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Abstract 

We solve the optimal portfolio choice problem for an investor who can trade 
a risk-free asset and a risky asset. The investor faces both Brownian and jump 
risks and the jump is modeled by a Hawkes process so that occurrence of a 
jump in the risky asset price triggers more sequent jumps. We obtain the op-
timal portfolio by maximizing expectation of a constant relative risk aversion 
(CRRA) utility function of terminal wealth. The existence and uniqueness of 
a classical solution to the associated partial differential equation are proved, 
and the corresponding verification theorem is provided as well. Based on the 
theoretical results, we develop a numerical monotonic iteration algorithm 
and present an illustrative numerical example.  
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1. Introduction 

Empirical studies suggest that asset price encounters jumps and its volatility is 
stochastic. Further studies show that jumps occur in clusters, that is, a sequence 
of jumps occur in short time following a (big) jump which occurs after a rela-
tively long quiet period of time. The feature of clustered jumps can be caught by 
a type of stochastic process known as Hawkes process. In this paper, we model 
occurrence of jumps by a Hawkes process hence our model is an extension of 
well-known jump-diffusion models, e.g. [1]. Meanwhile, we assume that such 
Hawkes jumps may occur in asset price itself as well as in its volatility. As a re-
sult, our model merges with the vast literature of stochastic volatility. 
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The contributions of the present paper are twofold. First, we solve the optimal 
investment problem and prove a verification result for a CRRA utility while [2] 
solves for a logarithm utility function. They do discuss the CRRA case but leave 
proofs to some references. However, our work shows that it is highly non-trivial 
to prove the existence and uniqueness of a classic solution to the associated 
Hamilton-Jacobi-Bellman (HJB) equation, which is essential for solving the op-
timal portfolio choice problem and implementing numerical methods. Second, 
our model may incorporate stochastic volatility or stochastic risk premium. Thus 
it shall be powerful to explain more financial phenomena, e.g. flight-to-quality, 
under-diversification, and possibly disclose more economic insights. 

Technically, in the strand of the relevant literature, [3] introduces an 
Ornstein-Uhlenbeck (OU) type process of subordinator to model volatility. Af-
ter that, there are several works about optimal portfolio selection in a model 
with OU type processes of subordinators. For example, [4] solves the portfolio 
choice problem in a model where volatility is a linear combination of 
Ornstein-Uhlenbeck type processes of subordinators. [5] solves the optimal in-
vestment and consumption problem in a similar model where a state variable 
(economic factor) is an Ornstein-Uhlenbeck type process of subordinator. They 
deal with a more general model, compared to [4]. As a result, they arrive at a 
nonlinear partial integro-differential equation, instead of a linear one in the lat-
ter. In both of these two papers, there are no jump components in the dynamics 
of asset prices. In stark contrast to the literature we incorporate jumps in the as-
set price in the present paper and hence confront a new/different challenge (if 
not more difficult) when we solve the optimal portfolio choice problem. 

In our general setting, the volatility is a function of the state variable (the 
jump intensity) following a Hawkes process. Hence the present paper may com-
bine two strands of research: modeling volatility by an OU type of process of 
subordinator and modeling jumps by Hawkes processes together. There are sev-
eral papers studying the case where there are jumps in volatilities, e.g. [5], etc., 
while the present paper considers jumps in both of asset price and volatility, and 
in jump intensity as well. This leads to a more complicated HJB equation than in 
[5]. As a result, our model has the features of stochastic volatility and 
self-exciting, while the optimal investment problem is still solvable in sense of by 
an iteration method, given that the iteration is proved to converge correctly to 
the unique classical solution of the problem. 

This paper is incremental to the few aforementioned papers and dedicated to 
solving several technical problems related to CRRA utility functions. Neverthe-
less, the literature on portfolio choice is vast and is growing quickly. We would 
like to refer to some of them, for example, [6], which proposes a semivariance 
method for diversified portfolio selection; [7], that discusses a portfolio adjusting 
problem. The both assume that security returns are subject to experts’ estima-
tions. 

The organization of the paper is as follows. We formulate our model and op-
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timal portfolio choice problem in Section 2. The Hawkes process is introduced 
in this section. In Section 3, we analyze the HJB equation. The existence and un-
iqueness of a classical solution to the equation are proved under some appropri-
ate conditions. We also prove a verification theorem for the solution in Section 4. 
Two illustrative examples and one numerical example are provided in Section 5. 
Conclusion and further discussion are in Section 6. An extension is supplied in 
Appendix. 

2. Problem Formulation 

2.1. Hawkes Process for Self-Exciting Jumps 

A Hawkes process is a counting process with self-exciting feature. Roughly 
speaking, it is a compounded Poisson process with stochastic intensity. 

Given a complete probability space ( )( )0
, , ,t t≥

Ω   P , a counting process, 
{ } 0t t

N
≥

, satisfies  

( ) ( )1| ,t t t t tN N t o tλ+∆ − = = ∆ + ∆P  

( ) ( )1| ,t t t tN N o t+∆ − > = ∆P  

where the intensity process tλ  is given by the integrated form  

( ) ( )
0 0

e 1 e e d
t t st t

t sNαα αλ λ λ β − −− −
∞= + − + ∫  

or by the differentiation form  

( )d d d ;t t tt Nλ α λ λ β∞= − +                   (2.1) 

here λ∞  is the long-run average of the jump intensity corresponding to the 
jump; 0α >  is the decay rate driving the jump intensity back to the long-run 
average before a jump occurs; 0β ≥  is a constant indicating non-negative im-
pact of the jump occurrence on the jump intensity. 

A jump process { }tN  with the jump intensity described by (2.1) is called a 
Hawkes process [8]. It is known that the process is stationary if 1β

α
< . A 

Hawkes process differs from a doubly stochastic Poisson process since its incre-
ments are not independent. { }tN  is not Markovian but ( ){ },t tN λ  is. The 
compensated process 

0
d

t
t sN sλ− ∫  is a local martingale. For more information 

and a formal definition of Hawkes process, we refer to [8]. Figure 1 illustrates a 
sample path of one self-exciting (Hawkes) process. 

The Hawkes process has a feature of self-exciting which is ideal to model 
jumps in financial markets. As one jump occurs, the jump intensity is increased 
by the occurred jump through the mechanics of (2.1). Hence a sequent jump 
happens more likely in a unit time following. In other words, as a jump happens, 
it impacts on the jump intensity as well as on itself. As a result, one may see a 
sequence of jumps in a short frame of time after one (big) jump. Thus, jump is 
self-triggered through the channel described by (2.1) and jumps tend to be clus-
tered. Of course, it may not be the only channel to generate clustered jumps, but 
the empirical studies of [9] show an evidence that this channel is convincing.  
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Figure 1. A sample path of Hawkes { },t tN λ  and stock price { }tS . 

 
Meanwhile, the mean-reversion property of (2.1) prevents the jump intensity 
from explosion given 0 β α≤ < . Indeed, taking the expectation of (2.1) and us-
ing [ ] [ ]d ds sN sλ=   we obtain that  

[ ] ( ) ( )( )0e 1 e as .
1

t t
t tβ α β ααλ λ
λ λ

βα β
α

− −∞ ∞= + − → →∞
− −

  

2.2. Asset Dynamics with Self-Exciting Jumps 

We consider a market with a risk-free asset (bond) and a risky asset (stock). The 
price { }tB  of the risk-free asset follows dynamics:  

d d ,t tB rB t=  

where r is the risk-free interest rate. The price { }tS  of the risky asset follows a 
stochastic differential equation  

( ) ( )d
d d dt

t t t t t
t

S
r t W Y N

S
µ λ σ λ

−

 = + + +               (2.2) 

where { }tN  is a Hawkes process described in the preceding section, { }tW  is a 
standard Brownian motion, and 1tY > −  is a random jump size independent of 
the jump process and the Brownian motion. To be more precise, we define  

0
1

d
t

t
t t i

i N
Y N y

≤ ≤

= ∑∫  

where { } 1i i
y ∞

=
 are i.i.d. random variables that are independent of either the 

Brownian motion or the jump process. 
Note that the volatility σ  and the risk premium µ  are set to be functions 

of the jump intensity. Given appropriate conditions about the mappings (e.g. 
monotonic mappings), we may write ( )λ λ σ=  and ( )µ µ σ= , so our model 
is compatible with many models studied in stochastic volatility literature. 

