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Abstract 

A large number of sparse signal reconstruction algorithms have been conti-
nuously proposed, but almost all greedy algorithms add a fixed number of in-
dices to the support set in each iteration. Although the mechanism of select-
ing the fixed number of indexes improves the reconstruction efficiency, it also 
brings the problem of low index selection accuracy. Based on the full study of 
the theory of compressed sensing, we propose a dynamic indexes selection 
strategy based on residual update to improve the performance of the com-
pressed sampling matching pursuit algorithm (CoSaMP). As an extension of 
CoSaMP algorithm, the proposed algorithm adopts a residual comparison 
strategy to improve the accuracy of backtracking selected indexes. This back-
tracking strategy can efficiently select backtracking indexes. And without in-
creasing the computational complexity, the proposed improvement algorithm 
has a higher exact reconstruction rate and peak signal to noise ratio (PSNR). 
Simulation results demonstrate the proposed algorithm significantly outper-
forms the CoSaMP for image recovery and one-dimensional signal. 
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1. Introduction 

Compressed Sensing (CS) is a new theory of signal processing, proposed by [1] 
[2]. If the sampled signal has sparsity or compressibility, the original signal can 
be recovered well by sampling only a small number of data points and selecting 
the reconstruction algorithm reasonably. There are a variety of sparse signals in 
nature, which brings broad prospects for the use of compressed sensing [3] [4] 
[5]. In order to efficiently reconstruct the original signal, a lot of algorithms have 
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been proposed to solve this problem. They are mainly divided into three catego-
ries: greedy pursuit, convex optimization and combination algorithm. Greedy 
pursuit has been widely used owing to its low computing complexity and high 
reconstruction speed. Tropp and Gilbert propose Orthogonal Matching Pursuit 
(OMP) in 2006. Later, some modified algorithms are proposed, such as Stage-
wise Orthogonal Matching Pursuit (StOMP) [6], Stagewise Weak Orthogonal 
Matching Pursuit (SWOMP) [7]; these algorithms have low reconstruction 
complexity but require more measurements to perfect reconstruction. Subspace 
Pursuit (SP) [8] [9] [10] [11] introduced the idea of backtracking which can offer 
better reconstruction quality and low reconstruction complexity, but it needs the 
sparsity level K as a prior information. Bayesian Group Matching Pursuit (GMP) 
[12] [13], whose group coefficients are modeled by a multivariate Gaussian dis-
tribution, and solved by a maximum a posteriori probability estimate, has a bet-
ter reconstruction in solving the reconstruction problem. 

The reconstruction algorithm is the core of CS theory. How to efficiently re-
cover low-dimensional signals to high-dimensional signals is the goal pursued 
by many researchers. The difficulty with this problem is that reconstruction of 
high-dimensional signals requires solving an underdetermined equation. So the 
problem can be solved by the l0 norm minimization, which is an NP-hard prob-
lem [14] that requires exhaustively listing all possibilities of the original signal 
and is difficult to achieve by the traditional algorithm.  

In this paper, the improved CoSaMP reconstruction algorithm based on resi-
dual update was proposed, which is an improved algorithm in view of the Co-
SaMP. We propose a dynamic indexes selection strategy based on residual up-
date to improve the performance of the compressed sampling matching pursuit 
algorithm (CoSaMP). This backtracking strategy which is based on this residual 
descent can flexibly select backtracking indexes. And this improvement can im-
prove the reconstruction performance. Different simulation results show that the 
improved algorithm has better reconstruction performance for both 
one-dimensional signals and two-dimensional signals compared with other clas-
sical algorithms. 

The rest of this paper is organized as follows. Section 2 introduces the back-
ground and the improved algorithm. We discuss the performance of proposed 
algorithm in Section 3 and conclude the paper in Section 4. 

2. Compressive Sensing Model and Greedy Algorithm 

2.1. Compressive Sensing Model 

We suppose that x is an 1N ×  sparse signal. CS suggests that one can recover 
certain signal from far fewer samplings or measurements than traditional me-
thods via the following optimization problem: 

0min   s.t.  .
x

x y x= Φ                       (1) 

where 0x  indicates the number of nonzero elements in x. The Φ  denotes 
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the random measurement matrix ( ),M NR M N×Φ∈  . But, zero-norm mini-
mization problem is NP-hard. The solution to the one-norm problem is convex 
relaxation of zero-norm. As the computational intractability, this problem could 
be replaced by one-norm optimization problem: 

1min   s.t.  .
x

x y x= Φ                       (2) 

where 
1x  represents the sum of absolute value of non-zeros components of x. 

