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Abstract 
Pseudo-random sequences with long period, low correlation, high linear 
complexity, and uniform distribution of bit patterns are widely used in the 
field of information security and cryptography. This paper proposes an ap-
proach for generating a pseudo-random multi-value sequence (including a 
binary sequence) by utilizing a primitive polynomial, trace function, and k-th 
power residue symbol over the sub extension field. All our previous se-
quences are defined over the prime field, whereas, proposed sequence in this 
paper is defined over the sub extension field. Thus, it’s a new and innovative 
perception to consider the sub extension field during the sequence generation 
procedure. By considering the sub extension field, two notable outcomes are: 
proposed sequence holds higher linear complexity and more uniform distri-
bution of bit patterns compared to our previous work which defined over the 
prime field. Additionally, other important properties of the proposed mul-
ti-value sequence such as period, autocorrelation, and cross-correlation are 
theoretically shown along with some experimental results. 
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1. Introduction 

Sequences of numbers generated by using an algorithm are referred to as a 
pseudo-random sequence. Pseudo-random sequences are inseparable parts in 
information technology as well as in modern electronics. They are used in both 
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communication (such as cellular telephones and GPS signals) and cryptographic 
applications (such as key stream for stream cipher, sampling data for simulations, 
timing measurements in radar systems, error correcting codes in satellite commu-
nications, and so on). In most cases, it is important to have the reproduce ability 
of the pseudo-random sequence [1]. As well as it should have many desirable 
characteristics such as a long period, low correlation, uniformly distributed bit 
patterns, high linear complexity, and statistical randomness [2] to become a 
prominent candidate for information security and cryptographic related applica-
tions [3] [4]. The randomness regarding a sequence is considered as the key 
strength of the cryptographic systems [5]. Considering this crucial point, it’s better 
to use some non-linear mathematical calculation during sequence generation. Ad-
ditionally, the sequence must have randomness property. The major substance for 
randomness is independency of values (or lack of correlation), unpredictability (or 
lack of predictability), and uniform distribution (or lack of bias) [6]. Along with 
these, there are some statistical tests available to judge the randomness of a se-
quence such as NIST, Diehard, ENT test [7]. It is mandatory to evaluate the ran-
domness of a sequence before utilizing them in any cryptosystems. 

Other geometric sequences having prominent pseudo-random properties are 
the Mersenne Twister (MT) [8], Blum-Blum-Shub (BBS) [9], Legendre sequence 
[10], maximum length sequence (M-sequence) [11], and Sidelnikov sequence 
[12]. Among those, the former two pseudo-random number generators (MT and 
BBS) are well known considering their applications in cryptography rather than 
the theoretical aspect. On the other hand, the latter sequences (Legendre sequence, 
M-sequence, and Sidelnikov sequence) are prominent geometric sequences re-
garding the theoretical aspect. Generally, the typical features of a pseu-
do-random sequence such as its period, correlation, linear complexity, and dis-
tribution of bit patterns cannot be theoretically proven. However, if a sequence 
is defined over the finite field, then those features are often proven. All these 
above-mentioned sequences generated based on some mathematics more specif-
ically they are defined over the finite field. Therefore, most of their important 
properties are already theoretically proven. The authors are basically more inter-
ested in the theoretical aspects of a pseudo-random sequence rather than their ap-
plications in the cryptographic area. Therefore, the authors motivated in this re-
search work by observing the theoretical features of the well-known Legendre se-
quence, M-sequence, and Sidelnikov sequence. Moreover, many researchers are 
also attracted by these theoretic aspects of these sequences. Our proposed sequence 
generated by the idea of the Legendre sequence and M-sequences, thus the authors 
thought that its properties can be theoretically proven and fortunately it proven. 

Our previous work on binary sequence [13] uses a primitive polynomial, trace 
function, and Legendre symbol to generate a new variety of pseudo-random bi-
nary sequence. In brief, the previous sequence generation procedure is as follows: 
firstly, it utilizes a primitive polynomial over an odd characteristic field p  to 
generate a maximum length vector sequence as elements in mp

 , then applies 
the trace function to map the vectors to prime field p  elements, and finally 
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uses the Legendre symbol to binarize the scalars to binary sequence. Our previous 
binary sequence [13] generated by combining the features of M-sequence and 
L-sequence. Some important properties such as period, autocorrelation, and linear 
complexity have been theoretically proven in our previous work. Our previous 
works on multi-value sequence [14] [15] utilizes a primitive polynomial, trace 
function, and power residue symbol over odd characteristic field. Some important 
features of the sequence such as period, autocorrelation, and cross-correlation are 
theoretically proven in our previous work. The authors previous works on the 
binary sequence [13], signed binary sequence [16], and multi-value sequence 
[15]are considered in the prime field p  more specifically, the trace function 

( )Tr ⋅  maps an element of the extension field mp
  to an element of the prime 

field p . Our previous work on multi-value sequence [17] considered on the sub 
extension field q  characterized by four parameters however it has a shorter se-
quence period of  

( )1
.

1

mk p
n

q

−
=

−
 

The period and autocorrelation properties of the proposed sequence explained 
based on some experimental results only. 

The authors in this paper proposed a multi-value sequence (including a binary 
sequence) by applying a primitive polynomial, trace function, and k-th power 
residue symbol over the sub extension field q . The k-th power residue symbol 
is an extended version of the Legendre symbol. In details, the proposed mul-
ti-value sequence generation procedure is as follows: let p be an odd characteris-
tic prime and m be the extension degree of a primitive polynomial ( )f x  over 
the extension field mp

 . It is well known that using the primitive polynomial 
makes it possible to generate a maximum length vector sequence over mp

 . Let 
ω  be a zero of the primitive polynomial ( )f x  and it’s a primitive element in 

mp
∗ . Then the sequence  

( ){ }|
| Tr , 0,1, 2, , 2m

i m
i i p q

t t i pω= = = −  

becomes a maximum length sequence of having a period of 1mp − , where, 
( )|

Tr mp q
⋅  is the trace function over the sub extension field q . It maps an ele-

ment of the extension field mp
  to an element of the sub extension field q . 

