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Abstract 
This paper is concerned about testing whether a cross-covariance matrix de-
viates from a pre-assigned one or not. For this purpose, a new test statistic is 
constructed based on the Frobenius norm of the difference between the 
sample cross-covariance matrix and the pre-assigned matrix. The test is im-
plemented by applying the parametric bootstrap scheme. We conduct a si-
mulation study to examine the performance of the test and compare it with 
other competitive tests. As multiple simulation examples show, our empiri-
cal powers are clearly superior to others in detecting any deviation of the 
cross-covariance from the pre-assigned matrix. In addition, the proposed 
test is insensitive to non-cross-covariance elements in the covariance matrix. 
As an illustration, we also investigate its performance in testing pairwise 
time-reversibility. 
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1. Introduction 

Tests of covariance matrices in multivariate statistical analysis have wide appli-
cations in many fields of research and practice, such as target detection [1], face 
recognition [2] and so on. They have already attracted considerable interests 
since the 1940s. However, most of the existing researches on this topic focus on 
testing for covariance matrix other than cross-covariance matrix. In some cir-
cumstances, not all the entries in the covariance matrix are concerned, thus 
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testing for a cross-covariance matrix being equal to a specified one becomes an 
important issue. For instance, when testing for time-reversibility (see Section 3 
for more details), we can transform the problem into the one of cross-covariance 
matrix test. Therefore, like the covariance matrix test, it is also of great practical 
interest to develop methods for the cross-covariance matrix test. 

Over the past several years, many types of statistics have been proposed to test 
various equalities of covariance matrices. The first type is a class of statistics 
based on the likelihood ratio (LR). Mauchly [3] was one of the earlier attempts 
whose approach was based on the likelihood ratio. The statistic of Mauchly de-
pends on the determinant and the trace of sample covariance matrix. It requires 
that the sample covariance matrix is non-singular, which is the case with proba-
bility one when the sample size is larger than the dimension. Gupta and Xu [4] 
generalized the likelihood ratio test to non-normal distributions by deriving the 
asymptotic expansion of the test statistic under the null hypothesis when the 
sample size is moderate. Latterly, Jiang et al. [5] proved that the likelihood ratio 
test statistic has an asymptotic normal distribution under two different assump-
tions by the aid of Selberg integrals. Also, the first type of statistics can be ex-
tended to analyze high-dimensional data. For instance, Bai et al. [6] used central 
limit theorems for linear spectral statistics of sample covariance matrices and of 
random F-matrices, and proposed a modification of the likelihood ratio test to 
cope with high-dimensional effects. In the following, Niu et al. [7] considered 
testing mean vector and covariance matrix simultaneously with high-dimensional 
non-Gaussian data. Niu et al. applied the central limit theorem for linear spectral 
statistics of sample covariance matrices and established new modification for the 
likelihood ratio test. The second type is a class of statistics based on empirical 
distance. Let 1 2, , , NZ Z Z  be a p-dimensional random sample drawn from a 
normal distribution with mean vector µ  and covariance matrix Σ . Nagao [8] 
proposed a test statistic 

( )21
1 0tr ,

2
nT S n I−= Σ −                      (1) 

to test the null hypothesis 0 0:H Σ = Σ  versus the alternative 1 0:H Σ ≠ Σ , where 

( )( )1
N

i iiS Z Z Z Z
=

′= − −∑  with 1
1

N
iiZ N Z−

=
= ∑ , 1n N= −  and I is the iden-

tity matrix. Thus the null hypothesis should be rejected when the observed value 
of 1T  exceeds a pre-assigned level of significance. The third type statistic is 
based on the largest eigenvalue of the covariance matrix and the random matrix 
theory. For instance, Cai et al. [9] studied the limiting laws of the coherence of 
an n p×  random matrix in the high-dimensional setting that p can be much 
larger than n, then Cai et al. considered testing the structure of the covariance 
matrix of a high-dimensional Gaussian distribution, where the random matrix 
plays a crucial role in the construction of the test. The last type is a statistic based 
on the examination of a fixed column of the sample covariance matrix. Gupta 
and Bodnar [10] proposed an exact test on the structure of the covariance matrix. 
The test statistic of Gupta is based on the examination of a fixed column of the 
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sample covariance matrix, and it can also be applied if the sample size is much 
smaller than the dimension. 