2.3. Optimal Portfolio Selection Problem 

Now we turn to the Merton’s problem: An investor invests in the risky asset and 
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the risk-free asset in a time horizon [ ]0,T . In order to maximize the expected 
utility of the terminal wealth, the investor needs to find an optimal investment 
strategy. 

Let tX  be the wealth of portfolio at time t and tπ  be the proportion of 
wealth invested into the risky asset at time t. Then  

( ) ( )d d d
1 d d d .t t t

t t t t t t t t
t t t

X S B
r t W Y N

X S B
π π π µ π σ π

− −

= + − = + + +     (2.3) 

An investment strategy is an adapted stochastic process { } [ ]0,t t T
π π

∈
= . It is 

admissible if the associated wealth process is non-negative almost surely. The 
jump size tY , in particular, is assumed to take a form of e 1tZ − , where tZ  is a 
Gaussian random variable. This setting is popularly admitted in the literature of 
jump-diffusion model. See, for example, the seminal paper of [1]. As a result, an 
admissible strategy π  shall satisfy the constraint 0 1tπ≤ ≤ . Thus, shorting 
either stock or bond is not permitted. This constraint condition may be relaxed1 
according to distribution and support set of a specific jump size tY . We denote 
all admissible strategies by  . 

An optimal investment strategy is a strategy that maximizes the expected util-
ity of the terminal wealth. That is, the objective of an investor is to find V and 

*π  such that  

( ) ( ) ( ), * ,
0, , max , arg maxx x

t T TV x t U X U Xλ λ

π π
λ π

∈ ∈
= =       

 
      (2.4) 

where ,x
t
λ  is the expectation conditioned on tX x=  and tλ λ= . In this 

paper, we solve the problem for the CRRA utility ( ) pU x x p= . We prove the 
existence and uniqueness of a classical solution to the associated HJB equation 
when ( )0,1p∈ . By a similar approach, our framework may be extended to the 
case of 0p <  regardless of an amount of efforts. The case of logarithm utility 
(corresponding to 0p = ) has been studied in [2] while assuming constant vola-
tility and risk premium. In Section 5, we will discuss an extension case of loga-
rithm utility with stochastic volatility and stochastic risk premium, as an appli-
cation of our general results. 

The Hamilton-Jacobi-Bellman (HJB) equation associated with the above sto-
chastic optimization problem can be derived as  

( )

( ) ( )( )2 2 21max 1 , , ,
2

t

x xx

V V V

r xV x V V x Y t

λ

π

α λ λ λ

πµ π σ λ π λ β

∞− − +

  = + + + + +   


  (2.5) 

( ) ( ), , .V x T U xλ =                       (2.6) 

Here subscripts denote partial derivatives and Y is a random variable having 
the same distribution as tY . In this paper, we shall make a full mathematical 
analysis of the HJB Equation (2.5) subject to the terminal condition (2.6), and a 
certain growth condition such as (2.8) below. 

 

 

1If a tight bound of Y is a Y b− ≤ ≤ , where a and b are positive constants, then { }tπ  is admissible 

if and only if 1 1tb aπ− ≤ ≤ . 
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There are several papers studying the case where there are jumps in volatilities, 
e.g. [5]. Different from only jumps in volatility, our model incorporates jumps in 
both of asset price and volatility, and in jump intensity as well. It is worth to 
mention that the HJB Equation (2.5) is more complicated than that in [5]. The 
framework of our model is the same as that in [2], except the setting of utility 
function. As well-known, CRRA utility functions generally involve much more 
difficult technical problems than the logarithm utility function. 

Remark 2.1. The HJB Equation (2.5), together with the terminal condition 
(2.6), may have several solutions. From a view point of partial differential equa-
tion, it is necessary to prescribe an asymptotic behavior of the solution as 
λ →∞ . Note that, as a suboptimal strategy, investing everything into the 
risk-free asset gives the lower bound  

( ) ( ) ( ), , e e .rt prtV x t U x U xλ ≥ =               (2.7) 

Although it is very had to estimate an upper bound, we shall prove the exis-
tence of a unique solution of (2.5)-(2.6) under the following growth condition: 
For some constant 0C > .  

( )
( ) [ ], ,1 , 0, 0, .

V x t
C t T

C U x
λ

λ≤ ≤ ∀ ≥ ∈            (2.8) 

3. Mathematical Analysis of the HJB Equation 

3.1. Scaling Invariance 

Note that applying the same strategy for two initial portfolios with initial condi-
tion ( ) ( )0 0, ,X xλ λ=  and ( ) ( )0 0, 1,X λ λ=  respectively, we find that the cor-
responding wealth of the two portfolios differ by a factor of x at any time 

[ ]0,t T∈ . Hence, optimal strategies do not depend on x, and we have the scaling 
invariance 

( ) ( ) ( ), , , ,V x t U x H T tλ λ= −                     (3.1) 

where T tτ = −  is the time to expiry and ( ) ( ) ( ), : 1, , 1H V x T Uλ τ τ= − . Plug-
ging (3.1) into (2.5) and using Remark 2.2 we obtain the equation for H:  

( ) ( ) ( ) ( ) ( ){ }
0 1
max , , , , ,H H A H B Hτ λ π

α λ λ λ π λ τ λ π λ β τ∞ ≤ ≤
+ − = + +   (3.2) 

( ),0 1,H λ =                            (3.3) 

where  

( ) ( ) ( ) ( ) ( )
2

21
, , , 1 .

2
pp p

A pr p B Y
σ

λ π µ λ π π λ λ π λ π
−  = + − − = +   (3.4) 

It is easy to check that both A and B are concave function of π . Hence, if 
0H > , then there exists a unique *π  such that2  

( ) ( ) ( ) ( ) ( ){ }*

0 1
, arg max , , , , .A H B H

π
π λ τ λ π λ τ λ π λ β τ

≤ ≤
= + +        (3.5) 

In fact, with integrability of the jump size Y the first order condition brings us 

 

 

2We assume that the optimizer is achieved in the interior. 
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that  

( )
( ) ( ) ( ) ( )

( ) ( )
( )

1* *
2 2

,
1 .

,1 1

p H
Y Y

Hp p

µ λ λ β τλπ π
λ τσ λ σ λ

− + = + +  − −
    (3.6) 

The second term in the right hand side of the above formula is the hedging 
demand for the self-exciting jump risks. 

In the rest of this section, we shall impose certain conditions on ( ) ( ),σ µ⋅ ⋅  
and Y and show that the HJB Equation (3.2) subject to the initial condition (3.3) 
and a certain growth condition admits a unique solution. In the next section we 
prove a verification result showing that the solution obtained solves the optimal 
investment problem. 

For the case of CRRA utility, [2] suggest to prove the existence of a solution by 
verifying a contracting mapping as [5]. Our attempts show that it is not a trivial 
task to do that, instead, we use a different analytic method to accomplish the 
mission. 

3.2. Basic Assumptions 

First of all, we state some necessary assumptions as follow.  