After the trace calculation, a non-zero constant element A is added to the trace 
values. This non-zero A can be any arbitrary element within the sub extension 
field q  such as { }1,2, , 1A q∈ − . Then, the k-th power residue symbol is 
utilized for mapping the trace sequence   to a k-value sequence more specif-
ically a multi-value sequence. 

The authors recently started to consider the sub extension field q  during 
the sequence generation procedure, whereas, almost all our previous works on 
pseudo-random sequence [13] [14] [15] are considered in the prime field p . 
The trace calculation is an important step during our proposed sequence genera-
tion procedure. It should be noted that in case of prime field p , the trace maps 
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extension field mp
  elements to prime field elements and the possible range of 

trace outputs are { }0 1p − . On the other hand, in case of sub extension field 

q , the trace maps extension field mp
  elements to sub extension field q  

elements and possible range of trace outputs are { }0 1q − . Therefore, the sub 
extension field allows more variations in the trace values and from the theoreti-
cal perspective, this flexibility contributes to the betterment of a sequence prop-
erties. Thus, from this point of view it’s a new dimension in this research area. 
Some of the notable contributions of the authors in this paper are: this work is 
an extension of our previous works [13] [14] [15]; if the parameter k satisfies the 
condition ( )| 1k p − , then it also includes our previous work [15]; this work 
overcomes the shorter period shortcoming of our previous work [17] by adding 
one more additional parameter A; the period, autocorrelation, and cross-correlation 
properties regarding the proposed sequence are explained both theoretically and 
experimentally; this work also makes a comparison in terms of autocorrelation, 
linear complexity, and distribution of bit patterns, according to the comparison 
results, it was found that the proposed sequence holds low correlation, high li-
near complexity, and much better distribution of bit patterns compared to our 
previous work [14]. There are a lot of symbols used in this paper, thus a brief in-
troduction about those symbols are introduced in Table 1. 

2. Preliminaries 

This section explains some fundamental concepts of the finite field theory such 
as a primitive polynomial, trace function, k-th power residue symbol, and dual 
basis. Then, multi-value sequence is introduced along with its properties such as 
period, autocorrelation, cross-correlation, linear complexity, and distribution of 
bit patterns. 

2.1. Primitive Polynomial 

Consider a polynomial ( )f x  of degree m over prime field p . If it is not fac-
torized into smaller degree polynomials over the prime field p , it is called an 
irreducible polynomial. Consider the smallest number e such that 1ex −  is di-
visible by ( )f x  over p , it is known that e becomes a factor of 1mp − . Then 
( )f x  is especially called a primitive polynomial, when e is equal to 1mp − . Its 

zero ω  belongs to the extension field mp
  and it becomes a primitive element 

in mp
  that generates every non-zero element in mp

  as its power iω  (for 
20,1, 2, , mi p −=  ). According to Fermat’s little theorem, the following property 

between mp
  and its base field p  holds [18]. 

Property 1. Let g  be a generator of mp
∗ , ( ) ( )1 1q pg − −  becomes a non-zero 

element in prime field p  and is also a generator of p
∗ .                 □ 

2.2. Trace Function 

This work utilizes the trace function to map an element of the extension field 

mp
X ∈  to an element of the sub extension field qx∈  as,  
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Table 1. List of symbols used in this paper. 

List of symbols 

p odd prime number 

m positive integer, mainly denotes the extension degree 

m′  one of the factors of m 

q power of the odd prime mq p ′=  

k prime factor of 1q −  such as ( )| 1k q −  

p  odd characteristic prime field 

mp
  an extension field (base p and extension degree m) 

q  sub extension field 

q
∗  multiplicative group of q , excluding the 0 such as { }0q q

∗ = −   

( )f x  a primitive polynomial 

ω  root of an irreducible polynomial 

g generator of a group 

A an arbitrary element in q
∗  

( )|
Tr mp q

⋅  trace function maps mp
  element to q  element 

k  primitive k-th root of unity 

( )kf ⋅  mapping function maps q  element to k  element 

  proposed sequence in this paper 

n period of a sequence 

( )R ⋅  autocorrelation of a sequence   

( )ˆ ,
R ⋅
 

 cross-correlation between the sequences   and ̂  

 

( )
1

|
0

Tr .
im

m

m
m

p
p q

i
x X X

′
−
′

=

= = ∑                     (1) 

A crucial point, the above trace becomes an arbitrary element in q  and the 
trace function has a linearity property over the sub extension field q  as fol-
lows,  

( ) ( ) ( )| | |
Tr Tr Tr ,m m mp q p q p q

aX bY a X b Y+ = +              (2) 

where , qa b∈  and , mp
X Y ∈ . In this paper, the following property is im-

portant [18]. 
Property 2. For each arbitrary element qα ∈ , the number of elements in 

mp
  whose trace with respect to q  becomes α  is given by m m mp q p ′−=  
and the number of non-zero elements in mp

  whose trace is zero is given by 

( ) 1 1m m mp q p ′−− = − .                                             □ 

2.3. k-th Power Residue Symbol 

As an extension of the Legendre symbol, this paper considers the k-th power re-
sidue symbol ( )ka q  for an arbitrary element a in q  and a prime factor k of 
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1q −  as follows: 

( ) ( )1 0

0, if 0,
1 , else if  is a -th PR in ,

, otherwise  is a -th PNR in ,

q k
k qk

i
k q

a
a q a a k

a k

− ∗

∗

 =
= = =









      (3) 

where PR and PNR stand for Power Residue and Power Non-Residue respec-
tively. The k  is a primitive k-th root of unity that exists in q  and 0 i k≤ < . 
It becomes a Legendre symbol when 2k =  [19] and if ( )| 1k p − , it becomes 
our previous work [15]. Note that, for a non-zero element a and a fixed k , the 
exponent i in Equation (3) is uniquely determined in the range of 0 1k − . 
Moreover, since 0 1k

k k= =   and k is a prime number in this paper, the expo-
nents can be dealt with as elements in k . This symbol is basically used for 
checking whether or not a is a k-th PR over q  as shown above. The output of 
the k-th power residue symbol can be represented as an exponent of k , where 

k  is a k-th primitive root. This paper uses k-th power residue symbol to trans-
late a trace sequence over q  to a k values multi-value sequence such as { }0, i

k , 
where { }0, , 1i k∈ − . 

