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Abstract 
We describe two new derivations of the chi-square distribution. The first de-
rivation uses the induction method, which requires only a single integral to 
calculate. The second derivation uses the Laplace transform and requires 
minimum assumptions. The new derivations are compared with the estab-
lished derivations, such as by convolution, moment generating function, and 
Bayesian inference. The chi-square testing has seen many applications to 
physics and other fields. We describe a unique version of the chi-square test 
where both the variance and location are tested, which is then applied to en-
vironmental data. The chi-square test is used to make a judgment whether a 
laboratory method is capable of detection of gross alpha and beta radioactivi-
ty in drinking water for regulatory monitoring to protect health of popula-
tion. A case of a failure of the chi-square test and its amelioration are de-
scribed. The chi-square test is compared to and supplemented by the t-test. 
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1. Introduction 

The chi-square distribution (CSD) has been one of the most frequently used dis-
tributions in science. It is a special case of the gamma distribution (see Section 2). 
The latter has been an important distribution in fundamental physics, for exam-
ple as kinetic energy distribution of particles in an ideal gas (Maxwell-Boltzmann) 
[1] or the kinetic energy distribution of particles emitted from excited nuclei in 
nuclear reactions [2]. A historical context for the development of the CSD is de-
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scribed in References [3] and [4]. Its first derivation is attributed to Bienaymé 
[5], who used multiple integrals over normal variables and substitutions. Abbe 
[6] used a method of integration in the complex plane to solve multiple integrals. 
The most general derivation is attributed to Helmert, who proposed a classic 
transformation to derive CSD, including calculation of the Jacobian determinant 
of transformation [7]. This transformation can be worked out into polar va-
riables, which is described in statistical textbooks [4] [8].  

The established fundamental derivations of the CSD described above lend 
themselves to complicated handling of multiple integrals. On the contrary, the 
simplified derivations use the fact that CSD is a special case of the gamma dis-
tribution. Owing to the integrable and recursive properties of the gamma distri-
bution, as well as its moment generating function (Mgf), simplified derivations 
of CSD are described in the textbooks [9] [10]. Another simplified derivation 
uses Bayesian inference [11]. In Section 2, we refer to these methods for com-
parisons. 

In this work, we present two new methods of derivation of the CSD. They are 
both within the simplified category. One of them is mathematical induction. The 
original derivation was done by Helmert [12] using a 2-step forward mathemat-
ical induction. We have elaborated on that and observed that the CSD has cer-
tain recursive property, which enables its derivation using a single-step induc-
tion plus the well-known theorem for beta and gamma functions. Another deri-
vation method we describe is by the Laplace transform. This method has some 
similarity to the Mgf and characteristic function methods, owing to the presence 
of exponentiation. It uses a complex-variable integration and it is free from 
many assumptions of the other methods. The two new derivations of the CSD by 
mathematical induction and Laplace transform are described in Section 2. 

Chi-square testing (CST) is closely related to and based upon the CSD. It has 
its origins in the discovery of the goodness-of-fit test by Pearson [13]. In the 
goodness-of-fit, one calculates the test statistics as 

( )2
2

1 ,m i i
i

i

O E
Eνχ =

−
= ∑                      (1) 

where iO  is frequency of observation, iE  is expected frequency based on an 
assumed model distribution, for category of type i, and m is the number of cate-
gories. Both iO  and iE  are unitless. 1m pν = − −  is the number of degrees 
of freedom, where p is number of parameters of the model distribution calcu-
lated from the data. For any model distribution, Equation (1) leads asymptoti-
cally to the CSD when the number of observations is large, which has been 
proved for the multinomial distribution by Pearson [13]. The goodness-of-fit 
CST has been extensively used in statistics and widely applied to many fields [3] 
[14]. It is worth noting that the interpretation of the degrees of freedom was 
provided by Fisher [15]. As example in physics, CST goodness-of-fit has been 
used to verify Poisson fluctuations of radioactivity counter [14] [16]. 