And linear programming methods have shown to be effective in solving such 
problems (2) with high accuracy. Such as BP. Theoretically, Candes also proved 
that when the random measurement matrix satisfies the restricted isometry 
property (RIP) [15] [16], Equation (2) is equivalent to Equation (1). The follow-
ing definition of restricted isometry property (RIP) of sensing matrix Φ  plays 
an important role on the analysis of recovery algorithm in CS. 

Definition 1. For the sensing matrix Φ , each integer 1,2,s =  , the Φ  sa-
tisfies the restricted isometry property of order s if  

( ) ( )2 2 2

2 2 21 1s sx x xδ δ− ≤ Φ ≤ +                  (3) 

holds for all s-sparse vectors Nx R∈  and some 0 1sδ≤ < . The restricted iso-
metry constant (RIC) sδ  is the smallest value. 

But minimizing the l1 norm is very complicated and requires a lot of calcula-
tions. However, the greedy reconstruction algorithm has a simple geometry and 
a very low computational complexity. So, greedy algorithm is widely used for 
sparse reconstruction. 

2.2. Compressed Sampling Matching Pursuit Algorithm 

As we all know, the OMP algorithm first proposed the idea of orthogonality. 
Many subsequent algorithms follow this idea. OMP algorithm selects only one 
index which is corresponding to the largest magnitude. Through this method, 
index selection is inefficient. And OMP does not adopt backtracking mechan-
ism. Once an error occurs in the support set selection process, it will result in 
poor reconstruction. For CoSaMP algorithm, it selects multi-indexes in each 
iteration, which can promote the reconstruction speed. However, if the selected 
indexes is not appropriate for signal reconstruction, it would remove fixed in-
dexes from temporary support sets to get high reconstruction quality and accu-
racy. The CoSaMP algorithm is summarized in Table 1.  

2.3. The Proposed Algorithm 

Since the CoSaMP algorithm returns a fixed number of indexes in the back-
tracking phase, it is added to the support set. These indexes may be errors with a 
high probability. Once a high probability error occurs, it will have a great impact 
on the reconstruction results. We propose a backtracking index dynamic selec-
tion strategy based on residual descent. We can dynamically adjust the number 
of backtracking indexes based on changes in the residuals. The proposed algo-
rithm is summarized in Table 2. 
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Table 1. CoSaMP algorithm. 

Input: Sampling matrix Φ , noisy sample vector u , 
sparsity level s 
Output: An s-sparse approximation a  of the target signal 

1) Initialization: 
0 0←a  {Trivial initial approximation} 
←v u  {Current samples = input samples}   

0k ←  
2) repeat 
a) 1k k← +  

b) T←y vΦ  {Form signal proxy} 

c) ( )2sSuppΩ← y  {Identify large components} 

d) ( )1kT Supp −←Ω a  {Merge supports} 

e) 
T

T+←b Φ  {Signal estimation by least-squares} 

f) 0CT
←b  

g) k
s←a b  {Prune to obtain next approximation} 

h) k← −v u aΦ  {Update current samples} 
until halting criterion true 

 
Table 2. The proposed algorithm. 

Input: Sampling matrix Φ , noisy sample vector u , 
sparsity level s 
Output: An s-sparse approximation a  of the target signal  

1) Initialization: 
0 0←a  {Trivial initial approximation} 
←v u  {Current samples = input samples} 

0k ←  
2) repeat 
a) 1k k← +  

b) T←y vΦ  {Form signal proxy} 

c) ( )2sSuppΩ← y  {Identify large components} 

d) ( )1kT Supp −←Ω a  {Merge supports} 

e) 
T

T+←b Φ  {Signal estimation by least-squares} 

f) 0CT
←b  

g) r v←  
If 0.8 (norm(r)) < norm(v): 