To represent the exponent i in Equation (3), this paper uses the following no-
tations and it should be noted that the following notation excludes the case of 

0a = . 

( )( ) ( )( )1log log .
k k

q k
ki a q a −= =                   (4) 

This paper utilizes the power residue symbol to map an element in q  to an 
element in k . Regarding the power residue symbol ( )ka q , the following 
property holds. 

Property 3. For each i from 0 to 1k − , the number of non-zero elements in 

q  such that 

( ) i
kka q =                          (5) 

is given by ( )1q k− .                                              □ 

2.4. Dual Bases 

Dual basis that is used for some proofs shown in this paper is defined as fol-
lows: 

Definition 1. Let mp
  be a finite field and q  be a finite extension of mp

 . 
Then the two bases { }0 1 1, , , mα α α −=   and { }0 1 1, , , mβ β β −=   of q  
over mp

  are said to be the dual (or complementary) bases if  

( )|

1, if ,
Tr

0, otherwisem i jp q

i j
α β

=
= 


                  (6) 

where 1 , 1i j m≤ ≤ − .                                              □ 
The dual basis of an arbitrary basis is uniquely determined in [18]. In this pa-

per, the following property is important. 
Property 4. Let   and   be a basis and its dual basis of q  over mp

 , 
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respectively. Based on the definition of dual basis and the linearity of the trace 
function, if lα  be a basis of   in mp

  is a non-zero sub extension field ele-
ment, then,  

( ) ( )| |

1, if ,
Tr Tr

0, otherwise,m ml j l jp q p q

j l
α β α β

=
= = 


         (7) 

where 0 , 1l j m≤ ≤ − . Thus, when 1lα = , ( )|
Tr 1m lp q

β = .               □ 

2.5. Multi-Value Sequence and Its Properties 

This paper introduces a k-value sequence, more specifically a multi-value se-
quence as follows. 

2.5.1. Notation and Period 
Let multi-value sequence   is denoted as 

{ }, 0,1, 2, , 1,is i n= = −                    (8) 

where { }0,1, , 1is k∈ −  and n be the period of the sequence such as i n is s += . 

2.5.2. Autocorrelation and Cross-Correlation 
The autocorrelation of a sequence is a scope for measuring how much the origi-
nal sequence varies from its each shift value. After observing this property some 
special characteristic about the sequence can be found such as its period, some 
pattern of it, and so on [20]. The autocorrelation ( )R x  of sequence   shifted 
by x is generally defined as follows: 

( )
1

0
R ,i x i

n
s s

k
i

x +
−

−

=

= ∑                          (9) 

where k  is a primitive k-th root of unity over the complex number  . It fol-
lows that, 

( )
1

0

0
R 0 .

n

k
i

n
−

=

= =∑                        (10) 

The cross-correlation is as important as the autocorrelation property. It is 
calculated between two different sequences of having the same period and it ex-
plains the sharing of some partial information between two sequences. In addi-
tion, if multiple sequences are used in any application (such as in security appli-
cation), in that case, it is important to analyze the similarities between those se-
quences. To do so, the cross-correlation property needs to be evaluated. Consi-
dering the security aspects, the value of the cross-correlation preferred to be low 
because the higher value of cross-correlation, the more similar the sequences to 
each other [21]. Let { }ˆ

îs=  be a different sequence of having a period of n. 
Then, the cross-correlation at x shifted is generally defined by the following eq-
uation as, 

( )
1

ˆ
ˆ ,

0
R ,i x i

n
s s

k
i

x +
−

−

=

= ∑ 

 
                    (11) 

where k  is a primitive k-th root of unity over the complex number   [22]. 
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2.5.3. Linear Complexity 
The linear complexity (LC) of a sequence is closely related to how difficult it is to 
guess the next bit after observing the previous bits of a sequence. Since this pa-
per considers k-value sequence with coefficients { }0,1, , 1k − , the linear com-
plexity of sequence   having a period of n is defined as follows. 

( ) ( )( )( )LC deg gcd 1, ,nn x h x= − −               (12) 

where ( )h x  of { }is=  is defined over k  as, 

( )
1

0
.

n
i

i
i

h x s x
−

=

= ∑                       (13) 

It should be noted that ( )( )gcd 1,nx h s−   in Equation (12) needs to be cal-
culated over k , where k is a prime number and ( )| 1k q − . It is said that linear 
complexity of pseudo-random sequence for security applications is preferred to 
be high. 

2.5.4. Distribution of Bit Patterns 
From the viewpoint of security, the distribution of bit patterns is as important as 
the linear complexity. If a sequence holds uniform distribution of bit patterns, 
then it becomes difficult to guess the next bit after observing the previous bit 
patterns. For example, let’s assume a binary sequence having a period of 12 as 

{ }12 1,0,1,0,1,0,1,0,1,0,1,0= . If we observe the 1-bit pattern in this sequence, 
then we can find that it has uniform distribution of 1 and 0. In other words, 1 
and 0 appears same in number. However, when we check 2-bit patterns on 12 , 
we find that it only has two type of patterns (10 and 01). In this case, we can eas-
ily predict the next bit patterns after observing the previous patterns. Therefore, 
it is also essential to evaluate the distribution of bit patterns of a sequence to 
confirm its randomness. 

3. Proposed Multi-Value Sequence 

Let ω  be a primitive element in the extension field mp
 , n be the period of the 

proposed multi-value sequence, m be a composite number which denotes the 
extension degree of the primitive polynomial, and m′  be one of the factors of 
m. This paper proposes the following sequence   by utilizing the trace func-
tion and k-th power residue symbol as follows: 

{ } ( )( )|
, Tr .m

i
i i k p q k

s s f A pω= = +                (14) 

Here k is a prime number as well as a factor of 1q −  such as ( )| 1k q − . To 
make the above equation more simpler, from here on ( )|

Tr mp q
⋅  will be represented 

as ( )Tr ⋅ . Therefore, the above equation becomes, 

{ } ( )( ), Tr .i
i i k k

s s f A pω= = +                 (15) 

Finally, a mapping function ( )kf ⋅  is used to translate the vector sequence 
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generated by the k-th power residue symbol to a multi-value sequence. The map-
ping function ( )kf ⋅  is defined as follows: 

( ) ( )( )
0, if 0,

=
log , otherwise.

k

k
k

x
f x

x p

=

 

             (16) 

As mentioned in Section 2.3, ( )kf x  with a fixed k  maps an arbitrary element 

qx∈  to an element in k . For example, by utilizing the parameter 5p =  
and 3k = , the sequence values will be in the range of { }0,1,2 , all of these val-
ues are the elements of 3 . In addition, let us fixed [1 4 3] be as a 3-rd primitive 
root of unity in q . Then, all of the sequence values can be represented as a ex-
ponent of this primitive root 3 . More details of this example are shown in Ta-
ble 2. This mapping function ( )kf ⋅  holds the following property. 