The above mentioned statistics for covariance matrix test are applicable when 
the dispersion matrix has the Wishart distribution or the distribution of the test 
statistic is derivable, thus the asymptotic properties of these statistics can be ob-
tained. In many circumstances, the asymptotic distribution of the test statistic is 
complicated in the absence of strict normality or when the Wishart distribution is 
unavailable. In this paper, we provide a new method for testing cross-covariance 
matrix other than covariance matrix, which can be more efficient in some prob-
lems that the variance are not concerned. Moreover, the proposed test is inde-
pendent of Wishart distribution but can be implemented by parametric boot-
strap scheme. 

The proposed statistic is based on the Frobenius norm of the difference between 
the sample cross-covariance matrix and the given matrix. Theoretically, it can 
detect any deviation of the cross-covariance matrix from a pre-assigned one. Several 
numerical examples show that it is more powerful in testing a cross-covariance ma-
trix deviating from the pre-assigned matrix than some other competitive me-
thods. 

Recently, tests of time-reversibility (TR) have drawn much attention due to 
that time reversibility is a necessary condition for an independent and identically 
distributed (i.i.d) sequence. As is known, i.i.d sequence and stationary Gaussian 
models are time reversible. Otherwise, a linear, non-Gaussian process is 
time-irreversible, except when its coefficients satisfy particular constraints [11]. 
Several tests for TR have been proposed to be applied as tests for specification 
check in model construction [12] [13] [14] [15]. In this paper, the TR test me-
thod is based on the copula spectral density kernel (CSDK) proposed by Dette et 
al. [16], which is more informative than the traditional spectral density, the 
CSDK captures serial dependence more than covariance-related. The CSDK 

( )
1 2,q qτ τ

ωf  (defined in (17)) is indexed by couple ( )1 2
,q qτ τ  of quantile levels, 

where ( ) [ ]21 2, 0,1τ τ ∈  and ( )( )1 1, 2
i iq F iτ τ−= = , with ( )F x  being the 

one-dimensional marginal cumulative distribution function of a strictly statio-
nary univariate process { }t t

x
∈ . Obviously, the time series is pairwise time re-

versible if and only if ( )
1 2, 0q qτ τ

ωℑ =f  for all ω  and all ( ) [ ]21 2, 0,1τ τ ∈ , where 
aℑ  is the imaginary part of a complex number a. Thus the imaginary part of 

CSDK is equal to zero if { }t t
x

∈  is time reversible. So we can transform the 
problem of testing pairwise time-reversibility into one of testing the imaginary 
part of CSDK being zero. By Theorem 3.3 of Dette et al. [16], we derived a cova-
riance matrix ( )2 ωΣ  (defined in (24)), we find that time-reversibility indicates 
the cross-covariance matrix in ( )2 ωΣ  is equal to a zero matrix. Theoretically, 
we can transform the problem of testing pairwise time-reversibility into that of 
testing for the specification of a cross-covariance matrix. 

Throughout the paper, we denote by 
d
=  equality in distribution, and define 

aℜ  and aℑ  as the real part and imaginary part of a complex number a, re-
spectively. For matrix notation, mI  and mO  denote the m m×  identity ma-
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trix and m m×  zero matrix, respectively; ( )det M  and ( )tr M  represent the 
determinant and trace of the matrix M, respectively; 

FM  indicates the Fro-
benius norm of M. ( )2 qχ  and qt  denote a chi-square distribution and a Stu-
dent t distribution with q degrees of freedom, respectively. 

The rest of the paper is organized as follows. Section 2 presents the test statis-
tic with the bootstrap scheme in computing the p-value of the cross-covariance 
matrix test. Section 3 reports empirical results for examining performance of the 
proposed test by using simulated data. Section 4 illustrates the applications in 
detecting any deviation from time-reversibility of a time series. Section 5 contains 
our conclusions. 

