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Abstract 
The crystallization of calcium carbonate at interface of Langmuir monolayers 
of bovine serum albumin and subphase containing magnesium ions was stu-
died in this paper. The results were characterized by using powder X-ray dif-
fraction (XRD) and scanning electron microscopy (SEM). The effect rules 
were obtained by the cooperation of bovine serum albumin Langmuir mono-
layers and magnesium ions. BSA Langmuir monolayers controlled calcium 
carbonate to magnesium ions in solution. The experiment results showed that 
in the presence of both BSA Langmuir monolayers at interface and magne-
sium ions in solutions, an orientation aragonite with regular spherical mor-
phology was precipitated. It is indicated that BSA Langmuir monolayers and 
magnesium ions have a cooperative effect on controlling the polymorph and 
orientation of calcium carbonate crystal. The experiments suggested that BSA 
Langmuir monolayer acts in combination with magnesium ions to inhibit 
calcite crystal growth, while favoring the formation of aragonite crystals.  
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1. Introduction 

Many studies have been carried out on the mechanisms involved in biominera-
lization processes and several new biologically inspired synthetic routes have 
been designed for control of the formation of the mineral phase. One of the most 
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intensely examined systems is calcium carbonate, which is abundant in biomi-
nerals, but also of industrial importance due to its wide use as a filler in paints, 
plastics, rubber, or paper. It has been shown that the polymorphism, morpholo-
gy and structural properties of calcium carbonate can be controlled by the use of 
specific organic templates and/or additives. Langmuir monolayers [1] [2], ultra-
thin organic films [3], self-assembled films [4], have been used as effective tem-
plates for the controlled growth of calcium carbonate crystals, focusing on the 
control of the polymorph and crystal orientation. Cross-linked gelatin films [5], 
polymer substrates [6], and crystal-imprinted polymer surfaces [7] have also re-
cently been used to direct the controlled growth of calcium carbonate crystals. 
Calcium carbonate films have been successfully prepared in the presence of both 
organic substrates and soluble polymeric additives [8] [9]. Interestingly, a de-
signed peptide has been synthesized and used for the conformation-dependent 
control of the calcite morphology [10]. 

Proteins isolated from mollusk shells [11] [12] and intra-crystalline macro-
molecules from sea urchin spines [13] have shown distinct control on the poly-
morph of calcium carbonate crystals. The modulation of BSA on crystal mor-
phology of calcium carbonate has been studied in vitro [14]. Manoli induced 
calcium carbonate crystals by chitin and elastin and obtained calcite crystals in 
both cases [15] [16]. Investigations show that proteins can modulate calcium 
carbonate morphology and also the polymorph [17] [18] [19]. Magnesium is 
known to exert a significant effect on calcium carbonate precipitation and, when 
present in sufficient concentration, generally results in the precipitation of ara-
gonite rather than the thermodynamically favoured phase, calcite [20] [21] [22] 
[23] [24]. Recently, many groups have studied the role of magnesium in calcium 
carbonate precipitation. Meldrum studied the role of magnesium in stabilizing 
amorphous calcium carbonate and controlling calcium carbonate morphologies 
[25]. Dawe studied the influence of magnesium on the kinetics of calcite preci-
pitation and calcite crystal morphology [26]. Further, protein as an organic ma-
trix also plays a critical role in the biomineralization of the CaCO3 [2] [17], it ex-
ists at inorganic-organic interface of almost all the biominerals such as teeth, 
bones, pearls, mollusk shells [2] [18]. Many studies on the combined effect of 
organic additives and magnesium ions on calcium carbonate crystal growth have 
been reported recently [27] [28] [29], but the nucleation and growth of CaCO3 
crystal in the Mg ions/Langmuir monolayers mixed system are not reported by 
now. This paper mainly discusses the cooperative influence of BSA Langmuir 
monolayer and magnesium ions on calcium carbonate precipitation. The aim of 
these experiments is to find the effect on the polymorph, morphology and 
orientation of calcium carbonate by combined BSA Langmuir monolayer and 
magnesium ions. 

