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Abstract 
Leuprorelin® (LEP) is an FDA drug for breast cancer and prostate cancer 
treatment. There are several reported adverse effects such as transient hyper-
tension, excessive salivation, and increased dysuria during treatment with 
LEP. In this study, the efficacy and toxicity of LEP were modified by using a 
drug delivery system to adjust the physicochemical properties. In this regard, 
Leuprorelin® conjugates of triphenylmethanol derivatives (TPMs) were syn-
thesized as prodrugs. Comparative antiproliferative assays showed that 
LEP-TPMs conjugates had significantly higher antiproliferative activities than 
the corresponding non-covalent physical mixtures of the TPMs and LEP 
against human invasive ductal carcinoma (BT549), human prostate carci-
noma (PC3), human lung cancer (A549) and mouse pre-adipocytes (3T3-L1) 
cells. 
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1. Introduction 

Leuprorelin® (LEP) is a synthetic analogue of the gonadotropin-releasing hor-
mone (GnRH), which was first approved by the FDA in 1985 to treat a range of 
sex hormone-related disorders such as precocious puberty, endometriosis, breast 
cancer and prostate cancer. The structure of LEP consists of nine amino acids 
(Pyr-His-Trp-Ser-Tyr-D-Leu-Leu-Arg-Pro-NHEt). 

Initially, LEP stimulates the pituitary secretion of gonadotropins luteinizing 
hormone (LH) and follicle stimulating hormone (FSH). However, prolonged 
stimulation (constant concentration of LEP in the blood) of the pituitary gland 
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causes insensitivity to the action of GnRH. This reduces the level of gonadotro-
pin in the blood, resulting in decreased levels of sex hormones to post-castration 
or menopausal levels. These effects are reversible. In addition to the usual side 
effects of the GnRH agonists, other reported adverse effects include transient 
hypertension, dry mouth, excessive salivation, paraesthesia, and increased dysu-
ria [1]. The direct antiproliferative activity of LEP on cancer cells and improving 
its delivery have not been investigated. 

The efficacy and toxicity of anticancer drugs can be modified by using drug 
delivery systems and adjusting the physicochemical properties (such as lipophi-
licity, cellular uptake, and prolonging activity) through chemical conjugation 
with various chemical moieties. The prodrug strategy is a drug delivery system 
through which chemical conjugation with the parent drug [2] [3], has been 
widely used in the delivery of anticancer drugs such as Leuprorelin® and Dox-
orubicin® [4] [5]. For example, several conjugation methods have been used to 
improve the delivery of Doxorubicin®, including using gold nanoparticles [6], 
gold nanospheres [7], liposomes [8], peptides [9]-[14], and dendrimers [15]. 
However, the antiproliferative activity of LEP and its conjugation with agents 
who have optimal lipophilicity have not been previously reported. Herein, we 
investigated the anticancer activity and the development of prodrug conjugates 
of LEP and polyphenols to enhance the delivery of LEP. 

Polyphenols are naturally occurring compounds found largely in fruits, vege-
tables, cereals, and beverages. Fruits like grapes, apples, pears, cherries, and ber-
ries contain up to 200 - 300 mg of polyphenols per 100 grams fresh weight [16] 
[17] [18]. In the last decade, there has been increased interest in the potential 
health benefits of dietary plant polyphenols as antioxidants. The effect of poly-
phenols on human cancer cell lines is most often protective and induces a reduc-
tion in the number of tumors or the growth rate of tumors. These effects have 
been observed at various sites including the mouth, stomach, duodenum, colon, 
liver, lungs, mammary glands and skin. Many polyphenols, such as quercetin, 
catechins, isoflavones, lignans, flavanones, ellagic acid, red wine polyphenols, 
resveratrol, and curcumin have been tested; all of them showed protective effects 
in some models although their mechanisms of action were found to be different 
[19] [20]. Polyphenols influence the metabolism of pro-carcinogens by mod-
ulating the expression of cytochrome P450 enzymes involved in their activation 
of carcinogens [21] [22]. 

To take advantage of the anticancer properties of polyphenolic antioxidants, 
several polyphenolic derivatives were chosen for conjugation with LEP. Dode-
canedioic acid was selected as a lipophilic linker to attach LEP to polyphenolic 
derivatives. In this study, we will first report the synthesis of the antioxidant tri-
phenylmethanol (TPMs) derivatives of LEP through the covalent conjugation 
with dodecanedioic acid as the linker. Second, we will report the evaluation of 
their in vitro cell antiproliferative activities in multiple cell lines. 

