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Abstract

In the work, we have studied the dependencies of the solutions to integral in-
clusions from perturbation and investigated an extremal problem for integral
inclusions. We obtained necessary and sufficient minimum conditions for
extremal problems of Volterra type convex inclusions. We also studied a
nonconvex extremal problem for the Volterra type inclusion. We obtained a
high order necessary condition in the extremal problem for the Volterra type
inclusion.
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1. Dependence of the Solution to the Integral Inclusion
from Perturbation

Let R" be the n-dimensional Euclidean space. The set of all nonempty compact
(convex compact) subsets in R" we will designate as compR" (coan") ;
k:[t,,T ]2 — M, is the continuous matrix function, wherewith A/, being the
set of all square nxn matrices of real elements (b, ); z:[f,,T]—> R" the con-
tinuous function; F: [to, T] x R" — compR" the setvalued mapping.

Assume that if a vector is multiplied by a matrix, then the vector is a row vec-
tor, if a matrix is multiplied by a vector, then the vector is a column vector.

Let us consider a problem for inclusion

u(t)eF(t,.[t;k(t,s)u(s)ds+z(t)) (1)
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The function u(-)e L} [¢,,T] satisfying (1) we will call the solution to prob-
lem (1) (see [1]).

Let a= max]"k(t,s)": max ZLIZZ:I

t,se[tO,T t,se[to ,T]

ki (6,5)) if k:[tg,T] — M, is the
continuous matrix function.

Theorem 1. Let k: [tO,T]2 — M, be the continuous matrix function,
z:[t,T]—> R" the continuous function, F :[#,,T]xR" — compR" the multi-
valued mapping, ¢ —> F(l,x) is measurable on £ and there exists a summa-
ble function M(¢)>0 such that p (F(t,x),F(t,x))<M(t)|x—x]| for
x,x, € R". Moreover, let p(-)eL[t,,T] and u#(-)eL[t,,T] be such that

_ ‘ _ .
d(u (t),F(t,LOk(t,s)u (s)ds+z(t))) <p(t) for re[t,,T]. Then there exists
such a solution u(-) e L} [#,,T] to problem (1) that

‘ [ k(ts)u(s)as-[ k(t,s)z?(s)ds‘ afl 0 p(s)as,

lu(t)-i (1) < p(t)+ aM(t)_[[; "0 p(5)ds

for te [tO,T],where m(t):ath(s)dS.

2. On Subdifferential of the Integral Functional

Let f:[t,,T]xR" — (—o0,+o0] is the normal convex integrant (see [2]).
Let consider a subdifferential of the integral functional

()= [ (6] k(es)u(s)ds +2(0) o

in L [4,T].
Theorem 2. If k:[t,,T] =M, be the continuous matrix function,
z:[t,,T]—> R" the continuous function, f :[,,T]xR" —(—o0,+o0] is the

normal convex integrant and function f(t,_[: k(t,s)u(s)ds+ z(t)+x) is
summable for xeR", |x| <5, where u(-)eL{[t,,T], then 8J(LT()) is
nonempty and v" € L, [1,,T] belongs to &J(u(-)) if and only if, there exist
u () e L[t,,T], u'(t)e 8f(t,.|‘; k(t,s)u(s)ds + z(t)) , such, that

v (s)= _LTk(t,s)t u'(¢)de , where k(7,t)" is the transpose of the matrix
k(z,t).

Theorem 3. If k:[to,T]2 — M, be measurable bounded matrix function,
z:[t,,T]—> R" be measurable bounded function, f :[7,,T]xR" — (—o0,+00] is

the normal convex integrant and function f(t,J-;k(t,s)t_t(s)ds+z(t)+x) is

summable for xeR", |x|<&, where #(-)eL[t,.T], then aJ(i(-)) is
nonempty and functional v e L. [t,,T] belongs to &J(u(-)) if and only if,

there exist u ()eLi[t,,T], u (t)e 6f(t,‘[: k(t,s)ﬁ(s)ds+z(t)) , such, that
0

0" (s) = [ k(ts) u’ (c)dr .
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3. On Subdifferential of the Terminal Functional

Let k:[t,,T]' — M, continuous matrix function, z:[t,,7]—> R" continuous
function, ¢:R" — (-, +oo] proper convex functlon in R" Consider a sub-
differential of the terminal functional F (u(- ( I k(T,s)u(s)ds+z(T )) in
L [t,,T], where z(-)eC"[t,,T].