Another form of the chi-square variable from Equation (1) is written in the 

https://doi.org/10.4236/jamp.2019.78122


T. M. Semkow et al. 
 

 

DOI: 10.4236/jamp.2019.78122 1788 Journal of Applied Mathematics and Physics 
 

general form as 
2

2
1 ,n i i

i
i

x
ν

µ
χ

σ=

 −
=  

 
∑                      (2) 

where n is the number of observations, ix  is the observed variable, iµ  is the 
expected value, iσ  is the standard deviation, and nν ≤ . The variables in Equ-
ation (2) can be expressed in physical units. In the limit of large number of ob-
servations, the variable and parameters of Equation (2) are approximated by 
those of the normal variates, and the 2

νχ  distributes as CSD. In this work, we 
generalize this CST test to a combined test for variance and location as well as 
verify it with the t-test [17]. The test statistics studied are described in Section 3. 

Within the context of this work, we present a unique application of the CST to 
the detection of radioactive contaminants in drinking water required by the Safe 
Drinking Water Act (SDWA) in the US. The bulk of natural alpha and be-
ta/gamma (photon) radioactivity in drinking water originates from the possible 
presence of 238U and 232Th natural radioactive-series progeny, 226,228Ra and their 
progeny, as well as 40K radionuclides [18]. The SDWA regulations [19] establish 
a Maximum Contaminant Level (MCL) of 15 pCi/L (555 mBq/L) for gross alpha 
(GA) radioactivity, excluding U and Rn. For gross beta (GB) radioactivity, the 
MCL is limited by the total body or any organ radiation dose of 4 mrem/y (40 
μSv/y). For both GA and GB, the Maximum Contaminant Level Goal (MCLG) is 
zero. Furthermore, SDWA requires Detection Limits (DL) of 3 pCi/L (111 
mBq/L) and 4 pCi/L (148 mBq/L) for GA and GB radioactivity, respectively. 
These DLs must be met by all public health laboratories accredited for monitor-
ing of GA and GB radioactivity in drinking water in the US. In Section 4, we de-
tail a CST procedure to verify if the required above-mentioned DLs are met [20]. 
We investigate the reasons and consequences of failed CST and ameliorate such 
cases. 

2. Chi-Square Distribution 

The probability density function (Pdf) of the CSD is given by 

( ) ( )
( )

22 1 22
2

2

e
Pdf | ,

2 2

ν
ν χ

ν
ν ν

χ
χ ν

ν

− −

=
Γ

                   (3) 

where Γ  is the gamma function. The expectation value of CSD is 2E χ ν  = , 
and the variance 2Var 2χ ν  =   [21]. The CSD is a special case of the gamma 
distribution abbreviated as ( )2gamma | ,a bνχ  with the parameters 2a ν=  
and 2b =  [21]. 

To derive Equation (3), we start with the general definition of 2
νχ  statistics 

given by Equation (2) assuming normal variates. For a single normal variable 1x  
with ( )1Pdf x , the probability of [ ]1 1 1 1, dx x x x∈ +  is given by 

( )
2

1 1

1
2

1 1 1
1

1Pdf d e d .
2π

x

x x x
µ

σ

σ

 −
− 
 =                  (4) 
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By substituting ( )( )22
1 1 1 1xχ µ σ= − , we obtain from Equation (4) 

( ) ( )
( )

( )

2
1

2
1

1 2 12 2
12 2 2 21

1
2

1 1 12 1 2
11

2 2
1 1

ed2Pdf |1 d e d d
d 2 Γ 1 22π

gamma |1 2,2 d ,

x
χ

χ
χ

χ χ χ χ
χσ

χ χ

− −
−= =

=

      (5) 

which has the Pdf given by Equation (3) for 1ν = . In deriving Equation (5), we 
also used ( )1 2 πΓ = , whereas factor of 2 originated from the fact that the 1x  
variable ranging from minus infinity to plus infinity has been substituted with 
the 2

1χ  variable ranging from zero to plus infinity. 
Let us assume that the 1n +  term with the normal 1nx +  variable was added 

to Equation (2), and that this addition raised the number of degrees of freedom 
to 1ν + . Then, 

2
2 2 1 1

1
1

.n n

n

x
ν ν

µ
χ χ

σ
+ +

+
+

 −
= +  

 
                   (6) 

Using the calculus for probability density functions [21],  

( ) ( ) ( )2 2 2 2
1 1 1 1Pdf | 1 d Pdf | d Pdf d .n nx xν ν ν νχ ν χ χ ν χ

+∞

+ + + +−∞
+ = ∫        (7) 

Let us define a new variable z, such as 

( )
2

21 1
1
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+
+

 −
= − 
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                   (8) 

By realizing that 2 2
1d dν νχ χ+ = , and performing all substitutions, the right side 

of Equation (7) can be rewritten as 

( ) ( )

( )( )

( ) ( ) ( )
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          (9) 

However, the integral on the right side of Equation (9) is the beta function, 
( )2,1 2B ν , which is related to the gamma functions by [22], 

( ) ( ) ( )
( )( )

Γ 2 Γ 1 2
2,1 2 .

