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http://creativecommons.org/licenses/by/4.0/ In this paper, we study that the stochastic lattice Selkov system with the cubic

nonlinearity and additive white noises on an infinite lattice is considered in [1]

and [2]:
du, = [dl(u

—20; +U; ;) —au, +bu?v, —bul + f, Jdt+edw, i€Z,t>0,

i+l (11)

dv, = [dz (Viys =2V, +V, )=,V —bu’v, +bu’ + fZint+aidvvi, ieZ,t>0,

with initial conditions
U (0)=Uq, Vi (0)=V,, i €Z, (1.2)

where 7 denotes the integer set, u=(u)_,el* , v=(v)_, e’
d,.d,,a,,a,,b,b, are positive constants, o =(c;)_, />, {W |ieZ} is inde-
pendent Brownian motions.

The reversible Selkov model is derived from a set of the two reversible chemi-

cal reactions, which has been studied by [3] [4] and other authors:
P+2Q0=3Q, Qs=Q.

The original Selkov model corresponds to the two irreversible reactions,

where the product Q, is an inert product. Let u, and Vv, are respectively the
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concentrations of the reactants Q and P, Equation (1.1) can be regarded as a

Selkov system (see [5]) on R:

{Ut = dlAu —au +b1U2V—b2U3 + fl +aw, (1.3)

v, =d,Av—a,v—bu’v+bu’ + f, + aw,.

For the Equation (1.1), the solution mapping defines a random dynamical
system, which is a parametric dynamical system, and pullback absorbing set has
been proved, see [1] and [2]. Random attractors are the appropriate objects for
describing asymptotic dynamics of such a parametric dynamical system. There-
fore, in this paper, we would prove the existence of a random attractor for the
stochastic lattice Selkov Equation (1.1).

This paper is organized as follows. In the next section, we recall basic concepts
and results related to random attractors. In Section 3, using the transformation
of Ornstein-Uhlenbeck process, the stochastic Selkov equation with white noise
is transformed into a noiseless determined Selkov equation with random va-
riables as parameters. In Section 4, we prove the pullback asymptotic compact-
ness for the random dynamical system. Then the existence of a random attractor

is proved.

2. Preliminaries

Firstly, we introduce the relevant definitions of random attractor, which can be
taken from [6] [7] [8].

Let (H,d) bea complete separable metric space, (€, F,P) be a probabili-
ty space, R = [0,00) .

Definition 2.1. (Q,]—" P.(6, )teR) is called a metric dynamical system if
O:RxQ—>Q is (B(R)Xf,]:) measurable, 6, =1,6,,, =6,°6, for all
s,teR,and 4P =P forall teR.

Definition 2.2. A continuous random dynamical system (RDS) on H over a
metric dynamical system (Q, F.P.(6, )teR) is a mapping

¢:R"xQxH > H, (tox)- o(toXx),

which is (ZS’(IR+ ) x FxB ( H ), B ( H )) -measurable and satisfies, for every we(Q,

1) ¢(0,@,) isthe identity on /%

2) Cocycle property: @(t+s,,-)= (p(t,esa),go(s, , )) forall t,seR";

3) ¢(~@,):R"xH —>H is strongly continuous.

Definition 2.3. Suppose ¢(t,®) is a random dynamical system, a random
set A iscalled arandom D attractor if the following hold:

1) A(a)) is a random compact set, Z.e, @ —d (X,A(a))) is measurable for
every XeH and A(w) is compact for every weQ;

2) A(a)) is strictly invariant, ie, for every weQ and all t>0 one has
o(tw,A(w))=A(o);

3) A(a)) attracts all setsin D, Ze. forall BeD and weQ wehave

limd (w(t,&ta), B(Hftw)),A(w)) =0,
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where d(X,Y)=sup,., inf
XcH,YcH).
Theorem 2.1 ([9], Proposition 4.1) Let K(w)eD be an absorbing set for

yev X—y"H is the Hausdorff semi-metric (here,

the random dynamical system ¢(t,0.,0),_ 0we  WhIch is closed and which satis-
fies for w Q) the following asymptotic compactness condition: each sequence
X, € go(tn,Qtn o,K (Hflna))) with t, — oo has a convergent subsequence in H.
Then the random dynamical system ¢ has a unique global random attractor

A(o)= N Ue(t.0,0.K(0 0)).

t>ty (o) t>r

3. Ornstein-Uhlenbeck Process

Let 2= {u =(u, ) U eR: Z Z|u | < +oo} with the inner product and norm

as follows:
(00)= s Jff =0, w=(0), 9= (), <2

Then 2 :(12,<~,->, . ) is a Hilbert space. Set E =12 x1*> be the product Hil-
bert space. In view of the cubic term +u®v,+u®, we need u e ,ve:® to make
(1.1) hold in #.