Property 5. Consider , qx y∈ . If 0x ≠  and 0y ≠ , 

( ) ( ) ( )1 .k k kf x f y f xy±± =                   (17) 

Based on Section 2.3 and Property 3, the mapping function also satisfies the 
following equation, it should be noted that, here C is a non-zero element in q . 

1

0
0.

k
v

k
v

−

=

=∑                         (18a) 

( ) ( )11 1 1

1 1 0

1 0.kk
p p kf uf u v

k k k
u u v

p
k

−− − −

= = =

− = = = 
 

∑ ∑ ∑               (18b) 

( ) ( )11 1

1 1
0.kk

p p f Cuf Cu
k k

u u

−− −

= =

= =∑ ∑                  (18c) 

This section, firstly mathematically prove the cross-correlation property of the 
proposed multi-value sequence, then it explains the autocorrelation property, 
and finally the period is introduced. Additionally, these properties are also ob-
served based on some experimental results. 

3.1. Cross-Correlation 

The cross-correlation is calculated between two different sequences of having the 
same period. These two different sequences ̂  and   can be defined as, 

( )( ){ }ˆ ˆ ˆ| Tr ,i
i i k k

s s f B pω= = +                   (19a) 

( )( ){ }| Tr .i
i i k k

s s f A pω= = +                   (19b) 

Here, A and B are non-zero elements in q . They can be represented with a 
generator g that exists in the sub extension field q  and they hold the following 
relation. 

,hB g A=                            (20) 

where the index term h satisfies 0 2h q≤ ≤ −  relation. In addition, here g needs  
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Table 2. Mapping procedure of ( )kf ⋅  for 24 different trace ( )Tr ⋅  values1. 

 Output of ( )Tr ⋅  Output of ( )k
a p  [ ]3 1 4 3=  Output of ( )kf ⋅  

1 [0] [3 1 2] [1 4 3]2 2 
2 [1] [1 4 3] [1 4 3]1 1 
3 [2] [3 1 2] [1 4 3] 2 2 
4 [4] [1 4 3] [1 4 3]1 1 
5 [0 1 2] [1] [1 4 3]0 0 
6 [0 2 4] [1] [1 4 3]0 0 
7 [0 3 1] [1 4 3] [1 4 3]1 1 
8 [0 4 3] [3 1 2] [1 4 3]2 2 
9 [1 1 2] [1] [1 4 3]0 0 
10 [1 2 4] [3 1 2] [1 4 3]2 2 
11 [1 3 1] [1] [1 4 3]0 0 
12 [1 4 3] [3 1 2] [1 4 3]2 2 
13 [2 1 2] [1] [1 4 3]0 0 
14 [2 2 4] [1 4 3] [1 4 3]1 1 
15 [2 3 1] [3 1 2] [1 4 3]2 2 
16 [2 4 3] [1] [1 4 3]0 0 
17 [3 1 2] [1] [1 4 3]0 0 
18 [3 2 4] [3 1 2] [1 4 3]2 2 
19 [3 3 1] [3 1 2] [1 4 3]2 2 
20 [3 4 3] [1 4 3] [1 4 3]1 1 
21 [4 1 2] [0] 0 0 
22 [4 2 4] [1 4 3] [1 4 3]1 1 
23 [4 3 1] [1 4 3] [1 4 3]1 1 
24 [4 4 3] [1 4 3] [1 4 3]1 1 

 
to be given by ( ) ( )1 1mp q

ω
− −

, which used in the following proofs2. The 
cross-correlation of these two sequences ̂  and   is calculated as, 

( ) ( )( ) ( )( )1 Tr Tr
ˆ,

0
R ,

i x h i
k k

n f g A f A

k
i

x
ω ω+− + − +

=

= ∑ 

 
                  (21) 

where n is the period of these two sequences and according to the following sec-
tion, it is given by 1mp − . Furthermore, when 0h = , then the value of A and B 
becomes exactly equal to each other, therefore, the cross-correlation becomes the 
autocorrelation of  . 

Theorem 1. The cross-correlation between the sequence ̂  and   given 
by Equation (21) is as follows. 

( )

( ) ( )

( )( ) ( )( ) ( ) ( )

( )

1
ˆ,

2

1  , if ,

R , else if ,

, otherwise,

h
k

h j h j j h
k k k k

h
k

f gm m m m m
k

f A g g f A g f g f gm m
k k k k

f gm m
k

p p p x hn

x p x jn

p

−

′ ′− −

− − −′−

′−

 + − − =
  = + − − =  

 
 −



   



 



   



(22) 

 

 

1In this example, we fixed [1 4 3] as a 3rd primitive root of unity that exists in q . There-
fore, every element can be represented as a power of this 3rd primitive root 3 . 
2Since ω  is a generator of mp

∗ , therefore ( ) ( )1 1mp qg ω − −
=  becomes a generator of q

∗ . 
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where ( ) ( ) ( )1 1 1mn n q p q= − = − −  and h satisfies the relation in Equation 
(20) as well as 0 2j h q≤ ≠ ≤ − .                                     □ 

The proof for each case of Equation (22) is explained below. It should be 
noted that i holds the relation ( )0 1mi n p≤ < = −  and it is mainly appeared at 
summations. Furthermore, in the following section m m′  is denoted as r. 