Theorem 4. If ¢ -proper convex function in R" and continuous in the
point Lork(T,s)ﬁ(s)ds+z(T), then

oF (()) = {bk(T,s) b e 0p( [/ k(T.5)T(5)ds +z(T))}.

4. Convex Extremal Problem for Integral Inclusions

Let k:[tO,T]2 — M, be the continuous matrix function, z:[7,,7]—>R" the
continuous function. Hereafter we will assume that f:[z,,T]xR" — (—o0,+0]
is the normal convex integrant, ¢:R" —(—o,+c0] the convex function. Let
ty<T, F:[t,,T]xR" = compR"U{Q} isthe multivalued mapping.

The problem of minimization of the functional
J(w)=o([TR(T.)u(s)ds+2(T))+ [ £ (6] k(es)u(s)ds+2(0))ar @
is considered under the following constraints
u(t)e F (1] k(t.s)u(s)ds +2(1)), 3)
where 1€(t,,T], u(-)eL[t,,T].

0, zeF(t,x)

we have that problem
+o0, z¢g F (t,x)

Introducing the notation @(¢,x,z) :{
(2) and (3) is equivalent to the minimization of the functional
)= ([ R(Ts)u(s)ds+2(T))+ [ £ (1], k(s (s)ds =)
o ( j (15 )u(s)ds +2(0)u (1))

among all functions u(-)e L [1,,T].

Let the mapping ¢ — grF, = {(x,y) 1y E F(t,x)} be measurable on [tO,T] ,
the set grF, be closed and convex for almost all ¢€[f,,T] and F(z,x) be
compact for all (t,x) . From here it follows that a)(t, x,z) is a convex normal
integrant on [7,,T]x (R" xR" ) .

Let us consider the following functional
S(w.v)= go(ft:k(T,s)u(s)ds+z(T))+L0Tf(t,j;k(t,s)u(s)ds+z(t))dt
#[lo(n [ k(s)u(s)ds+2(0)u(r) +o(0))dr,

where v(-)eLj[1,,T]. Let h(v)= inf S(u,v). The problem (2) and (3) is

n

called stable, if / (0) is finite and fuunec]tﬁo)’rTl]b is subdifferentiable at zero (see [3]).
Lemma 1. Let F:[t,,T]xR" — compR"U{@} ; the mapping r—> F(t,x)
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be measurable on [f,,T]; the mapping x — F(#,x) be closed and convex for
almost all ¢€[t,,T], ie. grF, be closed and convex for almost all ¢€[z,,T];
there exist such a summable function A(r) that ||F(t,x)||£x1(t)(l+|x|) for

x € R"; there exist a solution u,(¢) to the problem

uy(t)e F(t,J‘: k(t,s)u,(s)ds +z(t)) such that x,(¢)= Lt k(2,5 )uy (s)ds+2z(r)
belongsto dom F, ={x:F(t,x)# @} coupled with some & tube, ie.

{x : |x0 (t)—x| < 8} cdomF,; f:[t,,T]xR" —(—o0,+] the normal convex in-

tegrant; ¢:R" — (—o0,+] the convex function and inf J, (u) is finite;
uel[ty.T]

the function f(t,_[;k(t,s)uo (s)ds +z(t)+y) be summarized for y e R",
|y| <r,where r>0,and function (p() be continuous at the point

J;Tk(T ,8)uy(s)ds+z(T). Then the function 4 is subdifferentiable at zero, i.e.
0
problem (2) and (3) is stable.

Let veR". Assume

@’ (t,x,0) = inf {(z|u)+ a)(t,x,z)} =inf {(z|u) ‘ze F(t,x)} ,

zeR"

where inf(J=+o.