Introducing an Ornstein-Uhlenbeck process (O-U process) (see [10]) in 2
on (Q F.P.(6),. R) given by the Wiener process:

y(60)=—(a,+a,)[ e (qo)(s)ds, teR, weQ,

and ysolve the Itd equations:
dy+(a, +a,) ydt =dw(t), t>0.
There exists a 6, -invariant set Q' Q of full P measure such that
1) the mappings S — y(6,@) are continuous for each weQ;

2) the random variables ||y(t9ta))|| is tempered.
Let

3(1)=u(t)-y(80). I()=v()-y(q0)
From (1.3), we have
0, =4, A(0+y(60))-ai+a,y(60)+b (1+y(Go)) (7+y())

9 f
(u+y a))+ ! 61)

U, =—0,A(V+Y(60))-a,7+ay(60)-b (T+y(60)) (V+y(60))
+b, (0+y(G0)) + 1,

with the initial value condition

0(0,@,0y) =0y (@) =U, — Y (@), V(0,0,V,) =V, (@) =V, - y().

4. Pullback Asymptotic Compactness

From Theorem 2.1, to prove the existence of a random attractor for the random
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dynamical system generated by (1.1), it is necessary to obtain the pullback ab-
sorbing property and the pullback asymptotic compactness. The pullback ab-
sorbing property has been obtained by [2]. For the pullback asymptotic com-
pactness, we have the following lamma.

Lemma 4.1. Assume the initial functions (U(®),V,(®))eK (), where
K (@) is the absorbing set. Then for every ¢ >0, there exist T(&,@)>0 and
N(&,@)>0 such that the solution (u(t,a),u0 (@)).v(to.v, (w))) of (1.1) sa-
tisties

["ute Uy (6 @ " +||vt¢9 oV, (6.,® "}
H>New

forall t>T(&,w)>0.
Proof. We choose a smooth function p such that 0< p<1 forall seR

and

o, if |s|] <1, il
Py if |s| > 2, (D

and there exists a positive constant ¢, such that | p'(s)| <¢ for seR.
We first consider the random Equation (3.1). Let rbe a fixed positive integer
which will be specified later. Taking the inner product of the Equation (3.1) with

[' |Ju and p[' |jv in F, respectively, we get

_ 4, Aﬁ,p{gjﬂ>—dl<Ay(0tw), (gj> aiép(HjM
+<b1(f'+y(@w))z(“y(@w)),p(gjﬁ>—<bz(ﬂ+y(@w))a,p[%a>
+<fl,p(g]a>+az<y(@w),,,@]a ,

o L
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22p||j| | Z ) i)ai+1
P G 2?nu

g2

From (4.2), we havi

And

o (4.5)
b<( y(00)f | U o >>
ma ) (0 5(009) (0-00.{ L 0-)
maxf ) Zo[ o+ (00 (007 <0
Then from (4.2)-(4.5), we find that
5o Wor +ior - ang o ot o za.2o{ o
<2 o 2+ . )2 .0{ 1)) Ny

-
)

For the third term and forth term in the right-hand side of (4.6), we have

ol M)z -zl

Apr T
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2<f2’p(mj\7> {Hj T [HJM +—Z|fz.| (4.7)
r fiEr 3 i a, =
For the fifth term and sixth term in the right-hand side of (4.6), we have
—2d, <Ay, p[% a> =-2d, <By, B( p[gj UJ>
=-2d Z(yH-l y|)[ (Mja.ﬂ—p[quJ
ieZ r r

=-2d, > p[@j(ym =)0 +2d12p(|i|

ipr T

J(ym—yi)ﬂi
<2 5o WJaec 2 ur

fijzr-1

sl g ozt o

where C;, j=1,2 are positive constants depending only on d,,d,,a,,a,. For
the last two terms in the right-hand side of (4.6),

e
o845 .