3.1.1. The Case of x hn=  
In this case, the cross-correlation between the sequences ̂  and   becomes 
as follows: 

( ) ( )( ) ( )( ) ( )( )( ) ( )( )1 1 Tr TrTr Tr
ˆ,

0 0
R .

h i ii hn h i
k kk k

n n f g A f Af g A f A

k k
i i

x
ω ωω ω+− − + − ++ − +

= =

= =∑ ∑ 

 
    (23) 

According to Property 5 and depending on the condition of whether or not 

( )Tr 0i Aω + = , the above equation can be rewritten as follows: 

( )
( )

( ) ( )

( )

( )( )( ) ( )( )Tr Tr0 0
ˆ,

Tr =0 Tr 0

R .
h i ih

kk k

i i

g A f Af g f
k k

A A

x
ω ω

ω ω

+ − +⋅ −

+ + ≠

= +∑ ∑ 

 
      (24) 

Thus, the above equation becomes as, 

( )
( ) ( )

( )0
ˆ,

Tr =0 Tr 0

R .
h

k

i i

f g
k k

A A

x
ω ω+ + ≠

= +∑ ∑ 

 
               (25) 

It should be noted that 0hg ≠ . Therefore, according to Property 2, the 
cross-correlation between the sequence ̂  and   for the case of x hn=  
holds the following relation. 

( ) ( ) ( )
ˆ ,R 1 .

h
kf gm m m m m

kx p p p′ ′− −= + − − 

 
             (26) 

3.1.2. The Case of x jn= , j h≠  

In this case, the cross-correlation between the sequences ̂  and   becomes 
as follows: 

( ) ( )( ) ( )( ) ( )( ) ( )( )1 1Tr Tr Tr Tr
ˆ,

0 0
R .

i jn h i j i h i
k k k k

n nf g A f A f g g A f A

k k
i i

x
ω ω ω ω+− −+ − + + − +

= =

= =∑ ∑ 

 
     (27) 

According to Property 5, depending on the condition whether or not 

( )Tr 0i Aω + =  and ( )Tr 0j i hg g Aω + =  following relation is obtained. 

( )
( )
( )

( )( )
( )
( )

( )( )

( )
( )

( )( ) ( )( ) 1

1
ˆ,

Tr 0 Tr 0

Tr 0 Tr 0

Tr Tr

Tr 0

Tr 0

R

.

h j h j
k k

j i h j i h

i i

j i h i
k

j i h

i

f A g g f A g

k k
g g A g g A

A A

f g g A A

k
g g A

A

x
ω ω

ω ω

ω ω

ω

ω

−

−

− − −

+ ≠ + =

+ = + ≠

 
+ +  

 

+ ≠

+ ≠

= +

+

∑ ∑

∑

 



 
 



      (28) 

For example, if ( )Tr 0i Aω + =  and j h≠ , then, 

( ) ( )Tr 0.j i h h jg g A A g gω + = − ≠               (29) 

Depending on Property 2, first and second summations in Equation (28) re-
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spectively becomes as follows: 

( )
( )

( )( ) ( )( )
Tr 0

Tr 0

,
h j h j

k k

j i h

i

f A g g f A g gm m
k k

g g A

A

p
ω

ω

− −′−

+ ≠

+ =

=∑               (30) 

( )
( )

( )( ) ( )( )1 1

Tr 0

Tr 0

,
h j h j

k k

j i h

i

f A g f A gm m
k k

g g A

A

p
ω

ω

− −− − − −′−

+ =

+ ≠

=∑              (31) 

where the following facts and conditions should be noted for the above two 
summations: 
 In this paper, the parameter A is not 0 and qA∈ . 
 The case of ( )Tr 0i Aω + = , ( )Tr 0j i hg g Aω + ≠ . 
 While ( )Tr 0j i hg g Aω + = , ( )Tr 0i Aω + ≠ . 

Assume, ( )Tr 0i
iX Aω= + ≠ . Then the third summation in Equation (28) 

becomes as follows: 

( )
( )

( )( ) ( )( )

( )
( )

( )( )
1

1Tr Tr

Tr 0 Tr 0

Tr 0 Tr 0

.
j i h i j h jk k i

j i h j i h

i i

f g g A A f g A g g X

k k
g g A g g A

A A

ω ω

ω ω

ω ω

−
−

 
+ +  + − 

 

+ ≠ + ≠

+ ≠ + ≠

=∑ ∑      (32) 

Now all of the possible values of i qX ∈  needs to be consider to resolve Eq-
uation (32). According to Property 2 and considering the exceptions for the first 
and second summations in Equation (28), following relations are obtained, 

{ }# | 0 ,m m
ii X p ′−= =                     (33a) 

( ){ }# | 1 ,j m m
ii X A g p ′− −= − =                 (33b) 

{ }# | 1,m m
ii X A p ′−= = −                   (33c) 

{ }# | ,m m
ii X u p ′−= =                     (33d) 

here 0 i n≤ <  and for each ( ){ }0, , 1 h ju q A A g −∈ − − . The cases of Equation 
(33a) and Equation (33b) respectively comply the first and second summations 
in Equation (28). 

Furthermore, assume ( ) 1j h j
i iY g A g g X −= + −  this is the input of mapping 

function ( )kf ⋅  as defined in Equation (32). Hence, considering the cases of 

( )1 h j
iX A g −= −  and 0iX = , the value of iY  in Equation (32) cannot be 0 

and jg , respectively. These two cases already separated in Equation (28) as the 
first and second summations. As a consequence, Equation (32) can be rewritten 
as in Equation (34). In order to conform, the case of j

iY g=  part (B) is added 
in Equation (34). Furthermore, part (C) in Equation (34) is for adjusting the 
number of cases of iX A= , which mentioned in Equation (33c). Therefore, 
(18b) holds at part A in Equation (34). 

