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Abstract 
In this work, metal-organic frameworks (MOFs) FJU-21 was synthesized by 
solvothermal method. The crystal structure of FJU-21 was characterized by 
XRD and BET and it was applied to the catalytic hydrolysis of bovine serum 
albumin. The effects of reaction pH, temperature and reaction time on the 
catalytic activity of FJU-21 were studied. FJU-21 were found to possess an in-
trinsic enzyme mimicking activity similar to that found in trypsin. The Mi-
chaelis constant (Km) of the artificial protease (0.18 × 10−3 - 0.20 × 10−3 M−1) 
was about 15-fold lower than that free trypsin (2.7 × 10−3 M−1) and about 
3-fold lower than that of soluble Cu(II) oxacyclen (0.54 × 10−3 M−1). The Kcat 

of FJU-21 is 102 times higher than that of soluble Cu(II) oxacyclen catalysts 
and, indicating a much higher affinity of BSA for FJU-21 surface. FJU-21 
could be reused for eleven times without losing in its activity. 
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1. Introduction 

The preparation and application of artificial mimic enzymes have become an in-
creasingly important focus for research in recent years because natural enzymes 
have many problems such as a sensitivity to catalytic activity in the environment 
condition, lower stability, difficulty in purification and storage [1] [2]. In such 
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context, many mimic enzymes have been discovered [3] [4], such as fullerene 
derivatives [5], gold nanoparticles [6] [7], rare earth nanoparticles [8] and fer-
romagnetic nanoparticles [9] [10] [11] and so on. Proteolysis, hydrolysis of pro-
tein into amino acids or small fragments, is widely applied to the utilization of 
agricultural yields, seafood and meat byproducts as well as to the improvement 
of nutritional and functional properties of proteins. Therefore, a large number of 
protein mimetic enzymes have also attracted a lot of research interest due to the 
harsh conditions of natural protease hydrolysis of proteins and the low hydroly-
sis efficiency, and difficult to reuse repeatedly. Therefore, many kinds of pro-
tease-mimics have been developed during the last decades. Such as Hegg [12] 
and co-workers designed and synthesized Cu ([9] ane N3) C12 hydrolyzed 
Gly-Gly and bovine serum albumin(BSA) for the first time under physiological 
pH conditions. The cyclized Cu(II) complex is used as a catalytic center and ru-
thenium ion as a binding unit to prepare artificial metalloproteinase, i.e. 
[Cu(II)Cyc]3(Gua)3

MeOPCD [13], which catalyzes the hydrolysis of β-globulin at pH 
7.0 and 4˚C. Molybdenum peroxide amino complex, MoO(O2)2(a-leucine)(H2O) 
[14] was synthesized for photocatalytic hydrolysis of human pepsin. However, 
these protein mimic enzymes have lower catalytic activity and poorer selectivity. 
Therefore, it is highly desirable to design a mimetic enzyme with high selectivity 
and large degrees of rate acceleration. 

Metal-organic frameworks (MOFs) are formed by self-assembly of metal ions 
or metal cluster units and organic ligand molecules, it is a porous crystalline 
material having a periodic multidimensional structure and also known as porous 
codination polymers (PCPs) or organic-inorganic hybrid materials. MOFs also 
have adjustable pore size, easy functionalization and extremely high specific 
surface area and porosity, making them suitable for catalysiss [15] [16], separa-
tion [17], gas storage [18], sensing, biomedical imaging and drug delivery and 
has attracted much attention in science and biological systems. These advantages 
of MOFs suggest that it to be a material suitable for enzyme mimics. Indeed, 
Cu-MOF [19] was synthesized for catalyzing hydrolysis of bovine serum albu-
min and casein by solvothermal method. Despite the many achievements in 
MOF development, we believe that the MOF-based catalytic field is still in the 
immature stage. Here we report that FJU-21 as protease mimetics to catalyze 
hydrolysis of bovine serum albumin (BSA).    