2. Test Statistic and Its Distributional Approximation 
2.1. Test Statistic 

Let 1, , NZ Z  be an independent sample from ( ), , 2p pΣ ≥ µ , an multiva-
riate normal distribution with mean vector µ , covariance matrix Σ , where  

iZ  is expressed by , 1, ,i

i

X
i N

Y
 

= 
 

 , and Σ  is a blocked matrix given by 

,x

y

Σ Γ 
Σ =  ′Γ Σ 

                          (2) 

with Γ  being the cross-covariance matrix. In this section, we consider the prob-
lem of testing 

0 0 1 0: versus : .H HΓ = Γ Γ ≠ Γ  

The test statistic is constructed based on the Frobenius norm of the difference 
between the sample cross-covariance matrix and the given matrix. In the deriva-
tion, no assumption on p, like n p≥  or n p< , is required. Since the Wishart 
distribution is not achieved here, we implement the derivation by the aid of pa-
rametric bootstrap scheme. We define the test statistic 

2

0
1 ,xy

F

T N S
N

= −Γ                       (3) 

where 

( ) ( )
1

,
N

xy i i
i

S X X Y Y
=

′= − ⋅ −∑                    (4) 

with 1
1

N
iiX N X−

=
= ∑  and 1

1
N

iiY N Y−
=

= ∑ . In (3),  
2 T

0 0 0
1 1 1trxy xy xy

F

S S S
N N N

    −Γ = −Γ −Γ    
     

, which can detect any deviation  

of cross-covariance from the pre-specified matrix 0Γ . 

2.2. Bootstrap Approximation of the Null Distribution 

Let 1 2, , , NZ Z Z  be an independent sample that are drawn from ( ),p Σ µ . 
ˆ

xΣ  and ˆ
yΣ  are the estimator of the parameters xΣ  and yΣ . Suppose that the 
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pseudo data set 1 , , NZ Z∗ ∗  was resample from ( ),p
∗Σ µ , where 

ˆ
,ˆ

x

y

∗
 Σ Γ
 Σ =
 ′Γ Σ 

                         (5) 

and iZ ∗  is expressed by , 1, ,i

i

X
i N

Y

∗

∗

 
= 

 
 . The bootstrap statistic is defined as 

2

0
1 ,xy

F

T N S
N

∗ ∗= −Γ                     (6) 

where 

( ) ( )
1

,
N

xy i i
i

S X X Y Y∗ ∗ ∗ ∗ ∗

=

′= − ⋅ −∑                  (7) 

with 1
1

N
iiX N X∗ − ∗

=
= ∑  and 1

1
N

iiY N Y∗ − ∗
=

= ∑ . 
To study the bootstrap approximation of the null distribution, we need the 

following conditions: 
Condition (A1) Let F  be the cumulative distribution function (cdf) of the 

bootstrap statistic T ∗ , MF  be the empirical distribution function of the boot-
strap sample 1 , , MT T∗ ∗ . Let 

( ) ( ) ( ){ }.MFMW t M F t F t= −
                    (8) 

We assume the value of the equality (8) vanishes as t goes to infinity. 
Condition (A2) As M tends to infinity, FMW   converges weakly to ( )B F  in 

distribution, provided that ( ) ( )sup 0
x

F x F x
−∞< <+∞

− →  a.s., where F denotes the 
cdf of the statistic T and B is the Brownian bridge on [0,1]. 

Theorem 1. Suppose F is nondegenerate. Suppose also that 0 1α< <  be the 
nominal size of the test. Under conditions (A1) and (A2), if ( )c F  satisfies 

( ) ( ) ( ){ }1 2sup 1 ,x MP M F x F x c F α− ≤ → −              (9) 

then 

( ) ( ) ( ){ }1 2sup 1 .xP M F x F x c F α− ≤ → −             (10) 

The result (9) is almost immediate from Corollary 4.2 of Bickel et al. [17]. By 
Lemma 8.11 of Bickel et al. [17], we obtain that ( )( )supx B F x  has a conti-
nuous distribution, ( )c F  converges to the ( )1 α− -quantile of the law of 

( )( )supx B F x . 