Γ 1 2
B

ν
ν

ν
=

+
                   (10) 

By inserting Equation (10) into Equation (9), simplifying, and comparing with 
the left side of Equation (7), one obtains 

( ) ( )( )

( ) ( )( )

2
1

1 2 1 22
12

1 1 2
Pdf | 1 ,

2 Γ 1 2

e ν
ν χ
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χ
χ ν
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+
+ − −
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              (11) 

which is the Pdf given by Equation (3) for 1ν +  degrees of freedom and it 
proves Equation (3) by induction. 

By substituting ( )( )22
i i i ixϕ µ σ= − , Equation (2) becomes 

2 2
1

n
iiνχ ϕ

=
= ∑                       (12) 
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The sum of independent random variables 2
iϕ  is called a convolution and 

the joint distribution function for 2
νχ  can be obtained by calculating an 

n-dimensional convolution integral. Exploring the properties of this convolu-
tion leads to simplifications, which have been used in the literature. By convo-
luting two gamma distributions 2 2

1 iχ ϕ≡  from Equation (5) and using the 
theorem that the convolution of two gammas is also a gamma, one obtains 

( )2
2gamma | 2 2, 2χ  [9]. By continuing this process of convoluting with 2

1χ , it 
is easy to infer that the full convolution is equal to ( )2gamma | 2, 2νχ ν , where 

nν = , which the CSD given by Equation (3). This provides a simplified deriva-
tion of CSD using convolution. 

Another simplified derivation of CSD uses the theorem that the Mgf of con-
volution is a product of individual Mgfs [10]. Thus, by calculating Mfg of 2

1χ  
from Equation (5) and taking it to the nth power, one obtains the Mgf for 2

νχ , 
where nν = . One can also calculate the Mgf of the gamma distribution and in-
fer from a comparison that the CSD in Equation (3) is a special case of the 
gamma distribution [10]. 

In this work we provide yet another simplified derivation of the CSD using 
Laplace transform [23]. The Laplace transform of Equation (5) is equal to 

( )
( )

2
1

2
1

1 2 1 22 1 2
1 2

11 20

e 1 2e d .
1 22 1 2

s

s

χ
χ

χ
χ

− −
∞ −  

=  +Γ  
∫               (13) 

Subsequently, we use a theorem that the Laplace transform of a nth convolu-

tion is a product of the individual transforms, i.e. 
2

1 2
1 2

n

s
 
 + 

. By abbreviating 

2
nu χ= , the inverse Laplace transform results in the Pdf of u, 

( )
( )

/2

2 2

1 1 2 1 1 ePdf | e d d .
2π 1 2 2π2 1 2

n su
su

n nu n s s
i s i s

 
= = + + 

∫ ∫ 

     (14) 

To calculate the contour integral in Equation (14), we start with the Cauchy 
integration formula for an analytic function ( )f s  of a complex variable s hav-
ing a simple pole at 0s  [24]:  

( ) ( )
0

0

1 d .
2π

f s
f s s

i s s
=

−∫                    (15) 

The 1k −  times differentiation of Equation (15), where the differentiation 
can be of an integer or a fractional order [25], results in: 

( ) ( ) ( ) ( )
( )

1
0

0

Γ
d .

2π
k

k

k f s
f s s

i s s
− =

−
∫                    (16) 

By comparing Equation (14) to Equation (16), we infer that ( ) esuf s = , 

0 1 2s = − , and 2k n= . By inserting these variables to Equation (16) and plug-
ging it into Equation (14), we obtain: 

( )
( ) ( )

2 1 2 1 2

2 2 1 2
1 2

1 d ePdf | e ,
2 Γ 2 d 2 Γ 2

n n u
su

n n n
s

uu n
n s n

− − −

−
=−

 
= = 

 
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which is the CSD given by Equation (3) for nν =  and 2
n uχ = . 

