function 
of the external applied magnetic field H . Figure 1 shows a graph of 
diamagnetisation, B  as a function of the external applied magnetic field H  
over varied ranges of the applied external magnetic field for both YBCO123 and 
Bi2212 systems. 

In Figure 1(a), the Continuous line represents the theoretical results while the 
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dotted line represents the experimental results. Similar shapes have been ob-
tained through experimental procedures for Type II superconductors. In Figure 
1(a), the peak for both the experimental and theoretical occur at the lower criti-
cal field. Analysis of Figure 1(b) shows some interesting feature that emanates 
from the assumption in Equation (43). At 0B B= , the theoretical estimation 
puts the external applied field, at which the vortex core boundaries are clear, at 
6T which agrees fully with the experimental procedure that gives 6T. The curve 
finally ends while it is very close the x-axis where the upper critical field of  

120T. Table 1 shows the estimated values of the ratio Q
e

 − 
 

 from Equation 

(44) based on experimental values of 0r . 

The results from Table 1 have shown that  

( )
1

0
1

18 2

0

1 1.728 10 e 3
cH

H

r

 
  −  

   × ≈    
                 (45) 

 

 
(a) 

 
(b) 
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(c) 

Figure 1. Graph of diamagnetisation as a function of applied external magnetic field over 
the range (a) 0 0.6 T≤ <H  (b) 1 T 8 T< <H  (c) 20 cH≤ ≤H . 

 

Table 1. Estimated values of Q
e

 − 
 

. 

Superconductor ( )0 År  ( )
1

0

1
18 2

0

1 1.728 10 e
cH

H

r

 
  −  

 
× 

 
  

YBCO123 20 [6] 3.2 

Bi2212 22 [7] 3.1 

 

At 0 1cH H H=  , 
1

0e 1
cH

H
 

−  
  ≅ . Thus, 0r  can be estimated from the table as 

( )
1

18 2
0

1 1.728 10
3

År −= ×                     (46) 

Equation (46) shows the dependence of the vortex core radius, 0r , on the ki-
netic energy and the diamagnetisation of the super-electrons. Increase in the ki-
netic energy increases the centrifugal force on the super-particles and a conse-
quent increase in the radius of the vortex core. 

3. Conclusion 

It has been shown through the working that the radius of the magnetic vortex 
core, when the boundary is clear, increases with the kinetic energy (  ) of the 
super-particles.  
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