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Abstract 

We analyze nonequilibrium electronic transport properties of a typical inte-
racting three-site quantum wire model within Hartree-Fock approximation 
making use of Keldysh formalism. Some rigorous formulas are provided for 
direct calculations when Coulomb repulsion is present. According to numer-
ical calculations using above formulas, we investigate the conductance, trans-
port currents, and on site electronic charges of the wire on some special occa-
sions in the interacting case, and also compare them with the results in the 
noninteracting case. 
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1. Introduction 

With advantage of top-down and bottom-up fabrication techniques for nano-
meter scale structures, it becomes possible to create quantum wire (QW) with 
the diameter of the order of the Fermi wavelength, and to experimentally study 
the quantum transport properties through them [1] [2]. In order to under-
stand the experiment results, furthermore, to predict transport properties for 
applications in the future nanodevice design, theoretical approaches for clari-
fying QW electronic transport become necessary. In this paper, we present 
some theoretical formulas and numerical results for nonequilibrium electronic 
transport, using a simplest interacting model of three-site QW, in which each 
site has a single level. This method also could be extended to analyze the non-
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equilibrium transport properties of QWs containing much more sites with ex-
tended states. 

In this study, the rigorous formulas of conductance, transport current and charge 
distributions for the three-site QW model are provided within Hartree-Fock ap-
proximation, based on the nonequilibrium transport theory (Keldysh formalism) 
[3] [4] [5]. From these formulas, the relevance between the transport properties 
and the temperature or the parameters in the Hamiltonian is expressed clearly 
and can be investigated in detail. In the noninteracting case (U = 0), we focus on 
the resonant tunneling transport and conductance quantization phenomenon. 
While in the interacting case (U > 0), we investigate Coulomb blockade and 
metal-insulator transition, as well as spin transport properties in the QW. It is 
reasonable to consider that the results of our study are available in the compli-
cated case of actual QWs which are probably longer and thicker containing a 
larger number of atoms (sites) having multiple levels. 

2. Model and Formulation 
2.1. Model 

We consider a one-dimensional QW with three lattice sites which are mutually 
coupled by tunneling barriers. They are combined with two external electrodes 
as shown in Figure 1. The tight-binding Hamiltonian of such system is de-
scribed by Equation (1). Here ,ˆkσ α

+c  and ,ˆkσ αc  (α = L or R) denote creation 
and annihilation operators of an electron with wave vector k and spin σ within L 
or R one-dimension perfect crystalline electrodes. The same operators of an 
electron within i-th site of the centre wire are denoted by ˆ

iσ
+d  and ˆ

iσd . ,kσ αε
and iσε  are on-site energies in the electrodes and wire region, respectively. The 
transfer integrals between the nearest-neighbor sites are ,i jt σ . The sites labelled 
by 1 and 3 are connected to the left and right electrode, respectively, and ,kVα σ

denote the tunnel combination integrals between those boundary sites and the 
electrodes. The on-site Coulomb repulsion energies are denoted by Ui. When 
bias voltage V is applied to the wire, it can be regarded as electrochemical poten-
tials, μL and μR, associate with the left and right electrode, respectively (eV = μL − 
μR). We assume that the electrodes are electric reservoirs, the capacities of which 
are large enough that μL and μR are not perturbed by the transport current. In the 
case of μL > μR, electrons will flow from the left electrode to the right electrode. 
 

 
Figure 1. The model of three-site quantum wires combined with two external electrodes. 
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2.2. Formulation 

We consider a system consisting of three regions, a left electrode, a right elec-
trode and a intermediate wire, they uncouple and each one maintains its nonin-
teracting thermal equilibrium when t = −∞ , then turn on the perturbation 
coupling between the wire and electrodes adiabatically with a route of 

0t = −∞ → → +∞→ −∞  (Keldysh contour). According to the quantum statis-
tical theory (perturbation expansion), any nonequilibrium observable physical 
quantity at time t can be expressed exactly by Keldysh Green’s Functions (GF), 
such as correlation function 0 0ˆ ˆ( , ) i ( ) ( )ij i jG t t t t< += c c and retarded/advanced GF 

[ ]r(a)
0 0 0 0ˆ ˆ ˆ ˆ( , ) i ( ) ( ) ( ) ( ) ( )ij i j j iG t t t t t t t tθ + += ± − +c c c c  (Keldysh formalism) [3] [4]. 