Theorem 5. Let F:[t,,T|xR" — compR" U{@}; the mapping — F(t,x)
be measurable on [f,,T]; the mapping x — F(#,x) be closed and convex for
almost all 7 €[1,,T]; fbe the normal convex integrant on [¢,,T]|xR"; ¢ the
convex function on R"; k: [tO,T ]2 — M, the continuous matrix function;
z:[t,,T]—> R" the continuous function. For the function u(-)e L [t,,T] to
minimize the functional (2) among all the solutions to the problem (3), it is suf-
ficient that there exist u, (-), u,(-)eL{[¢,,T] and beR" such that

D (1) e (o K(ts)i(s)ds+2(1))
2) be 8(0(Z(T)+L]Tk(T,s)t7(s)ds),
3)
u, (1) € 00’ (t,ft:k(t,s)ﬁ(s)ds +z(t),_[tTk(r,t)l (u]* (7)+u, (‘r))dr+K(T,t)l b),
0 (1,2(0)+ [ K (e8) (5)ds, [T () (1 (7) 415 (7)) + K (T.) )
&) =((0) "k (e) (s () e () de+ K (Tr) )
+o(tz(0)+ [ k(ts)a(s)dsa (1))

and if for u,(t)=u() the condition of lemma 1 is satisfied, then conditions 1)

- 4) become necessary.

5. Nonconvex Extremal Problem for Integral Inclusions

Let k:[1,,T] — M, be the continuous matrix function; z:[t,,T]— R" the
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continuous function, ie. z(-)eC"[t,,T]. Hereafter we will assume that
S [t T]x R" x R" — (—o0,+00] is the normal integrant and ¢ : R" — (—0,+o0]
is the function. Let £, <T, F:[t,,T]xR" —> compR" be the multivalued map-
ping.

We consider the following problem of minimization of the functional

J(w)=([TR(T.s)u(s)ds+2(7))+ [ (0 R (es)u(s)ds+2(0)u(e)|ar, )
under the following constraints

u(t)e F (o] k(es)u(s)ds +2(r)) 5)

where 1€(t,,T], u(-)eL[t,,T].
Let w(s,x,y)= inf{|z -y:ze F(s,x)} and consider the minimization of
the functional

J, ()= [ k(Tus)uls)ds (7)) [T (0] (e (s)dsoo 2(e)u () o
ol (6] k(es)u(s)ds () () e

among all the functions u(-) e L [#,,T].
Theorem 6. If u(-)eLj[z,,T] is the solution to the problem (4) and (5),

F:[ty, T]xR" — compR" U{D} and t—F(t,x) aremeasurable on ¢,
% (t)= [ k(t.5)iw(s)ds +2(¢), there exist k()<L [1,.T], M()eL[1.T],
k>0, k, >0 and o >0 suchthat
B(%(t),a)cdomF, ={xe R":F(1,x)#@} at t&[t,,T] and
|(p(z)—(p(u)|£k2|z—u|,
(620 30) = S (620 0,)| S k()5 = x|+ K |y = 3]
py (F(t.x,),F(t.x,)) < M (t)]x, = x,]

for z,u eB(f(T),a) y XX, eB()_c(t),a) , V»Y, €R". Then there exist a
number 7, >0 suchthat #(#) minimizes the functional J, () in D for

r21,, where D= {”() el [IO’T]:||“(')_"7(’)||L’1’[:0,T] S%}’

B> (1+a(em<” +ae"™) _[l:M(t)dt))(a [ (drs1)+a, m(e)=af M (5)ds

Theorem 7. Let the condition of the theorem 6 be satisfied and the function
i (t) among all solutions to the problem (5) minimizes the functional (4). Then
there exists u (-)e Lj[1,,7] and beR" such that

(" (1)~ k(mt) W (F)dz =K (T.1) b)
1) e8C(f(t,j;k(t,s)ﬁ(s)ds+z(t),ﬁ(t))
o] k(t,s)ﬁ(s)ds+z(t),ﬁ(t))),
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D) beocp(=(T)+ [[k(T5)it(s)ds),

where 0.g(x) is Clarke subdifferential of the function g at the point X (see
[4]).

6. A Higher Order Necessary Condition in the Extremal
Problem for the Volterra Type Inclusion

Consider the problem (4) and (5), where f(t, x,y) = f(t,x). Assume
(//(s,x,y) = inf{|z—y| ize F(s,x)}.
We consider the following problem of minimization of the function
J, () =o([R(T.)u(s)ds+2(T))+ [ £ (1 k(e 5)u(s)ds +2(0)
T t s
+r[(j o] k(t,s)u(s)ds+z(t),u(t))dt)
f ty

7 ()-u() Z;V( (o] k(t,s)u(s)ds+z(t),u(t))dt)v)

among all functions u(-) e L{ [1,,T].
Let u(-)eLj[t,,T] be the solution to the problem (4) and (5). Let

)_c(t) = J.;k(t,s)ﬁ(s)ds + z(t) .