2. Methods 
2.1. Chemicals and Instrumentation 

All commercial chemicals were used without further purification. Cuprous 
iodide (CuI) O-xylene, Dichlorosulfoxide (SOCl2), ethanol (99.5%), NaOH, bo-
vine serum albumin (BSA) were purchased from Sigma-Aldrich. X-ray powder 
diffraction (XRD) experiments were conducted on a D/max-3B spectrometer 
with Cu Kα radiation. Scans were made in the 2θ range 3˚ - 40˚ with a scan rate 
of 10˚ min−1 (wide angle diffraction). BET surface areas and pore volumes were 
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measured through nitrogen adsorption/desorption measurements using a Mi-
cromeritics Tristar II surface area and porosity analyzer.  

2.2. Synthesis of FJU-21 

FJU-21 is a copper-based MOFs material with 5-triazole isophthalic acid as li-
gand copper as the active center of metal. SOCl2 (6 mL) and DMF (150 mL) were 
mixed and stirred at 5˚C for 24 h, slowly added with hydrazine hydrated DMF 
solution (5 mL of hydrazine hydrate, 0.1 mM), stirred at room temperature for 
48 h, washed three times with DMF and diethyl ether, and filtered to get a white 
solid. That is N, N-dimethyl-2-azidoethylamine (DMAZ). And then DMAZ (4 
g), 5-aminoisophthalic acid (3.38 g) were dissolved in o-xylene (50 mL) and 
condensed at 120˚C for 16 h to obtain a white precipitate and washed three 
times with ethanol gave a white solid, 5-triazole isophthalic acid (H2L). CuI 
(0.0191 g), H2L (0.023 g), DMF (3 mL) and H2O (2 mL) were added to the crys-
tallization flask and stirred for 10 min, and transferred to an oven at 85˚C for 24 
h. It was naturally cooled to room temperature and washed with ethanol three 
times to obtain a green needle-like solid FJU-21.  

2.3. Protease-Like Activity of FJU-21 

The effect of pH, temperature, FJU-21 concentration on the protease-like activi-
ty of FJU-21 was investigated. Add BSA solution (15 mM, 10 mL) to FJU-21 by 
gentle vortex mixing, and the peroxidase-like activity of FJU-21 was measured at 
pH 9.0, the temperature at 37˚C, 50˚C and 70˚C, and the time from 0 to 80 min. 
The FJU-21 concentration was 1.2 mM. Take out of 1 mL of reaction mixture 
periodically at a fixed shaking speed. Buffers used in this experiment were ace-
tate buffer (pH 4.0 - 6.0) and borate buffer (pH 8.0 - 10.0). The effect of pH on 
catalytic efficiency was investigated by varying the buffer complex to produce 
different pH at 50˚C. Fresh solutions were used in all tests.  

The peptide solution was separated from the solid composite by centrifuga-
tion at 10,000 rpm for 10 minutes at 4˚C. Bovine serum protein solutions with-
out added materials were taken as the control group. The degree of cleavage of 
proteins was measured by SDS-PAGE. The rate of protein cleavage was meas-
ured by monitoring the decrease in the intensity of the electrophoretic bands. 
The kinetic data were collected at various C0 (0 - 1.2 mM) at the optimum pH 
9.0 and various temperatures (50˚C, 70˚C). 

2.4. Reusability of FJU-21 

To evaluate the reusability of FJU-21, the insoluble catalyst has been recycled 
from the reaction mixture after the catalytic reaction. FJU-21 was reacted with 
BSA in boric acid buffer for 12 min. After each reaction, it was re-purified by 
ethanol and centrifuged. The re-purified FJU-21 was used for the next reaction 
and subjected to SDS-PAGE electrophoresis analysis. The recycling was con-
ducted eleven times. The catalytic activity is not less than 80% compared with 
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the first time, indicating that FJU-21 still maintains high catalytic activity and 
stability during the reaction.  