( ) ( ) ( ) [ )( )2 20,1 , , 0, .p Cµ σ∈ ⋅ ⋅ ∈ ∞                   (3.7) 

Recall that we assume ~ e 1tZ
tY Y = − . Thus 1Y > −  a.s., 2Y  < ∞  . 

To explain our idea in a clear manner, we assume that  

( ) [ ]limsup 0.Y
λ

µ λ λ
→∞

 + <                       (3.8) 

Intuitively, the assumption (3.8) claims that the excess return of the asset will 
be negative if the jump frequency is high enough. In the literature of 
jump-diffusion models, the excess return is usually assumed with a compensa-
tion of jump risk, see, e.g. [10]. Hence the assumption (3.8) is equivalent to say 
that ( )µ λ  may not be enough compensated when (negative) jumps occur at a 
high frequency. That does not sound unreasonable. 

The assumption may be relaxed to  

( ) [ ]
( )

limsup .
Y

λ

µ λ λ
σ λ→∞

+
< ∞


                   (3.9) 

We shall discuss this later in the Appendix. 
Under (3.8) we define  

[ ) ( ) [ ] [ ){ }* : min , | 0, , .s Y sλ λ µ λ λ λ∞= ∈ ∞ + ≤ ∀ ∈ ∞        (3.10) 

3.3. An Integral Formulation 

Let T tτ = − . We study the problem  

( ) ( ) ( ) [ ]
( )

, 0, , 0,

,0 1 0,

H H H T

H
τ λα λ λ τ λ τ λ

λ λ
∞ + − = ⋅ ∀ ∈ ≥   


= ∀ ≥


     (3.11) 

where, with A and B as in (3.4),   is a non-local operator defined by  
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[ ]( ) ( ) ( ) ( ) ( ){ }
0 1

: max , , .u A u B u
π

λ λ π λ λ π λ β
≤ ≤

= + +  

Note that   satisfies, for any positive constant c and continuous functions u 
and v,  

[ ] [ ] [ ] [ ] [ ], .cu c u u v u v= − ≤ −                (3.12) 

We shall use characteristic curves to convert (3.11) into an equivalent integral 
formulation. For this we introduce  

[ ) [ ] ( ) ( ) ( )0, 0, , , , : e .tD T t α τλ τ λ λ λ −
∞ ∞= ∞ × Λ = + −        (3.13) 

For notational simplicity, in the sequel, we write ( ), , tλ τΛ  simply as Λ . 
Let M be a positive constant to be determined. For fixed ( ), Dλ τ ∈  and 

along the characteristic curve ( )( ){ }
0

, , ,
t

t t
τ

λ τ
≤ ≤

Λ , we obtain from (3.11) that  

( )( )
( ) ( ) ( ) ( )
( ) ( ) ( ){ } [ ]

d e , , ,
d

e , , ,

e , , , 0, .

Mt

Mt

Mt

H t t
t

MH t H t H t

MH t H t t

τ λ

λ τ

α λ

τ

∞

 Λ 

= Λ + Λ + Λ − Λ  

= Λ + ⋅ Λ ∀ ∈  

 

Integration over [ ]0,t τ∈  gives  

( ) ( )( ) ( ) ( )( ){ } ( )
0

, e , , , , , , e d .M tMH MH t t H t t t
τ ττλ τ λ τ λ τ −−= + Λ + ⋅ Λ  ∫   

Substituting the definition of   into the expression we obtain the integral 
formulation:  

( ) ( ) ( ) ( ){ } ( )
0 0 1

e max , , , , e d ,M tMH M A H t B H t t
τ ττ

π
π π β −−

≤ ≤
= + + Λ Λ + Λ Λ +  ∫ (3.14) 

for every ( ), Dλ τ ∈  where D and ( ): , , tλ τΛ = Λ  are as in (3.13). 
In the sequel we shall choose an appropriate positive constant M and solve the 

above integral equation by a monotonic iteration technique. 

3.4. Determination of the Constant M 

First we consider the function  

( ) ( ) ( ) [ ], : , , , 0, 0,1 .f A Bλ π λ π λ π λ π= + ∀ ≥ ∈  

Direct calculation yields  

( ),0 ,f prλ =  

( ) ( ) ( ) ( ) ( ) 12, 1 1 ,pf p p y yπ λ π µ λ πσ λ λ π −  = − − + +   
  

( ) ( ) ( ) ( ){ }22 2, 1 1 0.pf p p y yππ λ π σ λ λ π − = − − + + <   

Hence, we have the following: 
Lemma 1. For each 0λ ≥ , there exists a unique ( ) [ ]* 0,1π λ ∈  such that  

( ) ( ) ( )( ) ( )*

0 1
: max , , ,0 .f f f pr

π
ζ λ λ π λ π λ λ

≤ ≤
= = ≥ =       (3.15) 

In addition, the following holds:  

https://doi.org/10.4236/jmf.2019.93020


B. J. Bian et al. 
 

 

DOI: 10.4236/jmf.2019.93020 353 Journal of Mathematical Finance 

 

1) If ( ) [ ]{ }0 : 0 | 0I yλ λ µ λ λ∈ = ≥ + ≤ , then ( )* 0π λ =  and ( ) prζ λ = ;  

2) If ( ) ( ) ( ) ( ){ }12
1 : 0 | 1 1 0pI p y yλ λ µ λ σ λ λ − ∈ = ≥ − − + + ≥  , then 

( )* 1π λ = ;  

3) If [ ) ( )1 2: 0, \I I Iλ ∈ = ∞  , then ( ) ( )* 0,1π λ ∈ . In addition, ( )*π ⋅  is 
smooth on I.  

Consequently, if (3.8) holds, then for λ∗  as in (3.10),  

( ) ( )* 0, , .prπ λ ζ λ λ λ∗= = ∀ ≥                 (3.16) 

We now define  

( )
( ){ }

0 1,0 e
max , .

T
M A

απ λ λ λ λ
λ π

∞ ∗ ∞≤ ≤ ≤ ≤ + −
=  

This implies that  

( ) [ ] ( ), 0, 0,1 , 0, e .TM A αλ π π λ λ λ λ∞ ∗ ∞ + ≥ ∀ ∈ ∈ + −       (3.17) 

3.5. Monotonic Iteration 

We now solve (3.14) by the following iteration: for each non-negative integer n 
and ( ), Dλ τ ∈ , we define iteratively nH  by  

( )0 , : e ,prH τλ τ =                      (3.18) 

( ) ( ) ( ){
( ) ( )} ( )

1 0 0 1
, : e max , ,

, , e d .

M
n n

M t
n

H M A H t

B H t t

ττ

π

τ

λ τ π

π β

−
+ ≤ ≤

−

= + + Λ Λ  

+ Λ Λ +

∫       (3.19) 

Since ( ) ( ) ( ), , 1 e e 0t tt α τ α τλ τ λ λ− −
∞
 Λ = Λ = − + ≥   for every ( ), Dλ τ ∈  and 

[ ]0,t τ∈ , we see that { } 0n n
H ∞

=
 is a well-defined family of continuous functions 

on D. We introduce  

( ) [ ] ( ){ }: , | 0, , e .Q T ατλ τ τ λ λ λ λ∞ ∗ ∞= ∈ ≥ + −  

Lemma 2. For each integer 0n ≥  and every ( ), Qλ τ ∈ , ( ), e pr
nH τλ τ = .  