Another simplified derivation of the CSD uses the Bayesian inference and it is 
not related to the convolutions described above [11]. It uses a normal likelihood 
function for multiple samples. It also uses the transformational prior distribu-
tions: 1 σ∝  for scale parameter σ  and a constant for translation parameter 
µ  [26]. Marginalizing the joint distribution ( ),µ σ  over µ  results in the 
CSD, whereas marginalizing over σ  results in the t-distribution [27]. 

In Section 5, we summarize the advantages and disadvantages of the simpli-
fied derivation methods of CSD described in this section.  

3. Test Statistics 

Several models for the CST statistics can be derived from the general Equation (2). 
For the expected value, we can use either the sample mean x  or the population 
mean µ , whereas for the standard deviation we can use either individual stan-
dard deviations iσ  or the sample standard deviation xσ . We do not know the 
population standard deviation for the data described in Section 4. Model test sta-
tistics ( )( )2

i xx x σ−∑  is always equal to 1n −  and thus not useful. However, 
the model test statistics ( )( )2

i ix x σ−∑  can be used to test the variance. Other 
possibilities are to test for both the variance and location by employing model test 
statistics ( )( )2

i ix µ σ−∑  or ( )( )2
i xx µ σ−∑ , if the population mean is 

known which is the case for the data in Section 4. 
For the t-test we perform a standard one-sample test, where we calculate t va-

riable as ( ) ( )xx nµ σ− . The t-test is the location test. The results of all these 
test models using radioactivity data are presented in Section 4. 

4. Chi-Square- and t-Test for Radioactivity Detection in  
Drinking Water 

The most convenient method of measuring GA and GB radioactivity in drinking 
water is by gas proportional counting [28]. In this method, a given quantity of 
water is evaporated with nitric acid onto a stainless-steel planchet and dried, 
leaving a residue containing any radioactivity. The planchet is then counted on a 
gas proportional detector. Alpha and beta particles are counted simultaneously, 
and they are differentiated by much larger ionization caused by the former. 

As stated in Section 1, this method must be able to determine GA and GB at 
the DL, to be verified by the CST [20] using a minimum of seven samples. EPA 
recommends a right-tail (RT) CST at 99% Confidence Level (CL), or 0.01 signi-
ficance. To accomplish this, 9n =  samples of community drinking water were 
spiked with 230Th and 90Sr/90Y radionuclides providing alpha and beta radioactiv-
ity, respectively. The spiking activities (i.e. the expected µ ) were: 2.9888 ± 
0.0402 pCi/L for alpha and 4.1860 ± 0.0549 pCi/L for beta, close to the required 
DL values. The values of spiking activities and their uncertainties were obtained 
from the standards traceable to the National Institute of Standards and Tech-
nology (NIST). Then the experimental procedure was followed, and the meas-
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ured GA and GB activities ix  are depicted as points in Figure 1 and Figure 2, 
respectively.  

Also shown in Figure 1 and Figure 2 are the individual standard deviations 

iσ , depicted as vertical lines. These standard uncertainties are propagated, in-
cluding the Poisson statistics of radioactivity counting and background subtrac-
tion, uncertainties of the detector efficiency, cross-talk between alpha and beta 
particles, as well as solution-pipetting uncertainties. Therefore, they are slightly 
different for different samples. 

The GA results are described first. The sample average for GA is given by 
3.0951x =  pCi/L (red horizontal thick line) which is close to the expected µ  

(green horizontal thick line) as seen in Figure 1. The sample standard deviation 
is given by 0.7000xσ =  pCi/L. The results of the variance test, as defined in 
Section 3, are given in column 3 of Table 1. The number of the degrees of free-
dom is 8ν =  because one constraint is from calculating the mean. The ob-
served 2χ  statistics is equal to 14.0 for gross alpha. The right-tail (RT) and 
left-tail (LT) 2χ  are calculated from the CSD at 0.01 significance each. Since 
1.6 14.0 20.1< < , each tail test passes at 0.01 significance and two-tail (2T) test 
passes at 0.02 significance. Then, the two combined variance/location tests, as 
defined in Section 3 are given in columns 4 and 5 using iσ  and xσ , respec-
tively. 9nν = =  in these cases, because there are no constraints. They both 
pass for GA. 