2.3. Algorithm for Calculating Test p-Value 

In order to carry out the parametric bootstrap procedure for the proposed test, 
we present the following simulation steps. The bootstrap p-value is approx-
imated by the following procedure. 

Step 1. Calculate an observation obsT  of statistic T. 
Step 2. Estimate the covariance matrix xΣ  and yΣ  by sample covariance 

matrices, say ˆ
xΣ  and ˆ

yΣ . 
Step 3. Resample from ( ),p

∗Σ µ  and calculate the value of bootstrap sta-
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tistic T ∗ , where ∗Σ  is defined in (5). 
Step 4. Repeat Step 3 M times, and compute the p-value by p-value =  

{ }1

1
i obs

M

T T
iM ∗ >
=
∑  , where A  denotes an indicator on the set A, which equals 1  

when A occurs, and 0 otherwise. 

3. A Simulation Study 
3.1. Comparison Study 

We briefly describe the tests which are compared in the current paper, the mod-
ified LR test [18], and the test of Nagao [8]. These two tests are used to test 

0 0 1 0: versus : .H HΣ = Σ Σ ≠ Σ  

Let 1, , NZ Z  be an independent sample from ( ),p Σ µ , the modified LR 
test statistic is based on 

( ) ( )1
0

1
1

2tr2
1 0e det e ,

n
pn S

Sλ
−− Σ∗  = Σ 

 
                (11) 

where ( )1S n A= , 1n N= − , ( )( )N
i iiA Z Z Z Z ′= − −∑ , and 1

1
N

iiZ N Z−
=

= ∑ . 

As is known, ( )~ 1,pA W N − Σ , where the ( )1,pW N − Σ  stands for p-dimension 
Wishart distribution with 1N −  degrees of freedom and covariance matrix Σ . 
Anderson [19] derived the limiting distribution of the modified LR test statistic 

12 logλ∗−  with the help of Wishart distribution, when pIΣ = , 12 logλ∗−  is  

asymptotically distributed as ( )2 1 1
2

p pχ  + 
 

, where log a  denotes the  

logarithmic function based on natural logarithm e. Then, Nagao [8] proposed a 
test statistic 1T  (defined in (1)) which can be regarded as a measure of depar-
ture from the null hypothesis. 

In what follows, we propose the statistic T (3) to test 

0 1
2 2

: versus : .p pH O H OΓ = Γ ≠                 (12) 

So far, no test methods are available for this problem. Thus, we choose statis-
tics 12 logλ∗−  and 1T  to test 

0 1: versus : ,p pH I H IΣ = Σ ≠                   (13) 

for the comparative study, where the cross-covariance matrix in Σ  is equal to 

2
pO . Testing the structure of the covariance matrix can also detect the deviation 

of cross-covariance from the pre-specified matrix. For a pre-specified level of 
significance α  ( )0 1α< < , the null hypothesis in (13) is rejected if 

( )2
1 1

12 log 1 ,
2

p pαλ χ∗
−
 − > + 
 

                  (14) 

or 

( )
11 1 ,T T n
α−

>                           (15) 

where ( )
11

T n
α−

 denotes the 1 α−  quantile of the empirical distribution of sta-
tistic 1T . 
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We employ simulation data to evaluate the performance of the proposed sta-
tistic T, statistics 12 logλ∗−  and 1T  when applied to test the hypotheses (12) 
and (13) at a significant level of 0.05α = . Empirical sizes and powers of the 
proposed test are computed based on 250M =  resample times and 500 repeti-
tion times, and that of tests (14) and (15) are based on 500 Monte Carlo replica-
tions. In the simulation study we choose mean vector pO=µ , dimension 

4p = , and take sample size { }50,100,200,400,800n∈ . The results are shown 
in Table 1. 