2. Experimental Procedure 
2.1. Materials 

Analytical grade CaCO3 and MgCl2∙6H2O were obtained from Institute of Bio-
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logical Products of Tianjin (Tianjin, China). Analytical grade bovine serum al-
bumin (Sigma, USA) was used in all experiments. BSA contains 582 amino acid 
residues and has a molecular weight of 67,000 g·mol−1. It is also well known that 
it has an isoelectric point at pI 4.7. Amyl alcohol was analytical purity obtained 
from the (Sigma, USA). All solutions were prepared with triply deionized water, 
its conductivity was a resistance of 18.2 MΩ∙cm−1 and its pH was 7.0. 

The preparations of the protein Langmuir monolayers were performed using a 
commercial LB trough (KSV mini-trough, Finland) at room temperature. The 
pressure-area isotherms were recorded using a computer-controlled Langmuir 
film balance. The experimental errors for both molecular area and surface pres-
sure values are smaller than 5%. The monolayers deposition process at the 
air-solution interface were carried out using a microsyringe. The protein solu-
tions were prepared with the deionized water, but to improve the spreading 
process a 0.05% (v/v) solution of amyl alcohol was added in all cases [30] [31]. 

Supersaturated solutions of calcium bicarbonate were prepared according to 
the procedures of Kitana [32]. Briefly, carbon dioxide gas was bubbled through 
a stirred aqueous suspension of CaCO3 for 24 hours. The suspension was then 
filtered and filtrate purged with CO2 gas for 0.5 hours to dissolve any remain-
ing crystals. The resulting supersaturated solution had a pH of 7.0. Total Ca2+ 
concentrations (6.7 mM) were measured using EDTA titration. The spreading 
monolayers at the air-water interface were formed by spreading solutions of 
BSA (1 × 10−4 mol∙L−1) on the Supersaturated calcium bicarbonate solutions or 
supersatureated solution containing Mg ions. A 30-min lapse time was estimated 
to be sufficient to equilibrate the protein Langmuir monolayers before compres-
sion. We used very low compression rates, ca. 3 mm/min, which have been 
shown to be appropriate to obtain reproducible BSA isotherms [33]. 

2.2. Method of Synthesizing Crystals 

In all experiments, crystallization was governed by the slow loss of CO2 gas from 
unstirred supersaturated solutions according to the reaction shown in Equation 
(1). 

( ) ( ) ( ) ( )2
3 3 2 2Ca aq 2HCO aq CaCO s CO g H O+ −+ = + +          (1) 

The crystals were grown by spreading BSA solution onto LB trough contain-
ing magnesium and supersaturated calcium bicarbonate solutions at room tem-
perature. The solutions were combined in a beaker and were stirred for 2 min 
before pouring into the LB trough. The prepared supersaturated calcium bicar-
bonate solutions were poured into a Langmuir trough (KSV mini-trough), mod-
el 611 M; maximum working area, 220 cm2), and the air-water interface was 
swept and aspirated before deposition of the surfactant solution. The surfactant 
solution (10 µL) was carefully deposited onto the solution surface, and the mo-
nolayers were left for 30 min prior to compression. Pressure-area isotherms were 
recorded while compressing the monolayers at rates of 3 mm·min−1 until surface 
pressures corresponding to a target pressure were reached (15 mN∙m−1). Each 
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experiment was repeated three times with the same condition. Crystals as-grown 
in association with the monolayers were respectively removed at two conditions 
with keeping the same time (1 hour) by carefully horizontally dipping hydro-
philic glass slides through the air-water interface. The crystal face growing into 
the solution is therefore directly deposited on the glass slide. 

3. Results and Discussion 
3.1. The Influence of BSA Langmuir Monolayer and Magnesium on  

Polymorph and Orientation of CaCO3  

Figure 1(a) and Figure 1(b) show that XRD patterns of the resulting calcium 
carbonate in presence of BSA Langmuir monolayers without and with magne-
sium ions respectively. Figure 1(a) shows the XRD pattern of calcium carbonate 
in the presence of BSA Langmuir monolayers without magnesium ions, indicat-
ing that only one peak, which can be well attributed to (104) crystal planes dif-
fraction of calcite (JCPDS 86-2342), which exhibits the crystals have a well 
orientation. When adding magnesium ions into the subphase beneath BSA 
Langmuir monolayer, only orientated aragonite crystals are precipitated (Figure 
1(b)), corresponding to (111) crystal planes diffraction of aragonite (JCPDS 
76-0606), which is in agreement with conventional theoretical results. Magne-
sium is known to induce aragonite formation from sea water and in vitro at ratio 
of Mg/Ca equal to or greater than 4, while at lower Mg/Ca ratio mostly calcite 
and magnesian calcite are formed [32]. When BSA Langmuir monolayers are 
present alone the growth of CaCO3 crystals is greatly controlled, but there is no 
obvious change in CaCO3 polymorph and only calcite crystals are formed [14]. 
The above results show that when BSA Langmuir monolayers and magnesium 
are both present, only orientated aragonite crystals precipitated. This indicates 
that BSA Langmuir monolayers and magnesium ions have a cooperative effect 
on in controlling the orientation and polymorph of CaCO3 crystals. The reason 
of this kinetic phenomenon is considered as contributing to two aspects: on the  
 