Theorem 8. Let F:[,,T]|xR" —> compR" be the multivalued mapping, the
mapping ¢ — F(f,x) be measurable on [f,,T]; be the normal integrant on
[t,.,T]xR"; ¢ the function in R"; k: [ZO,T]2 — M, the continuous matrix
function; z:[7,,T]— R" the continuous function, and there exists a summable
function M (7)>0 suchthat p, (F(l,x),F(t,x, )) < M(t)|x—xl| for
x,x, € R"; there exist k (-)eL[t,T], k(t)>0 and number k, >0 such
that

|f(t,x1 )= f(t,x, )| <k, (t)|x1 —x2|v (|x2 —f(t)|ﬁ7v +|x1 —x2|ﬁfv)
for x,,x, eR",

B-v
+|x-y

()= ()| <kalx—f" (v -%(7)

B-v )

for x,yeR" (see [5]). If the function LT(t) among all solutions of the prob-
lem (5) minimizes the functional (4), then there exists a number 7 >0 such
that #(¢) minimizes the functional J, () in L [t,,T] for r>r,.

Let g:[t,,T]xR" —(—o0,+] be the normal integrant on [f,,T|xR";
e:R" — (—o0,+00] the function.

Let assume

S(u)=e([[k(Tus)u(s)ds+2(7) )+ g (1], (eus)u(s)ds + =)
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1,0 = )=S0 |
Ha()-u Ol (J,jw(af,;kww(s)ds+z<z>,u(t>)dr)vj
= ([ K(T.s)u(s)ds+ 2(T))=e( [ (T.s)u(s)ds +2(T))
(6] k(es)u()ds 4 2(0))de = g (1] k(es)u(s)ds + 2(e) s
(e ka2

() =ul)

N (L:w(r,j;k(t,s)u(s)ds+z(z),u(t))dt)vj.

Theorem 9. Let F: [tO,T ]><R” — compR" the multivalued mapping, the
mapping ¢ — F(7,x) be measurable on [f,,T]; fbe the normal integrant on
[t,,T]xR"; ¢ the function in R"; k:[tO,T]2 — M, the continuous matrix
function; z:[7,,T]— R" the continuous function and there exist a summable
function M(t) >0 suchthat p, (F(t,x),F(t,xl)) < M(t)|x—x1| for
x,x, € R"; there exist the normal integrant g:[z,,T]|xR" — (—o0,+x], the
functions e:R" — (—o0,+], k (-)eL[t,,T], k(t)>0 and number k, >0
such that

[/ (6x) =g (65) =/ (t.3,) + g (1.3,
<k (t)|xl —x2|v (|x2 —)_c(t)

p-v
+|x, —x,

v )

for x,,x, € R", where f(t):_rk(t,s)ﬁ(s)ds+z(t),

)

=

T |x —y )
for x,yeR" and let i(-)e L{[t,,T] solutions of the problem (4)-(5). Then
there exist a number 7, >0 such that #(¢) minimizes the functional H, (u)
in ue {U e L [1,,T]:S(w,) < S(ﬂ)} for r>r,, where w, solutions to the
problem (5), which satisfy the main theorem 1 for (-)=0(r).

[o(x)=e(x)-p(»)+e(y) < o3 ([y-5(T)

It’s possible to get the local variant of theorems 8 and 9 analogical to theorem 6.

Let assume

for u(-)eL[4,.T].

Corollary 1. If the condition of theorem 8 is satisfied, then there exist a num-
ber 5 >0 such that Jr{ﬂ}+ (w5u) > J;{ﬁ}_ (#;u)=0 for r>r, and
u(-)e L [1,.T].
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Let assume
E (u)= P\ (ij(T,s)ﬁ(s)ds+z(T);J-t:k(T,s)u(s)ds)

[P (0 (1) (5)d5 2 (0): [ (e (5)ds e

+He ()

Z—v (L:y/{l}+ (t,j;k(t,s)ﬁ(s)ds +z(1),u(1); : k(t’s)u(s)ds,u(t))dt)vj_

0

Theorem 10. If the condition of theorem 8 is satisfied, then there exist a
number 7, >0 suchthat E, (u)>0 for r>r, and u(-)eL[t,.T].
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