From (4.6)-(4.9), we have

s o Yaroior }+alzp("j|u| 2, 2o Wy

ieZ
_ 4cd
Sy g 251 ) 10
3a’ 3
+(C,+C,) H;Jyl |2+[ . 3J§|y, Ha)| .

Let a, =min{a,a,} . By Gronwall’s inequality in [11], we have that for
t>T, =T, ()20,

ép[%q (100, (@) + [ (Lot ()
< g st zp@ |]Uu (T 0,0, (@) | +|\7i (Tk,w,vo(a)))ﬂ

ieZ

t(4cd, . 4cd, . anlr—
e
Lz 2ol

& fifr 8, fifr

+(C,+C, je o(r) Z|Y. 9w|dr

liler-1
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3a’ 3a’ S(1)
—+— 9 d 4.11
+( 2 + a, ITk ‘Z:|y, a)| 7. (4.11)

Replace @ by 6 ,w.From (4.11) in [2], with ¢ replaced by T, and @ by
0 ,w, it follows that

s W)a o.mn 0.0 ir0000.0)]

ieZ
[ .o oo |+ S 1811
e e ("y(gﬁw)"z+||Ay(9“w>n PSJ @12
<e[Jn (@.0)f +fio (0.0 Joe = (0 4]
+éc4| (0)e 2.

Thus, there existsa T, (&,@)>T, (@) such thatif t>T, (& ), then

g2l Zp(HJU (T,.0.0.0,(6.0))| +]5 (Tk,e_ta),VO(Q_ta)))ﬂ<%8. (4.13)

ieZ

From (4.11), we have

I;k(4cl_(jl||ﬂ(r,9_ta),ﬂg(6’_ta)))" 4Cld " ( 0.,0.0, (6, w ”j s(-0) g 7

4C1d a3 T-t) (ea3r|: G
r Tk 0

+C4j;ea3(5”)( y (6.,

~ C
<e4w)|r+||vo<a,tw>||1+;(u 4+t )

o +||Ay(495ta>)||2)dsjdr (4.14)

<4 [0, 0.0+ 0.0 T )

C 4
S L) (o))

where d, =max{d,,d,}. Recall that (0,(6.®),%((0 @))eK (6, ), which
implies that "Go (6’_ta))"2 +||\70 (6’_ta))"2 <R*(0,w),and R(w) istempered in [2].
Thus there exists T, (&,@)>T, (®) and N,(&@)>0 such thatfor t>T, (& )

and r>N, (& ), we have

4c.d 4c.d, . N - 1
J [ om0 00,0 o) + 2 (0,00, (0 @) Jear <3o @13
Since f,f, €12, there exists N (g,a))>0 such that for r>N, (g,a)),

Hisjp2y)nt)eds w16

& fifr 8, fifr

Finally, we estimate the last terms on the right-hand side of (4.11). Let T°>0
to be determined later. We have for t>T +T,
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(C,+C, jea“‘ > i a)| dr

i
3a‘ 3a‘l ag(z-t) 2
+[ % e ] " \%'y' o)l dr
- TOk [c 3 |y (60) ds+C Z|y, (6.0) ds] (4.17)
jir

<[ e""BS(C > |yI 9w| ds+C Z|yI Ha)| dsj

e "‘35(C ly (6.0 || ds+C,||y (6, || ds)
Using (4.12) in [2], we have

ey (6.0 +C. |y (6.0) ds < 221 (0 e . (18
L ()

8
Thus, by choosing
TS iln 16C.| (a)) |
d, ¢
we have for t>T" +T,,
e (Sl ~c.ly (o) Jas <. (4.19)

For the fixed T, from Lebesgue’s theorem, there is N, (&,@) such that for
r>N,(e,0),

j eag{c > v 6a)| ds+C,>|y; Ha)| ds]<§. (4.20)

(== er
Therefore, by letting
T (2,0)=max{T, (£,0).T,(£,0),7" (£,0)+ T, (o)},

N(z,@)=max{N,(s,0),N,(,0),N,(¢,0)}, (4.21)

for t>T(¢,@) and N >N(g ), we have
> Uai (t.0,0.0,(6.0)) +[% (1.0, (e_ta)))ﬂ

_ (Hj“u 1.6.0,0,(0,0))[ +i (t,a_tw,vo(a_ta)))ﬂ (4.22)
-

which implies that

> |:|ui (t,H_ta),u0 (Q_ta)))r +|Vi (t, 0. o, (H_ta)))r}

iIZN(s,0)