Results in Table 1 show that each empirical type I error rate of above three 
different statistics is very close to the pre-specified nominal value. Also, the 
proposed test has higher empirical power than its counterpart tests (14) and (15). 
With increasing sample size, the change in empirical power of test (15) is barely 
noticeable while the performance of the proposed test improves significantly, 
which means statistic 1T  is not sensitive to the change of the cross elements of the 
covariance matrix while statistic T can detect any deviation of cross-covariance 
from the pre-specified matrix 0Γ . Thus, when the variance in the covariance 
matrix is not concerned, we recommend that statistic T can be applied to testing 
the equality hypothesis about a cross-covariance matrix. 

3.2. Bootstrap Asymptotic Study 

In this section, we employ simulation data to investigate whether the perfor-
mance of proposed test is sensitive to the block matrices in the diagonal. For this 
purpose, we consider two choices of Σ : one is 

1

1 0 0 0
0 1 0 0

,
0 0 1 0
0 0 0 1

 
 
 Σ =
 
 
 

 

and the other is 

2

1 0.5 0 0
0.5 1 0 0

.
0 0 1 0.5
0 0 0.5 1

 
 
 Σ =
 
 
 

 

We propose statistic T to test 

0 2 1 2: versus : .H O H OΓ = Γ ≠                (16) 

For the two covariance matrices mentioned above, we run a simulation with 
250M =  resample times and 500 repetition times to obtain the empirical sizes 

and powers of the proposed test at significant level 0.01,0.05,0.1α = , where we 
take sample size { }64,128,256,512,1024n∈  and choose mean vector pO=µ . 
The results are shown in Table 2 and Table 3. 

For each sample size 128,256,512,1024n =  and each nominal size  
0.01,0.05,0.1α = , Table 2 shows the empirical rejection probabilities of the 

proposed test. We present simulation results of 1Σ  and 2Σ  in the first panel  
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Table 1. Rejection probabilities of the proposed test, tests (14) and (15) from simulated 
data. 

 Statistic 12 logλ∗−  Statistic 1T  Statistic T 

n Size Power Size Power Size Power 

50 0.052 0.230 0.059 0.062 0.042 0.286 

100 0.053 0.420 0.048 0.050 0.046 0.584 

200 0.042 0.782 0.042 0.044 0.048 0.906 

400 0.046 0.989 0.056 0.058 0.058 0.996 

800 0.054 1 0.054 0.052 0.046 1 

 
Table 2. Probability of committing the type I error of the proposed test in testing (16) for 
two different Σ . 

 n 

Σ  α  128 256 512 1024 

1Σ = Σ  

0.01α =  0.008 0.012 0.014 0.012 

0.05α =  0.056 0.052 0.054 0.050 

0.1α =  0.112 0.090 0.102 0.088 

2Σ = Σ  

0.01α =  0.010 0.012 0.012 0.010 

0.05α =  0.044 0.058 0.050 0.046 

0.1α =  0.092 0.114 0.092 0.088 

 
Table 3. Empirical rejection probabilities of the proposed test in testing (16) for two dif-
ferent Σ . 

Σ  64n =  128n =  256n =  512n =  1024n =  

1Σ = Σ  0.402 0.734 0.962 1 1 

2Σ = Σ  0.286 0.594 0.954 1 1 

 
and the second panel, respectively. We see that each empirical type I error rate of 
two different cases is close to their nominal sizes. For the nominal size 0.05α = , 
Table 3 shows how the empirical rejection probability of the proposed test 
changes with respect to five different sample sizes 64,128,256,512,1024n = . 
Although the block matrices in the diagonal are different, their empirical powers 
improve significantly with increasing sample size n. Last but not least, when 

512n = , both the empirical powers of above two cases reach the maximum. By 
our simulation experiments in Table 2 and Table 3, we find that the proposed 
test is not sensitive to the block matrices in the diagonal. It is due to that the 
proposed statistic T depends only on the sample cross-covariance matrix. Thus 
we can conclude that our proposed test still achieve good performance though 
the change of the variance components in the covariance matrix take place. 
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4. An Empirical Application: Testing for Pairwise 
Time-Reversibility 

4.1. Time Reversible Time Series and Prior Specification 

A formal statistical definition of pairwise time-reversibility is defined as follows.  
Definition 1. A time series { }t t

x
∈  is pairwise time reversible if for all posi-

tive integers k, the random vectors ( )T,t t kx x +  and ( )T,t t kx x −  have the same 
joint probability distributions. 