These GFs can be solved from Dyson-equation. 
The self-energies resulting from wire-electrode coupling and Coulomb repul-

sion are derived within Hartree-Fock approximation and are shown in Equation 
(2) and Equation (3), respectively: 
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1 2

( )
, ' ,( ) ( )i

n n n n nU eσ σ σ σ σε ρ ε−−Σ = , ( ) ( ) 0i
pq ε>Σ = , 

( )
1 2

( )
, ' ,( ) ( )i

n n n n nU eσ σ σ σ σε ρ ε++Σ = − , ( ) ( ) 0i
pq ε<Σ =              (3) 

Corresponding retarded/advanced self-energies are given by 
2r

, ,i ( ) i ( ) kVασ α σ α σε πν εΓ = − , 
2a

, ,i ( ) i ( ) kVασ α σ α σε πν εΓ =        (4) 

where , ( )α σν ε  is the density-of-states (DOS) in the electrodes, α = L, R. 
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The single spin current flowing in the wire and the spin electron charge on the 
site n are given by Equation (5) and Equation (6), respectively [5]: 

*
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,
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−∞
= − ∫                  (6) 

From Equation (5) and Equation (6), the following transport formulas can be 
obtained by correlation functions calculations straightforwardly (fμσ is the Fermi 
distribution function). 

The spin current is 
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the spin conductance is 
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and the up-spin electron charges on each site of the wire are expressed by 
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The electron charge formulas for down-spin can be obtained by exchanging 
the subscript ↑ and ↓ in the up-spin formulas above. 

3. Numerical Results and Interpretations 

In this section, we calculate the transport properties of the three-site QW in 
some special cases applying the formulas in previous section. We assume that 

0iσε = , 12 23t t t↑↓ ↑↓= = , L, R,k kV V V↑↓ ↑↓= = , ( ) ( )L Rε ε↑↓ ↑↓Γ = Γ = Γ  and 

1 2 3U U U U= = =  All of the energies are normalized by the transfer integral t. 
Especially, the normalized self-energy is defined as / tγ = Γ  in the following 
numerical calculations. 

3.1. Noninteracting Case (U = 0) 

The numerical results of conductance, current and electron charges in the three 
sites of the wire as a function of electrochemical potential μ for several values of 
γ are illustrated in Figures 2-4. 
 

 
Figure 2. Conductance as a function of electrochemical potential μ for self-energy γ = 0.2, 
1 and 3 (normalized by transfer energy t). (a) When kB T = 0 (T = 0 K); (b) When kB T = 
1 (T > 0 K). 
 

 
Figure 3. Transport current as a function of electrochemical potential of left electrode μL 
(μR = −5) for self-energy γ = 0.2, 1 and 3, when T = 0 K. 

https://doi.org/10.4236/jamp.2019.78114


Y. D. Zheng 
 

 

DOI: 10.4236/jamp.2019.78114 1682 Journal of Applied Mathematics and Physics 
 

 
Figure 4. Electronic charges in the three sites as a function of electrochemical potential of 
left electrode μL (μR = −5) for self-energy γ = 0.2, when T = 0 K. 
 

The behavior of conductance and transport current changes dramatically 
when the value of γ crosses unity. When γ < 1, the conductance has three max-
imums at μ/t = 0 and μ/t = 2± , and the corresponding current increases in-
termittently with a step shape. These phenomena imply that resonant tunneling 
and conductance quantization take place easily in this case. Whereas when γ ≥ 1, 
these quantum effects in transport will disappear gradually with the increase of 
γ. In the case of T > 0 K, the line shapes of the transport characteristics become 
not to change so much and become all smoother than those in T = 0 K due to 
the thermal fluctuations. The charges distributions shown in Figure 4 results in 
the fact that in the area of μL < 0, a minus charge barrier will be formed at the 
boundary of the wire, whereas in the area of μL > 0, a plus charge barrier will be 
formed. 