= (|u t9 0, (0, a)))+y(9 a))|

lil=N(e

+|V, (t: 0. o,V (H-ta))) * y(&_ta))r)
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<2 ) (|Ui (t.6,,0, (Qtw))|2 +|\7i (t.6.0,7, (Hftco))r)

mZN(s,a))
+6H ’% )|y(49_ta))|2 (4.23)
iIZN(&,0

<8¢,

provided N (6‘,6()) is large enough. This completes the proof of the lemma. O

We are now ready to show the pullback asymptotic compactness of the ran-
dom set K (a)) .

Lemma 4.2. For weQ, the set K(w) is pullback asymptotically compact in
the sense of each sequence (un,vn ) IS ¢(tn , H_tna), K (G_tn a))) with t, — ©
having a convergent subsequence in 1> x 1.

Proof. We follow the method of [9]. Let weQ' for each sequence

{t,}" ittt > as n—oo,and

({100,006 ) 0 (1.0, 003, ) (10,0 (0,0)):
this implies that there exists (X,,Y,)€ K (6, ) such that

(un (tn,é’ftnw, X, ),vn (tn,atnw, Y, )) = go(tn,eftnw,(xn, Y, ))

Since K (@) isabounded absorbing set, for large 1, (p(tn 0, 0, (Xa1 Y )) eK(w);
thus there exists (U,V) € ¢* x¢*, and a subsequence
(upvr) = ga(tn 0., 0,(%,, Y, )) such that

(ur',(tn,H_tna), xn),v; (tnlg—tna)’ Y, ))—)(u,v) weak in i* xz°. (4.24)
Next, we will show that (u,,v;) is also strongly convergent in the norm ||||

in #xi, ie, for each e>0 there is N*(e,a))>0 such that for
n=N"(e,o),

From Lemma 4.1, for any €>0, there exists N*(e,a)) and K; (e,a)) such
that for n> N*(e,a)) ,

(Ur; (tnyatn @, Xn),V,'1 (tn,atn w, Y, ))-(U,V)” <e.

2

> Uu’i (tn,H_tna), xn) +
‘i‘ZKl((,w)
Since (u,v)e ? x 1%, there exists K, (€)>0 such that

> (uf +|Vi|2)S%ez- (4.26)

fi=K2(e)

Vr,1i (tn ! H—tn @, yn )

zj < %62. (4.25)

Let K(e,a)):max{K1 (e,a)),Kz(e)}. From the weak convergence (4.24), we
have for each |I| <K (e,a)) as Nn—oo,

(u,;i (t,.0., 0% ).vi (4.0, @Y, )) > (u,v),

which implies that there exists N; (E, a)) >0 such that for n> N; (E, a)) R

%

‘i‘SK(e,(u)

2
ur, (t,.6.,, @, xn)—ui‘ +

vI; (tn 0., oY, ) -V, r) < %62. (4.27)
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Combining (4.25)-(4.27), we obtain that for n> N" (e, a)) R

u, (tn,¢9_tn w, xn)—u”2 +|[v, (tn 0., @Y, ) —v”z

sz(

lil<K(e.0)

+ (
=K (ero)

ur’ﬂ (tn ' H—tn @, X, ) —U; ‘2 + Vr:i (tn ' 07[n , Y, ) -V

)
U (.0 0%, ) - + ’

Vr:i (tn J e—tn @, Y, ) -V

1 (4.28)
<842 u,[* +v, [
2" \i\z%;,w)(' [+l
+2 ) (u,’1i (tn,e_tna), xn)2 v (tn,e_tna), yn)zj
lil2K (e, )
< l62 +£62 +162 =€
2
Hence, we have completed the proof of Lemma 4.2. O

Theorem 4.1. The random dynamical systems {q)(t, a))}tzo oeq POSSESS a ran-

dom attractorin * x1*.

Proof. Note that random dynamical system is pullback asymptotically com-
pact in £by Lemma 4.1 and 4.2. On the other hand, the random dynamical sys-
tem has a pullback absorbing set by Lemma 4.1 in [2]. Then the existence and

uniqueness of a random attractor follow from Theorem 2.1 immediately. |
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