Proof. We use a mathematical induction. Assume that ( ), e prt
nH tλ =  for all 

( ), t Qλ ∈ . Then when ( ), Qλ τ ∈  and [ ]0,t τ∈ , we have  

( ) ( ) ( )e e .t tα τ αλ λ λ λ λ λ λ−
∞ ∞ ∞ ∗ ∞ ∗Λ = + − ≥ + − ≥  

Thus, ( ), t QΛ ∈  and ( ), t QβΛ + ∈  for all [ ]0,t τ∈ . Consequently, 
( ) ( ), , e prt

n nH t H tβΛ = Λ + = . Also, by (3.16), ( ) prζ Λ = . It then follows 
from (3.19) that  

( ) ( ) ( ){ } ( )

( ){ } ( )

1 0 0 1

0

, e max , , e d

e e d e .

prt M tM
n

M pr t MM pr

H M A B t

M t

τ ττ

π

τ ττ τ

λ τ π π

ζ

+ −−
+ ≤ ≤

+ −−

= + + Λ + Λ

= + + Λ =

∫

∫
 

Hence, by mathematical induction, ( ), e pr
nH τλ τ =  for every ( ), Qλ τ ∈  and 

every non-negative integer n. This completes the proof. 
In the sequel, we focus on the case ( ), \D Qλ τ ∈ . Note that  

( ) ( ) ( ) [ ], , e , , \ , 0, .tt D Q tαλ τ λ λ λ λ τ τ∞ ∗ ∞Λ ≤ + − ∀ ∈ ∈  
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Hence,  

( ) [ ] ( ) [ ], 0, 0,1 , , \ , 0, .M A D Q tπ π λ τ τ+ Λ ≥ ∀ ∈ ∈ ∈          (3.20) 

Lemma 3. For each integer 0n ≥ , 1n nH H+ ≥  on D. 
Proof. We need only consider the case ( ), \D Qλ τ ∈ . When 0n = , we ob-

tain from (3.18), (3.19), and the definition of ζ  in (3.15) that  

( ) ( ) ( )

[ ] ( ) ( )
1 0

00

, e e d

e e d e , .

pr M t MM

pr M t MM pr

H M t

M pr t H

τ ττ

τ ττ τ

λ τ ζ

λ τ

+ −−

+ −−

= + + Λ  

≥ + + = =

∫

∫
 

Thus, 1 0H H≥ . Next using (3.20) we can show by a mathematical induction 
that 1n nH H+ ≥  on \D Q . This completes the proof.  

Now we establish an upper bound. We define  

( ) ( )
[ ]

( )
0 0 1 [0, ) 0,

: max max , max max .k f pr
λ π λ λ λ

λ π ζ λ ζ λ
∗≥ ≤ ≤ ∈ ∞ ∈

= = = ≥          (3.21) 

Lemma 4. For each integer 0n ≥  and ( ), Dλ τ ∈ , ( ), ek
nH τλ τ ≤ . 

Proof. We use an induction argument. Assume that the assertion holds for 
some 0n ≥ . Then for ( ), \D Qλ τ ∈ , by (3.19)-(3.20) we obtain  

( ) ( ) ( ){ } ( )

{ } ( )

1 0 0 1

0

, e max , , e d

e e d e .

k M t MM
n

k M t MM k

H M A B t

M k t

τ ττ

π

τ ττ τ

λ τ π π + −−
+ ≤ ≤

+ −−

≤ + + Λ + Λ

≤ + + =

∫

∫
 

Thus, the assertion of the Lemma holds for 1nH + . This completes the proof. 

3.6. Solution of the Integral Equation 

The family { } 0n n
H ∞

=
 is a bounded monotonic family, so : limn nH H→∞=  exists. 

We wish to prove a uniform convergence. For this, we introduce a norm ⋅  by  

[ )
( )

0,
: sup .u u

λ
λ

∈ ∞
=  

Note that when ( )0, e Tαλ λ λ∞ ∗ ∞ Λ∈ + −  ,  

( ) ( ){ }
( ) ( ){ }

( )

0 1

0 1

max , ,

max , ,

.

M A B

M A B

M M k

π

π

π π

π π

ζ

≤ ≤

≤ ≤

+ Λ + Λ

= + Λ + Λ

= + Λ ≤ +

 

Hence, using { } { } { }max max maxf g f g− ≤ −  we obtain, when 1n ≥  and 
( ), \D Qλ τ ∈ ,  

( ) ( )
( ) ( ) ( ){

( ) ( ) ( ) } ( )

( ) ( ){ } ( ) ( ) ( )

[ ] ( ) ( )

1

10 0 1

1

10 0 1

10

0 , ,

max , , ,

, , , e d

max , , , , e d

, , d .

n n

n n

M t
n n

M t
n n

n n

H H

M A H t H t

B H t H t t

M A B H t H t t

M k H t H t t

τ

π

τ

τ τ

π

τ

λ τ λ τ

π

π β β

π π

+

−≤ ≤

−
−

−
−≤ ≤

−

≤ −

≤ + Λ Λ − Λ      

+ Λ Λ + − Λ +  

≤ + Λ + Λ ⋅ − ⋅

= + ⋅ − ⋅

∫

∫

∫

 

By a mathematical induction, one can derive that  
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( ) ( ) ( ) [ ]1

e
, , , 0, , 0,1,

!

n k
n

n n

M k
H H T n

n

τ

τ τ τ τ+

+
⋅ − ⋅ ≤ ∀ ∈ =   

Hence, we have the following:  
Lemma 5. There exists a function ( )H C D∈  such that 

( )
( ) ( )

,
lim sup , , 0.nn t D

H H
λ

λ τ λ τ
→∞ ∈

− =  

In addition, H is a solution of (3.14) and has the following properties:  

( ) ( ) ( ) ( )e , e , , , , e , , .pr k prH D H Qτ τ τλ τ λ τ λ τ λ τ≤ ≤ ∀ ∈ = ∀ ∈  

3.7. Lipschitz Continuity 

For each [ ]0,Tτ ∈ , we define  

( ) [ )( ) ( ) ( ) ( ){ }1
1 0, | e e , e e .pr k pru C u uτ τ τ αττ λ λ λ λ λ∞ ∗ ∞= ∈ ∞ ≤ ⋅ ≤ = ∀ ≥ + −X  

For ( )1u τ∈X , we consider the function  

( ) ( ) ( ) ( ) ( ) [ ) [ ], , , , 0, , 0,1 .uF M A u B uλ π λ π λ λ π λ β λ π= + + + ∀ ∈ ∞ ∈    

Lemma 6. Let [ ]0,Tτ ∈  and ( )1u τ∈X . Then for each 0λ ≥  there exist a 
unique ( ) [ ]0,1uπ λ ∈  such that  

( ) ( ) ( )( )
0 1

: max , , .u u u uF F F
π

λ λ π λ π λ∗ ≤ ≤
= =  

In addition, ( )uπ ⋅  is Lipschitz continuous on [ )0,∞ , ( ) [ )( )1 0,uF C∗ ⋅ ∈ ∞ , 
and  

( ) ( )( ) ( ) ( )( )
( )( )

,dd , , .
d d ,

u uu
u u u

u u

F
F F

F
πλ

λ
ππ

λ π λπ λ
λ λ π λ

λ λ λ π λ∗ = ≤      (3.22) 

Proof. When ( )eατλ λ λ λ∞ ∗ ∞≥ + − , we have ( ) ( ) eku u πτλ λ β= + =  so  

( ) ( )0, e .u u prF τπ λ λ∗= =  

It remains to consider the case ( )0, eατλ λ λ λ∞ ∗ ∞ ∈ + −  . Note that for 
[ )0,1π ∈ ,  

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) { } { }{ }

22 2

2 2
0 0

1 1

e 1 0.

pu

pt p
y y

F p p u y y u

p p y y

ππ

τ

σ λ λ π λ β

σ λ

−

> <

 − = − + + + 

 ≥ − + + > 

E

1 1
 

Thus, there exists a unique ( ) [ ]0,1uπ λ ∈  such that ( ),uF λ ⋅  on [ ]0,1  at-
tains its maximum at ( )uπ λ . Note that  