Under this definition, one can show that pairwise time reversibility implies 
stationarity. Likewise, nonstationarity implies time irreversibility [14]. Clearly, 
{ }tx  is time reversible when { }tx  is i.i.d. Thus, for the study of testing 
time-reversibility, the pairwise case is generally considered. For instance, Ram-
sey et al. [12] proposed a pairwise TR test statistic consists of a sample estimate 
of the symmetric-bicovariance function given by the difference between two bi-
covariances of ( ),t t kx x − . Laterly, Chen et al. [11] considered the pairwise 
time-reversibility and proposed a new test aiming at the symmetrical distribu-
tion of ( )t t kx x −−  rather than moments. In the following, Dette et al. [16] 
briefly analyzed the pairwise time-reversibility of four different time series mod-
els by the aid of quantile-based spectral analysis. 

In this section, we primarily focus on testing for pairwise time-reversibility 
and the test method is based on copula spectral density kernel (CSDK) proposed 
by Dette et al. [16]. Let { }t t

x
∈  be a strictly stationary univariate process, the 

CSDK is defined as 

( ) ( ) ( ) ( )
1 2

2i
, 1 2 1 2

1 , e , , 0,1 ,
2π

U k
q q k

k
τ τ

ωω γ τ τ τ τ
∞

−

=−∞

= ∈∑f         (17) 

where 
i

qτ  is the iτ -quantile of the marginal distribution of the process { }t t
x

∈ , 
i.e. ( )1 , 1, 2

i iq F iτ τ−= = . The ( )1 2,U
kγ τ τ  (copula cross-covariance kernel) of 

lag k ∈  is also introduced by Dette et al. [16] which is defined as 

( ) ( ] ( ) ( ] ( )( )1 21 2 0, 0,, : Cov , ,U
k t t kU Uτ τγ τ τ −=             (18) 

where ( ):t tU F x= , F denotes one-dimensional marginal cumulative distribu-
tion function of the process { }t t

x
∈ . Compared with traditional covariances, the 

concept of copula cross-covariance kernel is proper for describing a serial copu-
la. 

The collection of CSDKs for different ( )1 2,τ τ  provides a full characterization 
of the copulas associated with the pairs ( ),t t kx x − , and accounts for many im-
portant dynamic features of { }tx , such as changes in the conditional shape 
(skewness, kurtosis), time-irreversibility, or dependence in the extremes that the 
traditional second-order spectra cannot capture [20]. 

4.2. Test for Time-Reversibility 

In the sequel, we will concentrate on testing for pairwise time-reversibility. Ob-
viously, we have ( ) ( ), ,d

t t k t t kx x x x+ −=  for all k ∈  if and only if  
( )

1 2, 0q qτ τ
ωℑ =f  for all ω  and all ( ) [ ]21 2, 0,1τ τ ∈ . For the purpose of pairwise 
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time-reversibility test, we consider the problem of testing 

( ) ( )
1 2 1 20 , 1 ,: 0 versus : 0,q q q qH H
τ τ τ τ

ω ωℑ = ℑ ≠f f           (19) 

for all ( )0,πω∈ . The method introduced by Dette et al. [16] for estimating the 
( )

1 2,q qτ τ
ωf  is first to calculate the rank-based Laplace periodogram (RLP) and 

then to smooth it to obtain the consistent estimator. Let { }1, , nx x  be the ob-
servation from a strictly stationary univariate process { }tx . Like Dette et al. [16], 
we define b̂  by 

( ) ( )( ) ( ) ( ) ( )( )
T 3

1 T
, , , , ,

1,

ˆˆ , : Argmin , ,
n

n
n R j n n R j n t t j n

ta
a n R aτ τ

τω ω ρ ω−

=∈

= −∑
b

b b c


  (20) 

where 

( ) ( ] ( )( ),0: ,x x xτρ τ −∞= −                      (21) 

is the so-called check function [21], ( ) ( ) ( )( )T

, , ,: 1,cos ,sint j n j n j nt tω ω ω=c ,  

,
1 1: 2π | 1, , 1,

2 2j n n
n nj n jω  − −    ∈ = = −        

 . We extend the definition of 

( ), ,
ˆ
n R j n
τ ωb  to a piecewise constant function on , ,

2π 2π: ,n j n j nn n
ω ω Ω = − +  

 as 

follows: 