  
(a)                                       (b) 

Figure 1. XRD data for calcium carbonate crystals modulated by BSA Langmuir mono-
layers and magnesium ions (C: calcite, A: aragonite surface pressure Π = 15, calcium ion 
is 6.7 mM). (a) Calcite crystals in the presence of BSA Langmuir monolayers and without 
magnesium ions (b) Aragonite crystals at Mg/Ca = 4 in presence of BSA Langmuir 
monolaeyrs and with magnesium ions. 
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one hand, magnesium ions inhibit the growth of calcite. The partially dehy-
drated magnesium ions attach to the surface of the nascent calcite nucleus, the 
strongly bound residual hydration sphere poisons the surface [33], and inhibits 
subsequent growth. At the same time, the BSA Langmuir monolayer acts as a 
template to control calcium carbonate oriented nucleation. On the other hand, 
owing to the polymorph of calcium carbonate is related to its energy state [34], 
magnesium is likely also to interact with BSA and to change the stereochemical 
structure of BSA molecules, and thus induces the aragonite with higher energy 
in high energy state structure. 

3.2. The Influence of the BSA Langmuir Monolayers and  
Magnesium on Morphology of CaCO3 

Two types of calcium carbonate morphologies are generated in the presence of 
BSA Langmuir monolayers and magnesium ions. In presence of BSA Langmuir 
monolayers, the crystals grow in absence of magnesium are regular almond-like 
calcite with an average length of 4.5 µm and width of 2.5 µm (Figure 2(a)). 
When the concentration of magnesium is high enough (Mg/Ca ratio attains to 
4), only spherical aragonite crystals are precipitated, about 1.5 µm in size 
(Figure 2(b)).  

Above results showed that only in the presence of BSA Langmuir monolayers 
regular almond-like calcite can be obtained. When magnesium is added, the 
morphology of crystals changed greatly, from almond-like to spherical. Howev-
er, whether having magnesium or no, the crystals keep high orientation. The 
morphological changes of calcium carbonate crystals reveal that in the presence 
of both BSA Langmuir monolayers and magnesium ions, we tend to obtain 
spherical aragonite spherulites instead of other forms. Through controlling the 
concentration of magnesium in presence of BSA Langmuir monolayers, spheri-
cal crystals with more regular shapes and orientation could be obtained. 
 

  
(a)                                      (b) 

Figure 2. SEM morphologies of the calcium carbonate crystals precipitated in the pres-
ence of BSA Langmuir monolayers with and without magnesium ion (a) almond-like cal-
cite crystal grown in the presence of BSA Langmuir monolayers without magnesium; (b) 
Spherical aragonite crystals at higher magnesium concentration in presence of BSA 
Langmuir monolayers. 
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4. Conclusions 

The present paper mainly studied the cooperative effect of BSA Langmuir mo-
nolayer and magnesium ions on calcium carbonate crystallization. The results 
indicated that BSA Langmuir monolayer has a promotional effect on magne-
sium ions in controlling the polymorph of CaCO3 crystals. By cooperation of 
BSA Langmuir monolayer and magnesium ions of different concentrations, 
crystals showed a sequence of morphology changes and especially, aragonite 
crystals with regular spherical morphology were precipitated at high Mg/Ca 
ion concentration ratio. The experiments suggested that BSA Langmuir mono-
layer acts in combination with magnesium ions to inhibit calcite crystal growth, 
while favoring the formation of aragonite crystals. 

In summary, the aragonite blocks could nucleate beneath the BSA Langmuir 
monolayers and magnesium ions with a well preferential orientation. There is a 
cooperative interaction between BSA Langmuir monolayers and magnesium 
ions, and these results are very significant for the understanding of the mechan-
ism of biomineralization in the organic life. Further investigations are in 
progress. 
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