The t-test statistics is calculated as described in Section 3 resulting in 0.45 for 
GA, as given in column 6 in Table 1. The RT probability of 0.33 and 2T proba-
bility of 0.66 are larger than 0.01 and 0.02, respectively, ensuring the passage of 
the location t-test.  

The gross beta activities plotted in Figure 2, with the mean 5.1274x =  
pCi/L (red horizontal thick line) and 0.3050xσ =  pCi/L differ significantly 
from the expected µ  (green horizontal thick line) beyond the observed uncer-
tainties. That fact did not affect the variance test which passed for GB (column 3 
in Table 1). However, the observed 2χ  of 43.1 and 93.7 exceed the calculated 
RT 2χ  of 21.7 (columns 4 and 5 in Table 1), therefore the combined va-
riance/location tests failed. This failure is supported by the t-test, where the high 

9.26t =  (column 6) resulted in very low values of the RT and 2T probabilities 
(columns 7 and 8) and failures of the test for GB.  

To elucidate the reasons for failure of the GB CST and t-test, fifteen 
non-spiked Method Blank (MB) community water samples were prepared and 
measured. The average GA activity was below detection; however, the average 
GB was 0.8121 ± 0.2801 pCi/L. This MB was then subtracted from the spiked GB 
results and the corrected GB activities are plotted in Figure 3. The mean of the 
corrected GB is 4.3153x =  pCi/L ( 0.3050xσ =  pCi/L), very close to the value 
for spiked radioactivity. The corrected observed 2χ  are now 2.7, 3.2 and 9.6 
(columns 3, 4, and 5 in Table 1) ensuring the passage of the three CSTs. This is 
supported by the passage of the t-test also (columns 6, 7, and 8). 
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Table 1. The results of χ2- and t-tests. Abbreviations: RT right-tail, LT left-tail, 2T two-tail. 
Significance is 0.01 for each tail. 

1 2 3 4 5 6 7 8 

Experiment, 
reference 

χ2-test t-test 

Parameter 
Variance, 

iσ  

Variance  
and location, 

iσ  

Variance  
and location, 

xσ  
Location 

Deg free 8 9 9 8  

Calc RT 20.1 21.7 21.7  

Calc LT 1.6 2.1 2.1 t RT prob 2T prob 

Gross Alpha, 
Figure 1 

Observed 14.0 13.4 8.2 0.45 0.33 0.66 

Test result Passed Passed Passed  Passed Passed 

Gross Beta, 
Figure 2 

Observed 3.8 43.1 93.7 9.26 7.5E−06 1.5E−05 

Test result Passed Failed Failed  Failed Failed 

Gross Beta-MB 
subtracted, 
Figure 3 

Observed 2.7 3.2 9.6 1.27 0.12 0.24 

Test result Passed Passed Passed  Passed Passed 

 

 
Figure 1. Gross alpha (points) ordered according 
to the increased activity. 

 

 
Figure 2. Gross beta (points) ordered according 
to the increased activity. 
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Figure 3. Gross beta (points) corrected for method 
blank and ordered according to the increased 
activity. 

 
The reasons for the elevated GB in MB of community drinking water were 

investigated. Ten L of water were evaporated to 50 mL and measured using 
precise gamma-ray spectrometry [29]. It was determined that the concentra-
tion of the beta/gamma emitter, 40K was 0.6926 ± 0.0790 pCi/L. It was also 
possible to identify several beta/gamma progenies of the 238U series: 234Th, 
214Pb, 214Bi, and 210Pb, as well as those from the 232Th series: 228Ac, 212Pb, and 
208Tl. The combined activity of the beta/gamma progeny was 0.1513 ± 0.0672 
pCi/L. Therefore, the sum of 40K and beta/gamma progeny was 0.8440 ± 
0.1037 pCi/L. The latter is consistent with the GB activity of 0.8121 ± 0.2801 
pCi/L from the MB measurement to within the measured uncertainties. Also 
associated with the decay of 238U and 232Th is their alpha activity plus alpha 
progeny of similar activity to that of the beta/gamma progeny. This alpha ac-
tivity could not have been detected by gamma spectrometry and was below 
the detection by GA in the MB measurement. However, the fact that GA of 
3.0951 pCi/L is slightly higher than the expected 2.9888 pCi/L is an indication 
of that. Unlike in the case of beta activity, the small alpha progeny activity did 
not affect the CST or t-test. It should be noted that this level of naturally 
present radioactivity in the community water is much below the MCL, and 
thus poses small risk to the population.  