( ) ( ){ }*
00 : 0 | ,0 0 ,uI Fππ λ λ λ λ= ⇔ ∈ = ≥ ≤  

( ) ( ){ }*
11 : 0 | ,1 0 ,uI Fππ λ λ λ λ= ⇔ ∈ = ≥ ≥  

( ) ( ) ( ) ( ){ }* 0,1 : 0 | ,0 0 ,1 .u uI F Fπ ππ λ λ λ λ λ∈ ⇔ ∈ = ≥ > >  

Here we define ( ),1uFπ λ = −∞  if ( ) 11 py − − = ∞  ; in this case we have 
( ) [ )0,1uπ λ ∈  for any 0λ > . Hence, as 0uFππ < , we see that *π  is conti-

nuous and that I is an open set. When Iλ ∈ , by the implicitly function theo-
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rem,  

( ) ( )( ) ( )( ), , , 0,u u u uF F Fπλ λ π λ λ π λ∗ = =  

( )
( )( )
( )( )

,
,

,

u u
u

u u

F

F
λπ

λ
ππ

λ π λ
π λ

λ π λ
= −  

( ) ( )( ) ( )( ) ( ) ( )( ), , , .u u u u u u u uF F F Fλ λ π λ λλ λ π λ λ π λ π λ λ π λ∗ = + =  

Since ( ) ( )( ),u u uF Fλ λλ λ π λ∗ =  for almost every 0 1I Iλ ∈  , by the continuity 
of ( )uπ ⋅ , we hence know that [ )( )1 0,uF C∗ ∈ ∞  and ( ) ( )( ),u u uF Fλ λλ λ π λ∗ = . 
This completes the proof.  

We now calculate the norm of uF λ∗ . Notice that  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, , ,

, , .

uF A u B u s

M A u B u
λ λ λ

λ λ

λ π λ π λ λ π λ

λ π λ λ π λ β

= + +

+ + + +  
 

When ( ) )e ,ατλ λ λ λ∞ ∗ ∞∈ + − ∞ , we have ( ) ( ) 0u uλ λλ λ β= + =  so 
( ), 0uFλ λ π = . When ( ) ( ): 0, eI ατλ τ λ λ λ∞ ∗ ∞ ∈ = + −   and [ ]0,1π ∈ ,  

( )
( ) ( )

[ ]
,0 1 ,0 1

1

, max e max

e .

k

I I

k

F A B M A B u

k M k u

τ
λ λ λ λλ τ π λ τ π

τ
λ

λ π λ
∈ ≤ ≤ ∈ ≤ ≤

 ≤ + +  + +   

= + +
 

where 

( )
( ) ( ){ }1

0 1,0 e
: max , , .

T
k A B

α λ λ
π λ λ λ λ

λ π λ π
∞ ∗ ∞≤ ≤ ≤ ≤ + −

= +  

Hence, we have  
Lemma 7. Under the condition of Lemma 6, we have  

[ ]1e .u kF k M k uτ
λ λ∗ ≤ + +  

Now, applying this estimate for (3.19) and using ( )d d e tα τλ −Λ =  and 
( )d dτ α λ∞Λ = Λ −  we obtain 

( ) ( ) ( ) ( )( ) ( ), ,
1 0

, e , e d ,n nH t H t M tM
nH F t

τ ττλ τ π⋅ ⋅ −−
+ = + Λ Λ∫  

( ) ( ) ( )( ) ( )( ), ,
1, 0

, e d ,n nH t H t M t
nH F t

τ α τ
λ λ π⋅ ⋅ + −

+ = Λ Λ∫           (3.23) 

( ) ( ) ( )1, 1, , .n n nH H Hτ λα λ λ τ λ+ ∞ += − + ⋅             (3.24) 

Thus,  

( ) [ ] ( ){ } ( )( )
1, 1 ,0

, e , e d .M tkt
n nH k M k H t t

τ α τ
λ λτ + −

+ ⋅ ≤ + + ⋅∫  

Lemma 8. For every non-negative integer n, ( )1
nH C D∈  and for each 

[ ]0,Tτ ∈ ,  

( ) 1
,

e
, .

k

n
kH

τ

λ τ
α

⋅ ≤                       (3.25) 

Proof. Clearly, the assertion (3.25) holds when 0n = . Assume that (3.25) 
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holds for some 0n ≥ . Then we have  

( ) [ ] ( )( )1 1
1, 10

e
, e e e d .

k
M tkt kt

n
k kH k M k t

τ
τ α τ

λ τ
α α

+ −
+

 ⋅ ≤ + + ≤ 
 ∫  

Thus, by mathematical induction, the assertion of the Lemma holds. 
Similarly, using (3.24), we can obtain an ( )L D∞  estimate for ,nH τ . We omit 

the details. 

3.8. W 2,∞  Estimate 

Now assume that  

( ) ( ) ( )( ){ }1
2 1 1| 0, , e .ku u u L u k τ

λλ λτ τ α∞ −∈ = ∈ ∈ ∞ ≤X X  

Differentiating ( ) ( )( ),u u uF Fλ λλ λ π λ∗ =  with respect to λ  we obtain  

( ) ( )( ) ( )( ) ( ), ,u u u u u uF F Fλλ λλ λπ λλ λ π λ λ π λ π λ∗ = + , a.e. 

Hence, using estimate (3.22) for ( )u
λπ λ , we find that  

( ) ( )( )
( )( )

( )

2
,

, .
,

u u
u u u

u

F
F F

F

λπ

λλ λλ

ππ

λ π λ
λ λ π λ

λ π
∗ ≤ +  

We can calculate, when ( )Iλ τ∈  and [ ]0,1π ∈ ,  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, , 2 , ,

, , .

uF A u A u B u

M A u B u
λλ λλ λ λ λ λ

λλ λλ

λ π λ π λ λ π λ λ π λ β

λ π λ λ π λ β

= + + +  
+ + + +  

 

Hence, 

( ) [ ]2 1, 2 ,uF k u k u M k uλλ λ λλλ π ≤ + + +  

where 

( )
( )2 0 1,

: max , .
I T

k Aλλπ λ
λ π

≤ ≤ ∈
=  

Next, we calculate for ( )Iλ τ∈  and [ )0,1π ∈ ,  

( ) ( ) ( ) ( ) ( ), , ,uF A u B u Au t Buλπ λπ λπ λ λλ λ π λ β λ λ β= + + + + +  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2

2

1 ,

1 , .

uF p p u B u

p p B
ππ ππ

ππ

σ λ λ λ π λ β

σ λ λ π

− = − − +

≥ − +
 

Note that, for [ )0,1π ∈ ,  

( ) ( ) ( ) 2 2, 1 1 ,pB p p y yππ λ π λ π − − = − +   

( ) ( ) ( )

( ) { } { }

( )

22 1 2 22 2 2 2 2

22 2 2 2 2 2
0 0

2 2 2

, 1 1

1

, .
1

p p

p
y y

B p y y p y y

p y y p y

p B p y
p

π

ππ

λ π λ π λ π

λ π λ

λ λ π λ

− −

−
< >

   = + ≤ +   

   ≤ + +   

 ≤ +  −

 

 



1 1  
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Hence,  

( )

( ) [ ]
( ) ( ) ( )

2

1
3 20 1,

, 1
: max .