( )0.8
k

floor s←a b  

h) k
s←a b  {Prune to obtain next approximation} 

i) kv ← −u aΦ  {Update current samples} 
until halting criterion true 

3. Simulations and Analysis 

In this part, we verify the performance of the proposed sparse signal reconstruc-
tion algorithm based on residual update and compare it with several most ad-
vanced reconstruction algorithms. We comprehensively verify and contrast the 
proposed algorithm from one-dimensional random sparse signals and 
two-dimensional image signals. And we have detailed each experiment. 
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3.1. One-Dimensional Signal 

In this section, in order to demonstrate the superiority of the proposed algo-
rithm, we compare the proposed algorithm with other similar classical algo-
rithms for signals with nonzero elements drawn from the Gaussian and uniform 
distributions. Gaussian sparse signals are used with length N = 256 and sparsity 
level K = (5, 20). The sensing matrix Φ , which is different for each test signal, is 
drawn from the Gaussian distribution with mean 0 and standard deviation 1/N. 
Then, we normalize each column norm to unity. Experimental platform was 
MATLAB R2013b. 

As shown in Figure 1, we provide the rate of exact reconstruction perfor-
mance as a function of the measurement number M. Figure 1 shows the curves 
of the probability of exact recovery signal with the proposed algorithm. 500s si-
mulations were conducted for the different number of measurements M. The 
exact recovery rate of the proposed algorithm at M = 60 increases by 90%. And 
overall, the algorithm proposed in this paper is also superior to other classical 
algorithms in Figure 1. 

Figure 2 shows the curves of the probability of exact recovery signal with the 
proposed algorithm. It shows the comparison of the exact reconstruction rate of 
the proposed algorithm and CoSaMP algorithm under different sparsity level 
(i.e., 5, 10, 15, 20 non-zero entries). 500 simulations were conducted for each 
pair of sparsity k and the number of measurements M. Figure 2 also shows the 
proposed algorithm has higher probability of exact recovery signal. 

Figure 3 shows the curves of the probability of exact recovery signal with 
proposed algorithm. The number of measurements (M), given a fixed signal 
sparsity K. 500 simulations were conducted for each pair of sparsity K and the 
number of measurements M. Figure 3 shows that the proposed algorithm has 
higher stability and reliability in terms of exact recovery of the signal. 

 

 

Figure 1. Rate of exact reconstruction performance as a function of 
measurement number. 
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Figure 2. Rate of exact reconstruction performance as a function of 
measurement number. 

 

 

Figure 3. Probability of exact recovery signal with proposed algorithm. The 
original signal has length of N = 256 with K = 5, 10, 15, 20 non-zero entries. 

3.2. Two-Dimensional Signal 

In the two-dimensional image experiment, the wavelet base is used as the sparse 
basis and the random Gauss matrix is used as the measurement matrix Φ . We 
use three international standard, i.e. Lena image, Camera image and Barche im-
age, as the input to conduct the comparison analysis of different algorithms. And 
the peak signal-to-noise ratio (PSNR) is used to evaluate the performance of the 
improved algorithm and the original algorithm, which is defined as follows 

2

10
2

255PSNR 10log M N
x x

 × ×
=   − 

                  (4) 
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where x is the original image, x  is the reconstruction image. Sampling ratio is 
M/N. The size of each image is 256 × 256.  

From Figure 4, we can know that the proposed algorithm is superior to the 
original algorithms CoSaMP. And we can see that the proposed algorithm has a 
better visual effect for different types of images. The improved algorithm can 
accurately recover the original signal. 

 

 

 

 

Figure 4. Visual comparison of image reconstruction by different algorithms. 
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4. Conclusion 

Based on a comprehensive study of the sparse signal reconstruction algorithm, 
we find that CoSaMP cannot dynamically select the support set to efficiently re-
construct the original signal. To solve this problem, we use the residual update 
strategy to improve the backtracking index selection. Thereby the number of 
backtracking indexes is adjusted according to the direction in which the residual 
is decreasing. The proposed algorithm can significantly improve the perfor-
mance of CoSaMP by adjusting dynamically the number of indexes which are 
added to the support set in each iteration. Different simulation results show that 
the improved algorithm has better reconstruction performance for both 
one-dimensional signals and two-dimensional signals compared with other clas-
sical algorithms. 
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