Hence, the cross-correlation of the sequence ̂  and   becomes as follows 
for the case of ,x jn j h= ≠ , 
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( )
( )

( )( )

( ) ( ) ( ) ( )
( )
( )

( )( )

( )
( )

( )( ) ( ) ( )

1

1

1

Tr 0

Tr 0

Tr 0

Tr 0

(B) (C)
Tr 0

Tr 0

j h j
k i

j i h

i

j h jh h j j
k ik k k k

j i h

i

j h j j h
k i k k

j i h

i

f g A g g X

k
g g A

A

f g A g g Xf g f g f g f gm m m m
k k k k k

g g A

A

f g A g g X f g f gm m
k k k

g g A

A

p p

p

ω

ω

ω

ω

ω

ω

−

−

−

+ −

+ ≠

+ ≠

+ −′ ′− −

+ ≠

+ ≠

+ − ′−

+ ≠

+ ≠

   = − + − +   
   

= + +

∑

∑

∑



    

  



    

  

( ) ( )

( ) ( ) ( ) ( )

(A)

(A)0 .

j h
k k

j h j h
k k k k

f g f gm m
k k

f g f g f g f gm m m m
k k k k

p

p p

′−

′ ′− −

 
 
 
 
 
  

− −

   = − − = − −   
   

 

   

 

   

(34) 

( ) ( )( ) ( )( ) ( ) ( )

( )( ) ( )( ) ( ) ( )

1
ˆ,

1

R

.

h j h j j h
k k k k

h j h j j h
k k k k

f A g g f A g f g f gm m m m m m
k k k k

f A g g f A g f g f gm m
k k k k

x p p p

p

−

−

− − −′ ′ ′− − −

− − −′−

= + − −

 
= + − − 

 

   

   

 
   

   
 (35) 

3.1.3. Otherwise 
In this case, the cross-correlation between the sequences ̂  and   becomes 
as follows: 

( ) ( )( ) ( )( )1 Tr Tr
ˆ,

0
R .

i x h i
k k

n f g A f A

k
i

x
ω ω+− + − +

=

= ∑ 

 
                (36) 

Here, x is not divisible by n  and xω  does not belongs to q . We assume the 
following basis   in mp

 , by using this xω  as, 

{ }2 3 1,1, , , , .x
rω γ γ γ −=                     (37) 

Again let   be the dual basis of  . 

{ }0 1 2 3 1, , , , , .rθ θ θ θ θ −=                     (38) 

Assume that iω  can be represented with θ  as follows: 
1

,
0

.
r

i
i l l

l
vω θ

−

=

= ∑                          (39) 

Then, i xω +  is given by 
1

,
0

.
r

i x x
i l l

l
vω θ ω

−
+

=

= ∑                      (40) 

Based on Property 4, initial value of iω  is as, 

( ) ,1Tr .i
ivω =                        (41) 

As previously mentioned that,   and   are the dual bases to each other, 
therefore ( )Tr i xω +  can be expressed as follows: 
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( ) ,0Tr .i x
ivω + =                      (42) 

After substituting these trace values, Equation (36) becomes as follows. 

( ) ( ) ( ),0 ,1
1

ˆ ,
0

R .
h

k i k i
n f v g A f v A

k
i

x
− + − +

=

= ∑ 

 
                (43) 

Based on Equation (18), the above equation is rewritten as, 

( ) ( ) ( )

( )( )

,0,1

,0 ,0 ,0
,1 ,1 ,1

1
,0 ,1

,0
,1

0
ˆ,

0 0 0
0 0 0

0
0

R

.

h
k ik i

h h h
i i i

i i i

h
k i i

h
i

i

f v g Af v A
k k k

v g A v g A v g A
v A v A v A

f v g A v A

k
v g A

v A

x

−

+− +

+ = + = + ≠
+ = + ≠ + =

 + + 
 

+ ≠
+ ≠

= + +

+

∑ ∑ ∑

∑

  



 
  


      (44) 

According to Equation (18b) and iω  holds the relation 0 i n≤ < , which ac-
tually represents every non-zero element in mp

 , therefore, the second and third 
summations holds the following relations. 

( ),1

,0
,1

0
0

0.k i

h
i

i

f v A
k

v g A
v A

− +

+ =
+ ≠

=∑                     (45a) 

( ),0

,0
,1

0
0

0.
h

k i

h
i

i

f v g A
k

v g A
v A

+

+ ≠
+ =

=∑                    (45b) 

In addition, by considering the sub extension field q  and fixing the values 
of ,0iv  and ,1iv  the first summation holds the following relation as, 

,0
,1

0 2

0
0

.
h

i
i

m m
k

v g A
v A

p ′−

+ =
+ =

=∑                    (45c) 

Considering the same calculation procedure of Equation (34), the fourth 
summation in Equation (44) becomes as follows: 

( )( ) ( ) ( ) ( )
1 1,0 ,1

,0
,1

1 1 0 02

1 10
0

.
h hk i i k k k

h
i

i

p pf v g A v A f ab f g A f Am m
k k k

a bv g A
v A

p
− −  − −+ +  + − +′− 

= =+ ≠
+ ≠

= −∑ ∑∑        (46) 

Since iω  cannot represent the zero vector, the number of vectors such that 

,0 0iv =  and ,1 0iv =  is one less than that of the other combinations like 

,0 0iv =  and ,1 1iv = . That is why, the last subtraction ( ) ( )0 0h
k kf g A f A

k
+ − +

  is re-
quired in Equation (46). According to the condition from Equation (18b), the 
first summation in Equation (46) becomes 0. Therefore, the following relation is 
obtained, 

( )( ) ( )1
,0 ,1

,0
,1

0
0

.
h hk i i k

h
i

i

f v g A v A f g
k k

v g A
v A

− + + 
 

+ ≠
+ ≠

= −∑                    (47) 

Therefore, the cross-correlation of the sequences ̂  and   becomes as 
follows for this case, 

( ) ( )2
ˆ,R .

h
kf gm m

kx p ′−= − 
 

                    (48) 
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Finally, the cross-correlation of the sequences ̂  and  , that is in Equation 
(22), is proven. 

3.2. Autocorrelation and Period 

If the value of 0h = , then ̂  and   becomes the same sequence. In this case, 
the cross-correlation in Equation (22) becomes the autocorrelation after replac-
ing the value 0h = . 

( ) ( )( ) ( )( ) ( )1 1

2

1, if ,

R 1, else if ,

1, otherwise.

j j j
k k k

m

f A g f A g f gm m
k k k

m m

p x hn

x p x jn

p

−− − −′−

′−

 − =


 = + − − =  
 

 −

        (49) 

Corresponding to the above autocorrelation equation, the period of the pro-
posed multi-value sequence explicitly given by 1mp − . 

4. Examples and Discussions 

This section experimentally observes the properties of the proposed sequence 
such as period, autocorrelation, and cross-correlation along with some examples. 
Throughout this section, x  provides the absolute value of a complex number 
x. In addition, the notation 3  denotes the proposed sequence with the para-
meter 3A = . 