1 ,I T

A B k
k

p p B
λπ π

π λ
ππ

λ π λ α

σ λ λ π≤ < ∈

 + + = < ∞
− +

 

It then follows that  

[ ]
2

21
2 3

2
e e e .k k kkF k M k u kτ τ τ

λλ λλα∗ ≤ + + + +  

Thus, we obtain  

( )

[ ] ( ) ( )( )

1,

2
22 1

3 2 ,0

,

2
e e e , e d .

n

t M tk k k
n

H

kk k M k H t s

λλ

α ττ τ τ
λλ

λ τ

α

+

+ − 
≤ + + + + ⋅ 

 
∫

 

Hence, we have the following lemma.  
Lemma 9. There exists a constant 4 0k >  such that for each non-negative 

integer n,  

( ) ( ) ( ) [ ]2
, , , 4, , , e , 0, .k

n n nH H H k Tτ
λλ τλ τττ τ τ τ⋅ + ⋅ + ⋅ ≤ ∀ ∈   (3.26) 

Proof. The estimate for ,nH λλ  follows from a mathematical induction. The 
estimate for ,nH τλ  and ,nH ττ  follows by differentiating (3.24).  

Now sending n →∞ , obtain the following: 
Theorem 1. Assume (3.7) and (3.8). Then the problem (3.11) admits a clas-

sical solution H that has the following properties:  
1) For each [ ]0,Tτ ∈  and ( )eατλ λ λ λ∞ ∗ ∞≥ + − , ( ), e prH τλ τ = ;  
2) For each [ ]0,Tτ ∈ ,  

( ) ( ) 1
1e , e , , e ,pr k kH H kτ τ τ

λτ τ α −≤ ⋅ ≤ ⋅ ≤  

( ) ( ) ( ) 2
4, , , e .kH H H k τ

ττ λτ λλτ τ τ⋅ + ⋅ + ⋅ ≤  

3.9. Uniqueness 

Theorem 2. There exists a unique solution of (3.11) in the following class  

( ){ }1: | sup ,inf 0 .
DD

H C D H H= ∈ < ∞ >X            (3.27) 

Proof. Let H and Ĥ  be two solutions of in (3.11) in X . Suppose Ĥ H≤  is 
not true. Then there exists ( )0 0, Dλ τ ∈  such that ( ) ( )0 0 0 0

ˆ , ,H Hλ τ λ τ> . Set  

( ) ( ) ( ) ( ) ( )10 0 0 0

0

ˆln , ln ,
, , e , .

1
H H

H Hε τελ τ λ τ
ε λ τ λ τ

τ
+−

= =
+

 

Then ( ) ( )0 0 0 0 0
ˆ, ,H Hε λ τ λ τ= . Now for each 0z λ≥  we define  

( ) ( ) ( ) [ ] ( ){ }, e , : , | 0, , 0, , ,ts z t z D z T s zαλ λ τ τ λ τ∞= + = ∈ ∈     

( )
( )

( )
( )

ˆ ˆ
max , , arg max .z z

D z D z

H HM z t
H Hε ελ= ∈  

Then ( ) 1M z ≥ . Since ( ) ( ),0 1H H ε⋅ = < ⋅ , we see that ( ]0,zt T∈ . Denote 
by ( ) ( ) ( ): e

ztz zs
α τ

τ λ λ λ
−

∞ ∞= + −  the characteristic curve passing through 
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( ),z ztλ . Then  

( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ){ }
( ) ( )

1

0 1

d ˆ0 , ,
d

ˆ , e , ,

, , ,

ˆmax , , ,

, .

z

z

z z

t t

tz z z z z z

z z z z z

z z z z z

z z

H s t t M z H s t t
t

H t M z H t M z H t

H t M z H t M z H t

B H t M z H t

M z H t

ε

ε ε

ε ε

ε

π

ε

λ λ ε λ

λ ε λ

λ π λ β λ β

ε λ

=

+

≤ ≤

 ≤ − 

   = ⋅ − ⋅ −   
 ≤ ⋅ − ⋅ − 

 = + − + 

−

 

  

Hence, denoting ( )*
0 1max 1 pB Yπ π≤ ≤

 = +   we obtain  

( ) ( ) ( ) ( ) ( )* ˆ , , , .z z z z z z zB H t M z H t M z H tε ελ λ β λ β ε λ + − + ≥   

This implies that  

( )
( ) ( )

( )
( )*

ˆ , ,
1 .

, ,

z z z z

z z z z z

H t H t
M z

H t B H tε

λ β ε λ

λ β λ λ β

 +
 ≥ +
 + + 

 

Now define sup infD DN H H= . Then we derive that  

( )
( )
( ) ( ) 0*

ˆ ,
1 , .

e,

z z

Tz z

H t
M z M z z

z B NH t αε

λ β εβ λ
λλ β ∞

 +
 + ≥ ≥ + ∀ ≥

  ++   
 

This implies that, for 0z λ= ,  

( )
( ) ( )

1

*
0

lim ln lim ln 1
e

n

Tn n i

M z n
M z z i B Nα

β ε
λ β

−

→∞ →∞ =

 +
 ≥ + = ∞

  + +  
∑  

which contradicts the boundedness of Ĥ H . Thus we must have Ĥ H≤ . Si-
milarly, we can show that ˆH H≤ , so ˆH H= . This completes the proof.  

4. Verification Theorem and Optimality of the Solution 

That the optimal investment problem can be solved through the preceding re-
sults is based on a verification result which guarantees that the solution to the 
HJB equation is the value function corresponding to the optimal investment 
problem.  

Theorem 3. Suppose ( ) ( )Oσ λ λ= . Assume that 
 

[ ) [ ]( )1,1 0, 0,H C T∈ ∞ × X  solves (2)--(3). Set ( ) ( ) ( ), , ,V x t U x H T tλ λ= −  
and set ( )* ,π λ τ  by (5). Then V V= , the value function defined in (2.4); also 
the optimal investment strategy is given by ( )* ,t t T tπ π λ= − .  

4.1. Preliminary Results 

Lemma 10. Let ,α β  be positive constants and ( ){ },t tNλ  be stochastic 
process satisfying  

( )d d d ,t t tt Nλ α λ λ β∞= − +                   (4.1) 

( ) ( )d 1 d , d 0 1 d .t t t tN t N tλ λ= = = = −               (4.2) 
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Then: 1) With 1= −i , for each constant ξ ∈  and 0t > ,  
( ) ( )0, , d

0e | e ,
t

t b t b s sξ λ αλ ξξλ λ λ ∞+ ∫ = =  i  

where ( ),b tξ  is the solutions of the o.d.e.  

( )e 1 , ,0 .bb b b
t

β α ξ ξ∂
= − − =

∂
i                  (4.3) 

2) Assume that β α< . Denote by *ξ  the unique positive root of 
* *e 1βξ αξ= + . Then ( ) ( )d

0e | et b t b t tαλξλ λ λ ∞+ = =   where a) if *ξ ξ≤ , then 
( ) *b t ξ≤  for every 0t > , b) if *ξ ξ> , then ( )b t = ∞  at time  

d .
e 1s

st
sβξ α

∞
=

− −∫  

Proof. The assertion of the Lemma follows from a general result for the joint 
characteristic function of TN  and Tλ  (see e.g. [9]): 

( ) ( )0e | exp ; , ; ,T TuN ivE K T u v L T u vλ λ λ λ+ = = +   
i i          (4.4) 

where ,K L  satisfy the Riccati equation:  

( ); 0 0;K L K
T

αλ∞
∂

= =
∂

                    (4.5) 

( ) ( )e 1 ; 0 .u i LL L L v
T

βα +∂
= − − − =

∂
ii                (4.6) 

4.2. Proof of the Verification Theorem 

Let { }tπ  be an admissible strategy and { }tX  be the resulting wealth of the 
portfolio. Let ( ) ( ) ( ), , ,V x t U x H T tλ λ= −  be the solution of HJB equation 
obtained in the previous section. Subject to ( ) ( ), ,X xτ τλ λ= , by Itô Lemma, we 
have  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ){ }

2 2 2

, , d , ,

1, , d
2

d , , , , d .