In order to study cell antiproliferative activities of LEP and LEP-TPM conju-
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gates compared to the corresponding physical mixtures, we selected three cancer 
cell lines: 1) human invasive ductal carcinoma (BT549); 2) human prostate car-
cinoma (PC3) and 3) human lung cancer (A549). Obesity is a serious problem 
which heightens the risk of several chronic illnesses including cancer develop-
ment [23] [24] [25] [26]. It has been estimated that about 20% of all cancers are 
caused by excess weight [27]. In addition to studying cancer cell lines, we also 
studied the anti-obesity effect of our synthesized compounds in obese mouse 
pre-adipocyte fibroblast cells 3T3-L1 cells. 

2. Experimental 
2.1. Preparation of TPMs 1a-e 

The TPMs were synthesized using a modified method based on procedures identi-
fied in the literature [28] [29] (Figure 1). Accordingly, 1,3,5-trioxane (15 mmole) 
was added to anisole, 2-fluoroanisole, 2-methylanisole, 1,2-dimethoxybenzene or 
methyl 2-methoxybenzoate (100 mmole) in 10 mL glacial acetic acid. The mix-
ture was heated to 90˚C - 95˚C, then 1 mL of sulfuric acid: glacial acetic acid (1:5, 
v/v) was added to the solution. The mixture was stirred for 5 hours at 90˚C - 95˚C. 
The reaction mixture was then cooled to 0˚C using an ice bath and a homogenous 
solution of sodium nitrite (1.0 g, 15 mmole) and anisole, 2-fluoroanisole, 
2-methylanisole, 1,2-dimethoxybenzene or methyl 2-methoxybenzoate (15 
mmole) in 10 mL concentrated sulfuric acid was added to the reaction mixture. 
The ice bath was removed and stirring continued at room temperature for an 
additional 24 hours. The mixture was then poured into crushed ice (100 g) while 
stirring. The precipitate was filtered off and dried under vacuum and further pu-
rified on C18 column and a gradient combination of hexanes/ethyl acetate as sol-
vent (increasing the percentage of ethyl acetate from 0% to 60% during a course 
of 55 minutes) using a Teledyne CombiFlash® Rf-200 chromatography machine 
with the gradient system set at a constant flow rate of 25 ml/min to yield pure 
products in 61% - 87% yield. 

Tris(4-methoxyphenyl)methanol (1a), (3.50 g, 67%), MS (ESI-TOF) (m/z) for 
C22H23O4: calcd., 351.2, found 351.2 [M+H]+;  
tris(3-fluoro-4-methoxyphenyl)methanol (1b), (3.65 g, 61%), MS (ESI-TOF)  
(m/z) for C22H20F3O4: calcd. 405.1, found 405.1 [M+H]+;  
tris(3-methyl-4-methoxyphenyl)methanol (1c), (4.77 g, 81%), MS (ESI-TOF) 
(m/z) for C25H29O4calcd. 393.2, found 393.2 [M+H]+;  
tris(3,4-dimethoxyphenyl)methanol (1d), (5.75 g, 87%), MS (ESI-TOF) (m/z) for 
C25H29O7: calcd, 441.2, found 441.3 [M+H]+;  
trimethyl 5, 5', 5''-(hydroxymethanetriyl)tris(2-methoxybenzoate) (1e), (5.57 g, 
77%), MS (ESI-TOF) (m/z) for C28H29O10: calcd. 525.2, found 525.2 [M+H]+. 

2.2. Preparation of Tris(2-(Hydroxymethyl)Phenol) Conjugates of 
LEP 2a-e 

Tris(4-methoxyphenyl)methanol derivatives 1a-e (0.05 mmol), LEP acetate (0.05 
mmol), dodecanedioic acid, 11.5 mg, 0.05 mmol) and HBTU (19 mg, 0.05  
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Figure 1. Preparation of triphenylmethanol (TPMs) derivatives 1a-e. 

 
mmol) were dissolved in dry NMP (3 mL). N,N'-diisopropyl carbodiimide (DIC, 
8 µL, 0.05 mmol) and N,N-Diisopropylethylamine (DIPEA, 21 µL, 0.12 mmol) 
were added to the reaction mixture. The mixture was stirred at room tempera-
ture for 24 hours. Afterwards, the solvent was evaporated and dried under va-
cuum. The final product was purified on a C18 column and hexanes/ethyl acetate 
as solvents (increasing the percentage of ethyl acetate from 0% to 75% during a 
course of 60 minutes) using a TeledyneCombiFlash® Rf-200 chromatography 
machine. The gradient system was set at a constant flow rate of 25 ml/min to 
yield LEP-TPMs conjugates 2a-e (Figure 2). LEP-TPMs conjugate (2a), (63 mg, 
68%), MS (ESI-TOF) (m/z) for C93H124N16O18: calcd, 1753.9358, found 1753.9337 
[M+H]+; LEP-TPMs conjugate (2b), (63 mg, 69%), MS (ESI-TOF) (m/z) for 
C93H122F3N16O18: calcd, 1807.9075, found 1807.9087 [M+H]+; LEP-TPMs conju-
gate (2c), (63 mg, 63%), MS (ESI-TOF) (m/z) for C96H131N16O18: calcd, 
1795.9827, found 1795.9821 [M+H]+; LEP-TPMs conjugate (2d), (71 mg, 76%), 
MS (ESI-TOF) (m/z) for C96H131N16O21: calcd, 1843.9675, found 1843.9667 
[M+H]+; LEP-TPMs conjugate (2e), (78 mg, 83%), MS (ESI-TOF) (m/z) for 
C99H131N16O24: calcd, 1927.9522, found 1927.9533 [M+H]+. 