4.1. ′5, 4, 2, 2p m m k= = = =  and A 3,4=  

Let ( ) 4 3 22 2 2 2f x x x x x= + + + +  be a primitive polynomial over 5 . In this 
case, the period of this sequence becomes 1 624mp − = . Then the sequence 3  
is shown in Equation (50) and its autocorrelation becomes as follows and Figure 
1 shows its autocorrelation graph. 
 

 

Figure 1. ( )
3

R x  with 5, 4, 2, 2p m m k′= = = = , and 3A = . 
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{3 001000111010000000100000000110101001100011001001101110101011
010100001001001010000101001001101000110000100001110101101010
010000100000110111011110100111101100000010110001000001111001
10010010000110000

=

1001011110111011110001110111001010001110101
111100100111000110011000000011110000111110110000111110110110

 

000001101100011101000011100101010100111110001000100001110011
011110010110111010101000101110010000111001001101010100011111
010100001011101011010110111101101010001110000010010111101000

 

}

100101101101111010100000100001011001001001100001110000110000
111111110101010101100110110110111110100011010011111101100110
001001101100101001100110

 

(50) 

( )
3

624, if 0
24, else if 26,78,104,130,156,182,234,286,312,338,390,442,468,494,520,546,598,

R
76, else if 52,208,260,364,416,572,
0, otherwise

x
x

x
x

=
 ==  =


  

(51) 

On the other hand, it should be noted that 4  is different from 3  and its 
autocorrelation is given as follows and Figure 2 shows its autocorrelation graph. 

( )
4

624, if 0
24, else if 26,78,104,130,56,182,234,286,312,338,390,442,468,494,520,546,598,

R
76, else if 52,208,260,364,416,572,
0, otherwise

x
x

x
x

=
 ==  =


  

(52) 

The cross-correlation of 3  and 4  becomes as follows and Figure 6 shows 
its cross-correlation graph. 

( )
3 4,

24, if 0, 26,52,78,130,182,234,260,286,312,338,390,442,468,494,546,598,
76, else if 104,208,364,416,520,572,

R
624, else if 156,
0, otherwise

x
x

x
x

=
 ==  =


   

(53) 

4.2. ′7, 4, 2, 3p m m k= = = =  and A 3,4=  

Let ( ) 4 3 24 3 5 3f x x x x x= + + + +  be a primitive polynomial over 7 . In this 
case, the period of the sequence becomes 1 2400mp − = . Figure 3, Figure 4, 
and Figure 5 show the autocorrelation graphs of 3 , 4 , and the 
cross-correlation between the 3  and 4 , respectively. 

By observing the experimental results, it is found that in every case, the 
cross-correlation graph has exactly 1q −  number of peaks. Among those, only 
one has a maximum value. For example, in Figure 6, the maximum 
cross-correlation value is 624, which corresponds to the first case of x hn= , the 
remaining 2q −  smaller peaks conform the second case of x jn= , and except  
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Figure 2. ( )
4

R x  with 5, 4, 2, 2p m m k′= = = = , and 4A = . 

 

 

Figure 3. ( )
3

R x  with 7, 4, 2, 3p m m k′= = = = , and 3A = . 

 

 

Figure 4. ( )
4

R x  with 7, 4, 2, 3p m m k′= = = = , and 4A = . 
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Figure 5. ( )
3 4,R x   with 7, 4, 2, 3p m m k′= = = = , and 3,4A = . 

 

 

Figure 6. ( )
3 4,R x   with 5, 4, 2, 2p m m k′= = = = , and 3,4A = . 

 
these 1q −  peaks the remaining part in the graph always holds a constant value 
of 0, which corresponds the case third case in Equation (22). It means that all 
this cross-correlation graph can be explained by Equation (22). It is also ob-
served that by changing all the parameter values does not have any impact in the 
cross-correlation evaluation. On the other hand, as like the cross-correlation, the 
autocorrelation graph also has 1q −  number of peaks. Among them, only one 
holds the maximum value, the others have small values, the remaining part al-
ways holds a constant value of 1, and all these autocorrelation graphs can be ex-
plained by Equation (49). 

5. Comparison with Previous Work 

Although nowadays multi-value sequence does not have enough application ex-
cept the binary sequence (especially in security applications), therefore, in this 
section, the authors will emphasis on the binary case of their proposed sequence. 
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Even though the authors proposed sequence is a multi-value sequence. but it can 
be easily mapped into binary sequence by setting the parameter value 2k = . In 
this section the authors will introduce a comparison of their proposed sequence 
(binary case) with their previous work [14] in terms of autocorrelation, linear 
complexity, and distribution of bit patterns properties. In this section, the authors 
previous sequence proposed in [14] will be called as NTU (Nogami-Tada-Uehara) 
sequence. 

5.1. Autocorrelation 

The autocorrelation of a sequence is a measure for how much the sequence dif-
fers from its each shift value. In addition, by evaluating this property some spe-
cial characteristics about the sequence such as its period, some pattern of the 
sequence, and so on can be also found and the value of the autocorrelation al-
ways preferred to be as low as possible [22]. The autocorrelation of the proposed 
sequence (defined over sub extension field) and our previous sequence (NTU) 
(defined over prime field) is shown in Figure 7 and Figure 8, respectively. By 
observing their autocorrelation graph, it was found that on one hand, the num-
ber of peak values is increases in the sub field sequence, on the other hand, the 
difference between the maximum peak value with the smaller peak values are 
much smaller in the proposed sequence compared to our previous sequence. 
Moreover, in the proposed sequence except the peaks remaining autocorrelation 
value always remains at 0. It should be noted that in case of correlation evalua-
tion, the less difference between the peak values are more crucial rather than the 
number of peaks [22]. 

5.2. Linear Complexity 

The unpredictability of a sequence can be measured by the length of the shortest 
Linear Feedback Shift Register (LFSR) which can generate the given sequence. 
This approach is particularly appealing since there exists an efficient procedure  
 

 
Figure 7. Autocorrelation of proposed sequence. 
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Figure 8. Autocorrelation of NTU sequence. 