T
T t t

T
t t t t t x t t xx

T T
t x t t t t t t t t t

U X V x V X t

V x V V r X V X V t

X V W V X X Y t V X t N

τ

λτ

τ τ

λ τ λ

λ τ α λ λ π µ π σ

σ π λ β λ

∞

− − − − −

= +

 = + + − + + + 
 

+ + + + −

∫

∫

∫ ∫

 

    

  

 (4.7) 

Under the condition ( ) ( )Oσ λ λ= , since [ ]
*

0,sup e ts
t T

λ
∈

  < ∞   and H is 
bounded, we can verify that  

[ ]
( ) ( ){ }

[ ]
( ) ( ){ }22

0, 0,
sup , , sup , .p

t t x t t t t t
t T t T

X V X t X H T tσ λ λ σ λ λ
∈ ∈

   = − < ∞      
   

Therefore, taking expectation of (4.7) we obtain  
( ) ( ) ( )

( ){ ( )

( ) ( ){ }
( ){ ( ){

( ) }

,

2 2 2

0 1

2 2 2

, ,

1
2

, , , , d

max

1 , , d 0.
2

x
T

T
t t s t t x t t xx

t t t t t t t

T
t s x

xx

U X V x

V V r X V X V

V X X Y V X t t

V V V r XV

X V V X Y t t

λ
τ

λτ

λτ π

λ τ

α λ λ π µ π σ

λ π λ β τ λ

α λ λ λ πµ

π σ λ π λ β

∞

− − − − −

∞ ≤ ≤

−  

= + − + + +

 + + + − 

≤ + − − + +

 + + + + = 

∫

∫



   

 

   

 










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Thus,  

( ) ( ) ( ),, , .x
TV x U Xλ

τλ τ ≥      

After taking the supreme over all admissible strategies, we then obtain  

( ) ( ), , , , .V x V xλ τ λ τ≥  

Finally, one can check that if we take *π π= , the above gives us an identity. 
Thus,  

( ) ( ) ( ) *

,, , .x
TV x U Xλ

τ π π
λ τ

=
=      

This completes the verification theorem.  
The above theorem provides a verification result for a general framework of 

stochastic volatility and double jump models. 

5. Two Illustrative Cases and a Numerical Example 

In the following, we present two illustrative cases. The first case of logarithm 
utility function is studied in [2], where µ  and σ  are constants. In the present 
paper, we extend the case to allow both of them stochastic. In the second case of 

2σ λ= , the Equation (3.2) has a solution in form of ( ) ( ) ( ), eb tH t a t λλ = . This 
type of model is used to study effects of rare events in [10]. They do not show 
the verification of this solution though. 

5.1. Logarithm Utility 

When the utility function is logarithm, i.e. ( ) lnU s s= , the solution is more ex-
plicit. Applying the same strategy for initial condition ( ) ( )0 0, ,X xλ λ=  and 
( ) ( )0 0, 1,X λ λ=  one finds that the optimal strategy does not depend on x. 
Hence, setting ( ) ( ), 1, ,G t V Tλ λ τ= −  we have ( ) ( ), , ln ,V x t x H tλ λ= + . 
Then we obtain a simpler first order condition for *π :  

( ) ( ) ( )2, : 0.
1

Y
Y

λ π µ λ πσ λ λ
π

 = − + = + 
             (5.1) 

Note that 0π < , so there exists a unique solution ( )*π λ  such that 

( )( )*, 0λ π λ =

. The PDE for ( ),H tλ  becomes  

( ) ( ),H t Fλ λ=L  

where L  is the differential-difference operator associated with the 
self-exciting Hawkes process and F is a function associated with the asset dy-
namics defined by  

( ) ( ) ( ) ( ), , , ,tG t G t G t G Gλλ λ λ λ β α λ λ∞= − + + − −  L  

( ) ( ) ( ) ( ) ( ) ( )( )* 2 2 *1 ln 1 .
2

F r Yλ π λ µ λ π λ σ λ λ π λ∗  = + − + +   

By Feynman-Kac formula, ( ),H tλ  can be written as an expectation of a 
function of the process tλ :  

( ) ( ), d | .
T

s tt
H t F sλ λ λ λ = =  ∫              (5.2) 
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When µ  and 2σ  are constants, [2] study the optimal investment and con-
sumption problem, and prove a verification result for the logarithm utility case. 
In the present, we may allow both µ  and σ  be stochastic. 

For this logarithm case, it is straightforward to show that if all jumps are neg-
ative, i.e. 0Y < , then * 0π λ∂ ∂ < , hence we find the fact consistent with the 
phenomena known as flight-to-quality: as a market crash happens, all positions 
in risky assets are reduced. 

5.2. The Case of Stochastic Volatility 

We let 0t tµ µ λ=  and 2
t tσ λ= . Substituting the conditions into the model and 

setting 2σ λ∞ ∞= , we arrive at  

( )2
0

d
d d d ,t

t t t t t
t

S
r t W Y N

S
µ σ σ− −

−

= + + +  

( )2 2 2d d d .t t tt Nσ α σ σ β− ∞ −= − +  

This model is close to the one used in [10] to study effects of rare events, ex-
cept that there is no diffusion term in the variance dynamics here. The dynamics 
of the variance becomes a type of OU process of subordinations if we extensively 
replace tN  by a pure jump Lévy process with no drift and positive increments 
(subordination). Such a process is used to model volatility in [3], [4], or [5], 
where no simultaneous jump is assumed in their asset price. 

Given the objective problem ( )max TU Xπ     and the utility function 
( ) pU x x p= , we let 2 ,v kσ αλ∞= = −  and derive the HJB equation:  

( ) ( )

( )( )

2 2
0

1max
2

1 , , 0.

t x xx vV r v xV V vx k v V

V x Y v t V

π
πµ π α

λ π β λ

 + + + − +


 + + + − =  
E

 

The solution can be expressed as  

( ) ( ) ( ) ( ), , e ,A t B tV x t U x λλ +=                    (5.3) 

and ( ) ( ),A t B t  solve  

( ) ( ) ,A t pr B tαλ∞′ = − −                     (5.4) 

( ) ( ) ( ) ( ) ( )2
0

1
1 max 1 e ,

2
p B tp p

B t B t p Y β

π
α µ π π π

−   ′ = + − − + +    
  

with ( ) ( )0, 0A T B T= = . The optimal strategy *
tπ  is given by  

( ) ( ) ( )* 2
0

0 1

1
arg max 1 e

2
p B t

t

p p
p Y β

π
π µ π π π

≤ ≤

−   = − + +    
       (5.5) 

When the assumption (3.8) or [ ]0 Yµ < −  holds, we know a classical solu-
tion to the HJB equation exists by the results in the preceding sections. In such a 
case, classical solutions to the ordinary differential equations (5.4) exist. We 
show below that ( )B t  could be explosive in a finite time horizon if the as-
sumption is not satisfied. 
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We consider the special case: 0Y = . Assume [ ]0 0Yµ > − =  which con-
flicts with the assumption (3.8). In this case, (5.4) becomes  

( ) ( ) ( )1 e ,B tB t B t m βα′ = + − −  

where 
( ) 2

0

1
max

2
p p

m pπ µ π π
−  = − 

  
. Note that given 0 0µ > , we have  

2
0

0
1max , 0.