2.3. Cell Culture 

Human invasive ductal breast carcinoma (BT549), human prostate carcinoma 
(PC3), human lung cancer (A549) and mouse pre-adipocytes (3T3-L1) cell lines 
were obtained from American Type Culture Collection. The cells were grown on 
75 cm2 cell culture flasks in media consisting of 89% Dulbecco’s Modified Eagle’s 
Medium (DMEM) (GIBCO, Grand Island, NY) for pre adipocytes cell line and 
supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin 
solution (10,000 units of penicillin and 10 mg of streptomycin in 0.9 % NaCl) in 
a humidified atmosphere of 5% CO2, 95% air at 37˚C. 

2.4. Antiproliferative Assay 

Antiproliferative activities of synthesized LEP-TPMs 2a-e and physical mixtures 
of TPMs 1a-e + LEP were evaluated in BT549, PC3, A549 and 3T3-L1 cells and 
the results were compared with that of LEP alone. The assay was carried out us-
ing Cell Titer 96 aqueous one solution cell proliferation assay kit (Promega,  
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Figure 2. Synthesis of triphenylmethanol conjugates [30] of LEP 2a-e. 

 
USA). Briefly upon reaching about 75% - 80% confluency, the cells were sus-
pended in 10,000 cells/mL while 100 µL of the cell suspensions were placed in 
each well of the 96 well culture plate. After seeding for 24 hours, the cells were 
treated with 5 - 100 µM of compounds 2a-e in 2% DMSO in triplicate. LEP (5 - 
100 µM) was used as the positive control. For the physical mixtures, an appro-
priate volume of LEP stock solution was mixed with an appropriate volume of 
an aqueous solution of compounds 1a-e physically to obtain a final concentra-
tion of TPMs and LEP (5 - 100 μM each). The mixtures were vigorously mixed 
and vortexed until the solutions became homogeneous. Subsequently, the mix-
tures were incubated for 30 min at 37˚C before adding to the cells. Incubation 
was carried out at 37˚C in an incubator supplied with 5% CO2 for 72 h. At the 
end of the sample exposure period, 20 μL Cell Titer 96 aqueous solution was 
added. The plate was returned to the incubator for 1 hour in a humidified at-
mosphere at 37˚C. The absorbance of the formazan product was measured at 
490 nm using a microplate reader. The percentage of cell survival was calculated 
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as the OD value of cells treated with the test compound-OD value of culture me-
dium/(OD value of control cells-OD value of culture medium) × 100%. 

2.5. Flow Cytometry 

Human prostate carcinoma (PC3) was treated with 25 μM of LEP, 2b, 2c, and 2e 
for 1 h followed by 24 h incubation in drug-free medium. Cells were fixed in 
ice-cold ethanol: PBS (70:30, v/v) for 2 h at 4˚C, further resuspended in PBS with 
100 µg/mL RNase and 40 µg/mL propidium iodide, and incubated at 37˚C for 30 
min. The DNA content (for 10,000 cells) was analyzed using a FACS instrument 
equipped with Flowjo software (Flowjo LLC, USA). The analyses of cell cycle 
distribution were performed in triplicate (n = 2 plates per experiment) for the 
sample treatment. The coefficient of variation, according to Flowjo acquisition 
sotware, was always less than 5%. 

3. Results and Discussion 
3.1. Chemistry 

LEP, DMSO and other chemicals and reagents were purchased from Fisher 
Scientific or Sigma-Aldrich Chemical Co. All coupling reactions (Figure 2) were 
carried out in Bio-Rad polypropylene columns by shaking and mixing using a 
Glass Col® small tube rotator in dry conditions at room temperature. TPMs 1a-e 
which are the mimics of natural poly phenolic antioxidants, were synthesized in 
moderate yield (Figure 1) for covalent attachment to LEP via a hydrophobic 
linker, dodecanedioic acid. Tris(2-(hydroxymethyl)phenol) conjugates of LEP 
(2a-e) with optimal hydrophobicity were synthesized to carry LEP into the cells 
(Figure 2). All products were purified (≤95%) by a flash chromatography system 
(Teledyne CombiFlash® Rf-200) and the structures of all the final compounds 
were confirmed by ESI/TOF mass spectrometry. Since LEP was not protected, a 
mixture of two phenolic and alcoholic esters was expected [30]. 