5. Summary and Conclusions 

We have described five simplified methods of deriving the chi-square distribu-
tion. Three of them: by convolution, moment generating function, and Bayesian 
inference are described in the literature and have been outlined here for com-
parison. The simplest of them seems to be the convolution method. It only uses 
the substitution from the normal distribution to a chi-square variable and re-
quires a calculation of a single convolution integral on the above. It infers the 
form of multiple convolution on gamma distribution leading to the chi-square 
distribution. The moment generating function method of derivation is more ad-
vanced as it requires the knowledge of the moment generating function and the 
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gamma distribution. The Bayesian inference method requires the knowledge 
about likelihood function and prior probabilities but does not require the know-
ledge about the gamma distribution. 

In this work, we have proposed two new methods for derivation of the 
chi-square distribution: by induction and by Laplace transform. The method of 
induction uses operational calculus with only a single integral leading to beta 
function. The proposed derivation applies modern formalism and seems to be 
simpler than the original derivation by Helmert as early as in 1876. A disadvan-
tage of the induction method is that it requires a prior knowledge of the 
chi-square distribution to perform induction on it. There is a significant advan-
tage, however. All other methods require either no constraints in the data; i.e. 
the number of degrees of freedom must be equal to the number of observations, 
or one constraint in case of Bayesian inference. The induction method leaves any 
constraints intact by adding one induction step to the existing number of de-
grees of freedom. The proposed derivation method by Laplace transform is more 
advanced because it uses integration in the complex plane. The significant ad-
vantage of the Laplace transform, and the Bayes inference methods is that they 
do not require prior knowledge about the gamma distribution. 

We have also described a unique application of the chi-square test to envi-
ronmental science. In chi-square testing, it is important to delineate systematic 
effects from the random uncertainties. In this work, a systematic natural conta-
mination of laboratory method blank caused the chi-square test for combined 
variance/location to fail; however, it did not affect the chi-square test for va-
riance alone. After subtracting the systematic method blank, the chi-square va-
riance/location test was shown to have passed. This was confirmed by the loca-
tion t-test. It is also imperative to perform analysis of uncertainty. In this work, 
using either individual or sample standard deviations did not affect the va-
riance/location chi-square test. While the chi-square test provides verification if 
a laboratory test method is adequate to monitor gross alpha and gross beta ra-
dioactivity in drinking water, the test statistics combining variance and location 
is more useful than the one based on the variance alone because it can identify 
systematic bias. 
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Appendix 
A.1. Glossary 

CL: Confidence Level 
CSD: Chi-Square Distribution 
CST: Chi-Square Test 
DL: Detection Limit for radionuclides 
EPA: U.S. Environmental Protection Agency 
GA: Gross Alpha Radioactivity 
GB: Gross Beta Radioactivity 
L: Liter 
LT: Left Tail 
MB: Method Blank 
mBq: milli-Becquerel 
MCL: Maximum Contaminant Level 
MCLG: Maximum Contaminant Level Goal 
Mgf: Moment generating function 
mL: milli-Liter 
mrem: milli-rem 
NIST: National Institute of Standards and Technology 
pCi: pico-Curie 
Pdf: Probability density function 
RT: Right Tail 
SDWA: Safe Drinking Water Act 
STEM: Science, Technology, Engineering and Mathematics 
y: year 
μSv: micro-Sievert 
2T: Two Tail 

A.2. Variables 

a, b: parameters of the gamma distribution 
B: beta function 
E: expectation value 

iE : expected frequency 
( )f s : analytic function 

gamma: gamma distribution 
i, k: indices 
m: number of categories 
n: number of observations 

iO : observed frequency 
p: number of parameters for model distribution 
s: complex variable 

0s : pole 
t: t-test variable 
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Var: variance 

ix : normal random variable 
x : sample mean 

u, z: substituted variables 
Γ : gamma function 

, iµ µ : expected variable: population, individual 
ν : number of degrees of freedom 

, ,i xσ σ σ : standard deviation, individual, sample 
2
iϕ : individual chi-square 
2 2 2 2, , ,i n νχ χ χ χ : chi-square, for i, n observations, ν  degrees of freedom 
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