2 1
pm p

p
µ

µ
 − = − > 

−  
 

We suppose ( )2 22 mα β β− <  and choose 0t  such that  

( )( ) ( )0

2

2

2
e 1 ,T t

m
β α α β

β
− − −

< −  

then we have  

( )( ) ( ) ( )( )( ) ( )
( )( ) ( )( )0

0

21 e e .
2e e 1

T tT t
T t T tB t m

β αβ α
α β α β

α β β
α β

− −− −
− − − −

−  ≤ + − −−
 

Hence ( )B t  blows up during [ ]0 ,T T T−  where 0T  is given by  

( )( ) ( )( ) ( )
( )( )

0 0

0

2

2

2 1e e 1 .
1 e

T t T t
T tm

β α β α
β α

α β
β

− − − −

− −

 −
= − 

−  
 

As a conclusion, the optimal portfolio choice problem in the stochastic vola-
tility model may meet the issue of exploding in a finite time horizon. This paper 
provides a sufficient condition under which a classical solution exists and ex-
ploding does not happen. Our results shall be useful in studies of a stochastic 
volatility model or alike. 

5.3. A Numerical Example 

In our proof, the monotonic iteration (3.18) and (3.19) actually suggest an itera-
tion algorithm to find the solution numerically. Figure 2 gives a numerical ex-
ample. The upper edge of curves stands for the limit of iteration corresponding 
to ( ),H tλ  and *

tπ , respectively. The figure indicates that the iteration con-
verges monotonically. The following parameters are assumed for this example. 

( ) 2

0.1, 0.1, 0.05

0.1 0.4 , 0.2
0.3, 0.1, 0.2

Y p r
Yµ λ λ λ σ

α β λ∞

= − = =

= − − =

= = =

 

where 0.4λ−  in ( )µ λ  makes the total excess return goes to negative as jump 
occurs at a high frequency. A constant ( )µ λ , e.g. ( ) 0.1µ λ ≡  satisfying the 
condition (3.8) as well results in a figure with the same pattern. The time hori-
zon T is 0.2, and the iteration procedure is stopped as soon as  

( ) ( ) 5
1, , 10n i n ii H t H tλ λ −
−− ≤∑  
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where it ‘s are points of a partition of [ ]0,T . 

 
Figure 2. This figure shows the numerical iteration algorithm generates sequences con-
verging monotonically to the limits that correspond to ( ),H tλ  and *

tπ , respectively. 

6. Conclusions and Discussions 

We study the optimal portfolio choice problem in a jump-diffusion model where 
the jump likelihood is increased by jump itself. We establish the existence and 
uniqueness of a classical solution to the corresponding HJB equation. A verifica-
tion theorem which guarantees the optimality of the solution is proved. Our ap-
proach relies on a monotonic iteration procedure which naturally hints a nu-
merical algorithm. We consider CRRA utilities and a stochastic investment op-
portunity set which may nest interesting models in the literature. 

By similar steps, our work may be extended to the case of the risk aversion 
(1 p− ) greater than 1. It is also possible to extend our framework to a mul-
ti-dimension case like [2]. With multi-assets, jumps may be not only self-excited 
but also mutually excited. The latter feature may be suitable to study financial 
contagions (see, e.g. [9]). At last, as mentioned earlier, the assumption (3.8) can 
be relaxed to be  

( ) [ ]
( )

limsup .
Y

λ

µ λ λ
σ λ→∞

+
< ∞


                  (6.1) 

We provide a proof of existence of a continuous solution under this relaxed 
condition in the appendix. However, we need certain structural conditions on 
derivatives of ( )σ ⋅  and ( )µ ⋅ , in order to follow a similar line of proofs pre-
sented in Section 3 and show the regularity and uniqueness of the solution. We 
will investigate these conditions in the future. 
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Appendix. Existence of a Continuous Solution under a  
Relaxed Condition 

In this appendix, we establish the existence of a solution H of (3.11) under the 
condition (3.9) instead of the condition (3.8). For each 0λ ≥ , we define  

( ) ( ){ }
0 1
max , .M A

π
λ λ π

≤ ≤
=  

We write the partial differential equation in (3.11) as  

( ) ( ) ( ) ( ), , 0, 0MH H M H Hτ λα λ λ λ τ λ λ τ∞+ − + = ⋅ ∀ ≥ >    

where 

[ ]( ) ( ) ( ) ( ) ( ) ( ){ }
0 1

: max , , .M u A M u B u
π

λ λ π λ λ λ π λ β
≤ ≤

= + + +    

We define a family { } 0n n
H ∞

=
 iteratively as follows: ( )0 , e prH τλ τ ≡ . If nH  is 

defined, we define 1nH +  as the unique solution of the linear problem  

( ) ( ) ( )1 , , 0, 0,M
n nM H Hα λ λ λ τ λ τ

τ λ∞ +
∂ ∂ + − + = ⋅ ∀ ≥ >    ∂ ∂ 

  

( )1 ,0 1.nH + ⋅ =  

In term of characteristic curves, the linear problem for 1nH +  is well-posed. 
1) Note that  

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ }

( ){ }

0 0 1
, e max , ,

e ,0 ,0

e .

M pr

pr

pr

F H M A B

M A B

M pr

τ

π

τ

τ

τ λ λ λ π λ π

λ λ λ

λ

≤ ≤
⋅ = + +  

≥ + +

= +

 

It then follows by a comparison principle for the equation for 1H  that 
( ) ( )1 0, e ,prH Hτλ τ λ τ≥ = . 

2) Next, assume that 1n ≥  is an integer and 1n nH H −≥ . Then  

( ) ( ) [ ] [ ] [ ]1 1 0.M M
n n n nM H H H H

t
α λ λ ζ

λ∞ + −
∂ ∂ + − + − = − ≥ 
∂ ∂ 

   

Here we use the fact that ( ), 0B λ π ≥  and ( ) ( ), 0A Mλ π λ+ ≥ . Thus, by 
comparison principle, we have 1n nH H+ ≥ . Consequently, by mathematical in-
duction, { }nH  is an increasing family. 

3) Note that, since ( ) pU x x p=  is a concave function,  

( ) ( ) [ ] [ ]{ }, 1 1 1 .pB Y p Y p Yλ π λ π λ π λ π = + ≤ + ≤ +     

Thus,  

( ) ( ){ }

( ) [ ]( ) ( ) ( )

( ) [ ]( )
( ) ( )

0 1

2 2

2

2

max , ,

1max 1
2

.
2 1

A B

pr p Y p p

p Y
pr

p

π

π

λ π λ π

µ λ λ π σ λ π

µ λ λ

σ λ

≤ ≤

+

+

+

 ≤ + + − − 
 

 +  ≤ +
−





 

Note that if ( ) [ ] 0Yµ λ λ+ ≤  we have ( ) ( ){ }0 1max , ,A B prπ λ π λ π≤ ≤ + ≤ . 
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Thus, under the assumption  

( ) ( ) [ )( ) ( ) [ ]
( )

2, 0, , , limsup
Y

C Y
λ

µ λ λ
µ σ

σ λ→∞

+
⋅ ⋅ ∈ ∞   < ∞ < ∞ 


    (A.1) 

we have 

[ )
( ) ( ){ }

0 10,
: sup max , , .k A B

πλ
λ π λ π

≤ ≤∈ ∞
= + < ∞  

Now assume that ek
nH τ≤ . Then we have  

[ ]( ) { } ( )
0 1

e max e .M k k
nF H M A B M kτ τ

π
λ λ

≤ ≤
≤ + + ≤ +    

It then follows by comparison principle that 1 ek
nH τ
+ ≤ . 

Thus we have, for each integer 0n ≥ ,  

( ) ( )1e , , e , 0, 0.pr k
n nH Hτ τλ τ λ τ λ τ+≤ ≤ ≤ ∀ ≥ ≥  

Then { } 0n n
H ∞

=
 is a bounded monotonic sequence of continuous functions. It 

follows from the Dini theorem that the sequence converges uniformly on com-
pact subsets of D; so : limn nH H→∞=  is continuous. Under certain structural 
conditions on derivatives of ( )σ ⋅  and ( )µ ⋅  we may follow a similar line of 
proofs presented in Section 3 to show the regularity and uniqueness of the solu-
tion. 
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