( ) ( ), , , , ,
2π 2πˆ ˆ , if .n R n R j n j n j nn n

τ τω ω ω ω ω= − < < +b b           (22) 

Let { }T
1 2,τ τ τ= . We denote ( ) ( ) ( )( )1 2

TT T
, , ,

ˆ ˆ ˆ,n R n R n R
τ ττ ω ω ω=b b b , where  

( ) ( ) ( )( )1
T

, 11 12
ˆ ,n Rn τ ω ω ω=b Z Z  and ( ) ( ) ( )( )2

T
, 21 22

ˆ ,n Rn τ ω ω ω=b Z Z . Then, 
under standard mixing conditions (Theorem 3.3 of Dette et al. [16]), for  

( )0,πω∈ , ( ) ( ) ( ) ( )( )T
11 12 21 22, , ,ω ω ω ωZ Z Z Z  converges to a zero-mean real 

Gaussian distribution with covariance matrix 

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

1 1 1 2 1 2

1 1 1 2 1 2

1 2 1 2 2 2

1 2 2 2 2 2

, , ,

, , ,

4
, , ,

, , ,

0

0
: 4π .

0

0

q q q q q q

q q q q q q

q q q q q q

q q q q q q

τ τ τ τ τ τ

τ τ τ τ τ τ

τ τ τ τ τ τ

τ τ τ τ τ τ

ω ω ω

ω ω ω
ω

ω ω ω

ω ω ω

ℜ ℑ 
 

−ℑ ℜ 
 Σ =
ℜ −ℑ 
 
 ℑ ℜ 

f f f

f f f

f f f

f f f

  (23) 

Not all the entries in ( )4 ωΣ  need to be concerned when testing hypotheses 
(19), so we consider the block covariance matrix ( ) ( )( )11 22Cov ,ω ωZ Z , 

( )
( ) ( )
( ) ( )

1 1 1 2

1 2 2 2

, ,

2
, ,

: 4π .
q q q q

q q q q

τ τ τ τ

τ τ τ τ

ω ω
ω

ω ω

ℑ 
 Σ =
 ℑ 

f f

f f
             (24) 

Thus, for the test of hypotheses (19), we can transform the problem into one 
of testing the cross-covariance matrix in (24) being a one dimensional zero ma-
trix. Here, we define random vectors X and Y as 

( )( ) ( )
( )

( )( ) ( )
( )

1 1 2 2

1 1 2 2

11 22
, , , ,

, , , ,

ˆ ˆsgn , sgn ,
ˆ ˆ4π 4π

n n

n n

X Yτ τ τ τ

τ τ τ τ

ω ω
ω ω

ω ω
= =

Z Z

 
 

f f
f f
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where the smoothed rank-based Laplace periodogram ( )
1 2, ,n̂ τ τ ωf  denotes a con-

sistent estimator of CSDK, and  

( )( ) ( )
( )

, ,
, ,

, ,

ˆ1, if 0,
ˆsgn 1,2

ˆ1, if 0,
i i

i i

i i

n
n

n

w
i

w

τ τ

τ τ

τ τ

ω
 >= =
− <






f
f

f
            (25) 

Let 1, , NZ Z  be an independent sample, where iZ  is expressed by 

, 1, ,i

i

X
i

Y
ω

 
= 

 
 . The test p-value is approximated by the previous bootstrap 

scheme. 

4.3. An Illustration Example 

Due to lack of the accurate values of CSDKs, it is difficult for us to evaluate our 
methodology by using the general models by simulation [20]. We consider two 
AR(1) models (models 1 and 2) with the form 

10.3 ,t t tx x ε−= − +                        (26) 

since their CSDKs can be computed numerically. In model 1, , 1, 2,t tε =   are 
independent ( )0,1 -distributed random variables, while independent Student 
t-distributed with 1 degree of freedom in model 2. For model 1, the imaginary 
component of CSDK is vanishing, which reflects that the process is time-reversible; 
for model 2, there exists a time-irreversible impact of extreme values on the cen-
tral ones [16]. 