3.2. Interacting Case (U > 0) 

We select comparative small value of U (U < 5) to investigate Coulomb interac-
tion effects in transport due to the limits of Hartree-Fock approximation. The 
transport properties are computed by self-consistent calculations concern with 
site charges ρn↑↓. The initial site charges are decided by the ground state of the 
three-site QW with half-filling (N = 3) assumption, which is an antiferromagnet 
state with total spin of +1/2. 

The numerical results of spin conductance in the case of γ = 0.2 and 1 as a 
function of μ for several values of U are illustrated in Figure 5(1) and Figure 
5(2), respectively. Compared with the case of U = 0, the conductance curves 
shift to right and peaks are broadened with the increase of U. When U > 2γ, the 
peaks of conductance start to split into two corresponding to up or down spin 
conductance. These phenomena all result from the changes of spin orbits in the 
wire due to the Coulomb repulsion between the up and down spin electrons on 
sites. The series of peaks and valleys in the conductance characteristics can be 
considered a synthetic effect of resonant tunneling and Coulomb blockade. One 
of the valley happen to shift on the Fermi-level of the wire (μ = 0), the met-
al-insulator transition (Mott transition) will takes place. We show the spin con-
ductance as a function of U for several values of γ when μ = 0 in Figure 6. This 
result indicates that, if the self-energy γ has small value compared with  
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Figure 5. Up-spin and down-spin conductance as a function of electrochemical potential 
μ for self-energy γ = 0.2 and γ = 1, when T = 0K. (1a)-(1d) γ = 0.2, (2a)-(2d) γ = 1, with 
different on-site Coulomb repulsion energies(a) U = 0.5; (b) U = 1; (c) U = 2; (d) U = 4. 
 

 
Figure 6. Up-spin and down-spin conductance as a function of U for self-energy γ = 0.1, 
0.2, 0.5 and 1, when electrochemical potential μ = 0 and T = 0 K. 
 
U, generally the spin conductance will rapidly decrease with the increase of U, 
and the wire becomes an insulator from a metal (Mott transition).  

We illustrate the spin current as a function of left electrode potential μL (μR = 
−5) for several values of U in Figure 7(1) when γ = 0.2. Because the self-energy 
γ has a small value, the nonequilibrium spin current gradually decreases with the 
increase of U. Meanwhile, the line shape of the up spin current separates from 
that of the down spin current. 

In Figure 7(2), we demonstrate the up and down spin current as a function  
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Figure 7. (1) Spin transport current as a function of electrochemical potential of left elec-
trode μL (μR = −5) for U = 0, 0.5, 1, 2, and 4, when self-energies γ = 0.2 and T = 0 K. (1a) 
Up-spin. (1b) Down-spin. (1) Up-spin and down-spin transport current as a function of 
electrochemical potential of left electrode μL (μR = −5) for U = 4, when T = 0 K. (2a) γ = 
0.2. (2b) γ = 1. 
 
of μL (μR = −5) for γ = 0.2 and 1 when U has a large value of 4. Especially, in the 
case of γ = 0.2, when μL approaches some positions where the conductance has 
peak values in Figure 5(1), the up-spin current increases while the down-spin 
current decreases, indicating that the spin polarization takes place in the wire.  

4. Summary 

Based on the Keldysh formalism, we provided some rigorous formulas of nonequi-
librium electronic transport for a typical interacting three-site QW model within 
Hartree-Fock approximation when Coulomb repulsion is present. According to 
numerical calculations, we investigated the conductance, transport current and 
electronic charge distribution of the three-site QW in some special occasions. In 
the noninteracting case, when self-energy γ < 0, the resonant tunneling transport 
and the conductance quantization can be easily observed. The transport proper-
ties of up-spin are identical with those of down-spin. While if the Coulomb in-
teraction is present, the conductance curves shift to right and the peaks are 
broadened with the increase of U because of electron-electron repulsions. When 
U > 2γ, the peaks of conductance split into two. The Coulomb blockade and 
metal-insulator transition (Mott transition) phenomena are obvious if γ has a 
small value compared with U. The conductance and transport current of the 
up-spin also become quite different from those of the down-spin indicating that 
the spin polarization takes place in the wire. 
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