3. Results and Discussion 
3.1. The Characterization of FJU-21 

The X-ray diffraction (XRD) pattern of the as-synthesized FJU-21 is shown in 
Figure 1(a). The diffraction peaks all corresponded to the products synthesized 
in the literature [20]. The adsorption–desorption isotherms of FJU-21 (Figure 
1(b)) are of typeⅣ, the BET specific surface area of FJU-21 is 341 m2/g, the pore 
volume was 0.1 cm3·g−1 and the average pore size was 3.19 nm. All of the results 
mentioned above confirmed that FJU-21 was successfully synthesized. 

3.2. Protease-Like Activity of FJU-21 

The protease-like activity of FJU-21 was measured while varying the pH from 
6.5 to 9.0, the temperature from 37˚C to 70˚C using BSA as a substrate. While 
the buffer solution containing a protein substrate (15 μM) was shaken with 
FJU-21, the protein disappeared was observed by sodium dodecyl sulfate polya-
crylamide gel electrophoresis (SDS-PAGE) [21] [22]. When the temperature is 
37˚C, hydrolysis was very weak and the intensities of BSA bands reduced slowly 
within 80 min, which means the catalytic activity of FJU-21was very low at 37˚C. 
When the temperature was raised from 37˚C to 70˚C, the intensities of BSA 
bands reduced and a myriad of fragments appeared after 12 min, resulting in a 
significant loss in intensity of the BSA band and a concomitant smear on the 
SDS-PAGE gel. The band of BSA disappeared after 12 min, which revealed the 
enhancement of the digestion activity at 70˚C (Figure 2). Nevertheless, FJU-21 
acted as the digestion enzyme and cleaved BSA. Temperature and pH values are 
key factors influencing the digestion results. We found that pH 9.0 was suitable 
for the reaction (Figure 3). 

The proteolytic activity of FJU-21 was further examined by kinetic mea-
surements. Within the range of the FJU-21concentrations considered, typical  
 

 
Figure 1. (a) XRD patterns of FJU-21. (b) N2 adsorption/desorption isotherm pore dis-
tribution of FJU-21. 
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Figure 2. Results of SDS-PAGE performed on BSA (15 μM) incubated with and FJU-21 
in boric acid buffer (pH 9.0). M: Mark. C: control groups (BSA incubated with boric acid 
buffer). (a) BSA (15 μM) incubated with FJU-21 (1.2 mM) for 0, 10, 20, 30, 40, 50, 60, 70, 
80 min at 37˚C. (b) BSA (15 μM) incubated with FJU-21 (1.2 mM) for 5, 10, 15, 20, 25, 30 
min at 50˚C. (c) BSA (15 μM) incubated with FJU-21 (1.2 mM) for 2, 4, 6, 8, 10, 12 min at 
70˚C. Peptide solution was separated from the solid FJU-21 by centrifugation (10,000 
rpm, 10 min). The results were measured by sodium dodecyl sulfate polyacrylamide gel 
electrophoresis (SDS-PAGE). 
 

 
Figure 3. Effect of pH on the catalytic hydrolysis of BSA by 
FJU-21. 

 
Michaelis-Menten curves were observed (50˚C in Figure 4(a) and 70˚C in Fig-
ure 4(b)) and the data were analyzed by a nonlinear regression program from 
which important kinetic parameters can be extracted (Table 1). The Michaelis 
constant, Km is a characteristic value irrelevant to the concentrations of sub-
strate and enzyme, and is often associated with the affinity of the catalyst mole-
cules for the substrate [23]. The greater the Km value is, the weaker the binding 
between the enzyme and substrate. The Km value of FJU-21with BSA as the sub-
strate under the optimum conditions was about 15-fold lower than that free tryp-
sin (2.7 × 10−3 M−1), and significantly lower than artificial metalloprotease Cu(II) 
complexes in Table 1. In particular, the Kcat value of FJU-21 is 110 times higher 
than that of soluble Cu(II) oxacyclen catalysts and which is slightly higher than 
Cu-MOF, interestingly, the value of Kcat/Km is 3.72 s−1 M−1 at 50˚C and pH 9.0 for 
FJU-21, this is much higher than that for Cu(II) complexes obtained at 50˚C and  
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Figure 4. Kinetic data. The relative concentration of substrate was measured by analyzing 
the density of the electrophoretic bands. ((a), (b)) Dependence of k0 on C0 for the cleavage 
of BSA at 50˚C and 70˚C. Data are analyzed by a nonlinear regression program. 
 