Recently, Dette et al. [16] and Kley et al. [22] proposed to estimate the CSDKs 
by smoothing RLP, which can be defined by quantile regression (QR) or clipped 
time series (CT). The finite sample performance of the smoothed RLP can be 
conducted using the R package quantspec [22]. This makes the method of 
smoothed (QR- or CT-based) RLP serve a good reference to calculate the test 
p-value. We take the smoothed QR-based RLP to cope with the pairwise TR test. 
For each generated pseudo-random time series, we computed the smoothed 
QR-based RLP using the Epanechnikov kernel and bandwidth 0.07bw = . For 
each generated dataset and each pair of ( )1 2,τ τ , the test p-value is computed by 
the previous bootstrap procedure. 

For each of those two models, we generated 512 and 1024 dataset with each 
containing pseudo-random time series of lengths 1024n =  and 2048n =  re-
spectively. We set ( )T0.1,0.5,0.9τ = . A boxplot that is drawn is based on 50 
realizations of the log scale of the realized p-value. For each pairs  
( ) ( ) ( ) ( )1 2, 0.1,0.9 , 0.1,0.5 , 0.5,0.9τ τ = , the boxplots of two models are presented 
on the left, middle and right, respectively. For each boxplot, the median, extreme 
points and box shaped by lower and upper quartiles are marked in Figure 1 and 
Figure 2. 

Next we discuss the simulation results in the case of an AR(1) process. We 
find from Figure 1 that the lower quartile of boxplots of two models is greater 
than ( )log α  at quantile pair ( )0.1,0.9 , which means the null hypothesis in 
(19) cannot be rejected, i.e. ( )0.1 0.9,t t kP x q x q+≤ ≤  is approximately equal to  
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Figure 1. Boxplots of the estimated ( )log p -value for different ( )1 2,τ τ , and 1024n = . 

 

 
Figure 2. Boxplots of the estimated ( )log p -value for different ( )1 2,τ τ , and 2048n = . 

 
( )0.9 0.1,t t kP x q x q+≤ ≤ , means that AR process with Gaussian innovations or 1t  

distributed innovations is time-reversible. Also, when ( ) ( )1 2, 0.1,0.5τ τ =  or 
( )0.5,0.9 , these observations also reflect the fact that AR process with Gaussian 
innovations are time-reversible. However, for 1t  distributed innovations, this 
phenomenon only takes place for the extreme quantiles ( 1 20.1, 0.9τ τ= = ), does 
not hold for 1 0.5τ =  and 2 0.1τ =  or 2 0.9τ = , one of the important reason is 
that there exist a marked discrepancy between tail and central dependence 
structures when the innovations { }tε  of AR(1) process are non-Gaussian. 
From Figure 2, it can also be evidenced that AR process with Gaussian innova-
tions is time reversible, while the case of 1t  distributed innovations is time re-
versible only for extreme quantiles. Above results indicate that the imaginary 
parts of CSDK are not zero suggesting time-irreversibility. 

5. Conclusions 

In this paper, we proposed a new statistic (3) for testing the specification of the 
cross-covariance matrix. The test statistic is constructed based on Frobenius 
norm of the difference between the sample cross-covariance matrix and the giv-
en matrix. The asymptotic properties of test statistic were obtained with the help 
of bootstrap scheme. By computing the empirical size and power of the pro-
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posed test, the rationality of the test statistic was obtained. The advantage of the 
proposed statistic is twofold. First, through comparative study, we found that 
our empirical powers are clearly superior to others in detecting any deviation of 
the cross-covariance from the pre-assigned matrix. Second, there is no need to 
make complex derivations of the distribution of statistic T and only a few simu-
lation studies we can obtain the performance of the test. 

However, one challenge is to determine whether the test performs very well in 
the case where the data is high-dimensional, this will be our future work. 
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