 
(it is so called the Berlekamp-Massy algorithm [23]) for finding the shortest 
LFSR. This length is referred as the linear complexity associated with the se-
quence. The linear complexity property regarding a sequence is an important 
parameter which tells how difficult it is to predict the next bit pattern by ob-
serving the previous bit pattern of a sequence. Thus, the linear complexity of a 
sequence is always preferred to be high. The linear complexity of the proposed 
sequence (defined over sub extension field) and our previous sequence (NTU) 
(defined over prime field) is shown in Figure 9 and Figure 10, respectively. By 
observing their linear complexity graph, it was found that the proposed sequence 
(which defined over the sub extension field) always hold high linear complexity 
compared to the NTU sequence. In other words, in terms of linear complexity 
the sequence defined over the sub extension field hold higher linear complexity 
than the sequence defined over the prime field. 

5.3. Distribution of Bit Patterns 

The distribution of bit patterns is another important measure to check the ran-
domness of a sequence. From the viewpoint of security, the distribution of bit 
patterns is as important as the linear complexity. If a sequence holds the uniform 
distribution of bit patterns, then it becomes difficult to guess the next bit after 
observing the previous bit patterns. After the experimental observation, it was 
found that the NTU sequence is not uniformly distributed. In other words, in 
case of binary NTU sequence, there is much difference in appearance between 
the 0 and 1. To improve this drawback, instead of prime field (which used in the 
NTU sequence generation procedure), the authors focused on the sub extension 
field during the sequence generation procedure in this research work. As a result, 
after utilizing the sub extension field, the distribution of bit patterns becomes 
close to uniform. This comparison is shown in the following Table 3. In the fol-
lowing table, ( )db , ( )( )d

wtH b , and ( )( )n

dD b  denotes a bit pattern b of length d, 
the hamming weight of the bit pattern b, and the number of appearances of  
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Figure 9. LC of the proposed sequence. 

 

 
Figure 10. LC of the NTU sequence. 

 
Table 3. Comparison in bit distribution between the sub field binary sequence and NTU 
sequence. 

d ( )( )d
wtH b  ( )( )15624

d
SD b  % ( )( )15624

d
NTUD b  % 

1 
0 8124 51.99 9374 59.99 

1 7500 48.01 6250 40.01 

2 

0 4224 27.03 5624 35.99 

1 3900 24.96 3750 24.00 

2 3600 23.04 2500 16.00 

3 

0 2196 14.05 3374 21.59 

1 2028 12.98 2250 14.40 

2 1872 11.98 1500 9.60 

3 1728 11.05 1000 6.40 

4 

0 1140 7.29 2024 12.95 

1 1056 6.75 1350 8.60 

2 972 6.22 900 5.76 

3 900 5.76 600 3.84 

4 828 5.29 400 2.56 
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( )nb , respectively. In terms of the distribution of bit patterns, the sequence de-
fined over the sub extension field hold much better distribution (close to uni-
form) of 0 and 1 than the sequence defined over the prime field. 

As mentioned previously, NTU sequence proposed in [14] is defined over the 
prime field and proposed sequence in this paper is defined over the sub exten-
sion field. After the comparison results it is concluded that in terms of correla-
tion the proposed sequence holds low correlation compared to NTU sequence; 
about linear complexity proposed sequence possesses high linear complexity 
than NTU sequence; regarding the distribution of bit patterns proposed se-
quence hold much better distribution of bit patterns (close to uniform) than NTU 
sequence. 

One of the most common applications of the pseudo-random binary sequence 
is in a stream cipher. Basically, stream cipher is divided into two classes: block 
cipher and stream cipher. Among these in case of block cipher, same key is used 
for both encryption and decryption of each block (≥64 bits) of data. On the oth-
er hand, in case of stream cipher, encryption and decryption are performed by 
the bit wise ⊕  (XOR) operation with a key stream. Here, the authors restrict 
the discussion of their proposed pseudo-random binary sequence in a stream 
cipher. An image of the stream cipher is shown in Figure 11. Few important 
considerations during the design of a stream cipher are the key (which used for 
both encryption and decryption) should have large period, good randomness, 
and unpredictability properties due to the usage of same key in both encryption 
and decryption. Here, the encryption is carried out by applying a bit-wise ⊕  
(XOR) operation between the plain-text of byte stream M and encryption key K. 
Then, the cipher-text C transmitted through a network. On the other hand, 
during the decryption, after the bit-wise ⊕  operation between the cipher-text 
C and the same key K we will get the original plain-text M. In a stream cipher, a 
lot of sequences are assigned to several users, respectively. If these sequences 
have some correlation, then it will make some security vulnerabilities. Under 
this circumstance, it is important to observe the cross-correlation property be-
tween several sequences. Additionally, its linear complexity and distribution of 
bit patterns needs to be high and uniform, respectively to confirm its random-
ness. The authors proposed method can generate a long period pseudo-random 
sequence with typical auto and cross-correlation, high linear complexity, and 
almost uniformly distributed bit patterns features. After observing the experi-
mental and comparison results, it can be concluded that the authors proposed 
sequence which defined over the sub extension field can be a prominent candi-
date for a stream cipher like applications. 

6. Conclusions and Future Works 

The authors in this paper have proposed a multi-value sequence (including a bi-
nary sequence) by utilizing a primitive polynomial, trace function, k-th power 
residue symbol over the sub extension field. The notable outcomes of this  
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Figure 11. Application of the proposed sequence in stream cipher. 

 
research work are as follows: 
 This is an extension of our previous works [13] [14] [15]. 
 This work overcomes the shorter period shortcoming of our previous work 

[17]. 
 The period, autocorrelation, and cross-correlation properties regarding the 

proposed sequence are theoretically explained. 
 The authors make a comparison in terms of autocorrelation, linear complex-

ity and distribution of bit patterns properties with their previous work [14]. 
 According to the comparison results, the proposed sequence holds low cor-

relation, high linear complexity, and much better distribution of bit patterns 
compared to our previous work [14]. 

 The proposed sequence can be a prominent candidate for stream cipher like 
cryptographic applications due to its exemplary properties. 

As future works, the following points should be researched: 
 Mathematically prove the linear complexity and distribution of bit patterns 

properties. 
 To introduce more efficient calculation instead of the power residue calcula-

tion. 
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