Table 1. Values of kinetic parameters for the cleavage of protein substrates by different 
catalysts. 

Catalysts pH T(˚) Kcat(10−4 s−1) Km(10−3 M) Kcat/Km(s−1 M−1) Reference 

FJU-21 9.0 50 6.69 0.18 3.72 This work 

FJU-21 9.0 70 19.38 0.20 9.69 This work 

Cu-MOF 9.0 50 6.28 ± 0.39 0.28 ± 0.04 2.23 ± 0.35 [19] 

Cu-MOF 9.0 70 20.98± 0.65 0.27 ± 0.02 7.73 ± 0.68 [19] 

Cu(II)A-PS 9.5 50 8.0 0.92 0.87 [24] 

Cu(II)B-PS 9.5 50 8.7 1.2 0.73 [24] 

Cu(II)oxacyclen 9.5 50 0.19 ± 0.003 0.51 ± 0.03 0.036 ± 0.003 [25] 

Cu(II)cyclen 9.5 50 N/A N/A 0.0005 [25] 

Cu(II)C 9.5 50 3.89 ± 0.56 0.11 ± 0.03 3.61 ± 0.83 [26] 

Cu(II)D 9.5 50 2.77 ± 0.277 0.52 ± 0.1 0.56 ± 0.11 [26] 

Cu(II)E 9.5 50 1.89 ± 0.17 0.17 ± 0.03 1.14 ± 0.19 [26] 

Cu(II)H 9.5 50 0.42 ± 0.06 0.14 ± 0.04 0.31 ± 0.083 [26] 

Cu(II)I 9.5 50 0.47 ± 0.06 0.53 ± 0.16 0.09 ± 0.024 [18] 

 
pH 9.5, suggesting that FJU-21 has a higher affinity for BSA than trypsin and 
most of the artificial metalloprotease Cu(II) complexes. 

3.3. Reusability of FJU-21 

As a novel mimic enzyme, since FJU-21 can be separated from the hydrolysate 
and used repeatedly, it could also be used as an effective heterogeneous proteo-
lytic catalyst, which gives rise to the most prominent advantages. As shown in 
Figure 5, even after eleven times use, catalytic activity displayed no significant 
decrease and at least 80% of the original activity could be maintained. It could be 
concluded that FJU-21 exhibited both excellent catalytic ability and stability. 
Therefore, a pleasing prospect is that such artificial protease is safe for mass 
production in industrial applications. 
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Figure 5. Reusable experiments of FJU-21 hydrolyzing activity. BSA 
(15 μM) incubated with FJU-21 (1.2 mM) at pH 9.0 and 70˚C for 12 
min. FJU-21 was recollected by centrifugation and shaken in water for 
5 min. Then the catalyst was washed with ethanol three times. The 
solvent was removed under vacuum at 85˚C for 3 h. The recycling was 
conducted eleven times. 

4. Conclusion 

FJU-21 has excellent hydrolysis intrinsic protease-like activity, catalyzing the 
proteins (BSA) and exhibited surprisingly high catalytic activity over a wide 
temperature range, event at 37˚C. It also exhibited good stability during hydro-
lyzing reaction and could be reused at least eleven times without losing a signifi-
cant amount of its activity. Kinetic analysis indicates that the activity of FJU-21 
was consistent with the typical Michaelis-Menten kinetics, the Km value of 
FJU-21with BSA as the substrate under the optimum conditions was about 
15-fold lower than that free trypsin (2.7 × 10−3 M−1), and significantly lower than 
artificial metalloprotease Cu(II) complexes, indicating that FJU-21 is superior to 
trypsin and most of other peroxidase mimetics under the same conditions. 
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