3.2. Antiproliferative Activity of LEP-TPMs 2a-e 

LEP, TPMs 1a-e and LEP-TPMs 2a-e did not show significant toxicity in 
BT549, PC3, A549 and 3T3-L1 cells at a concentration of 100 μM after different 
incubation times up to 72 h. Thus, non-cytotoxic concentrations of 5 - 100 μM 
were selected for cell-based studies of LEP-TPMs 2a-e and the physical mixture 
of TPMs 1a-e + LEP. The activity of compounds on the cell proliferation of the 
cancer cells, BT549, PC3, A549 and 3T3-L1 was investigated for up to 72 hours 
at the concentration of 5-100 μM. The activity of synthesized compounds 2a-e 
was evaluated in a comparative study with the physical mixtures of (TPMs 1a-e 
+ LEP) and LEP alone (Figure 3). 

LEP-TPMs 2a-e exhibited higher antiproliferative activity than LEP alone in 
all cells lines with the highest activity observed 2e. The effect of compounds was 
found to be time-dependent (data were not shown). The cell proliferation inhibi-
tory activity of compounds enhanced at a longer incubation period of compounds 
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Figure 3. Inhibition of BT-549, PC3, A549 and s3T3-L1 cells by compounds (100 µM) af-
ter 24 h incubation. The results are shown as the percentage of the control DMSO that 
has no compound (set at 100%). All the experiments were performed in triplicate (±SD). 

 
with cells presumably because of the higher cellular uptake. The derivatives 2a-e 
inhibited the cell proliferation of BT549 (22% - 73%), PC3 (32% - 78%), A549 
(28% - 69%) and 3T3-L1 (38% - 72%) at a concentration of 5 - 100 μM after 24 
h. These data suggest that covalent conjugation of LEP-TPMs provided a more 
effective transporter for LEP. The antiproliferative activity of LEP-TPMs 2a-e 
was in the order of PC3 > BT549 > 3T3-L1 > A549. In general, the physical 
mixtures of TPMs 1a-e + LEP showed less antiproliferative activity after 24 
hours against BT549 (7% - 23%), PC3 (21% - 48%), A549 (21% - 43%) and 
3T3-L1 (26% - 42%) in comparison to covalent LEP-TPMs 2a-e. LEP exhibited 
similar antiproliferative activity in comparison to the physical mixture against 
tested cell lines after 24 h of incubation. 

Cell viability was then determined by measuring the fluorescence intensity of 
the product using a microplate spectrophotometer. The percentage of cell sur-
vival was calculated as OD value of cells treated with the test mixture of com-
pounds as OD value of culture medium/(OD value of control cells-OD value of 
culture medium) × 100%. These data indicate that conjugation of the LEP with 
TPMs in compounds 2a-e significantly improved the antiproliferative activity in 
tested cell lines when compared with LEP and the corresponding physical mix-
tures. Furthermore, the compounds were also potent against 3T3-L1 cells. The 
mechanism of higher antiproliferative activity of these ester conjugates was pre-
sumably because of the higher cellular uptake of the TPM analogs and/or LEP 
since LEP alone and the corresponding physical mixture showed significantly 
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less antiproliferative activity than the corresponding LEP-TPM conjugates. 

3.3. Flow Cytometry 

The analysis showed 3.1 - 3.7 folds higher cellular uptake of LEP-TPMs than 
LEP alone and the physical mixtures in PC3 cells after 24 h incubation. The 
conjugate exhibited nuclear localization and retention after 24 hours, and un-
derwent intracellular hydrolysis to LEP in PC3 cells. 

4. Conclusion 

In summary, LEP-TPMs derivatives were synthesized as prodrugs, evaluated for 
their activities against three cancer cell lines and one obese cell line and com-
pared with the corresponding physical mixtures. The conjugation of LEP with a 
specific TPMs derivative improved the antiproliferative activity compared to the 
corresponding physical mixtures and LEP in all tested cell lines suggesting being 
a potential prodrug for delivery of the drug. 
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Abbreviations 

BT549, human invasive ductal breast carcinoma cell line;  
PC3, human prostate carcinoma cell line;  
A549, human lung cancer cell line;  
3T3-L1, mouse pre-adipocytes cell line;  
LEP, Leuprorelin;  
TPMs, Triphenylmethanols; 
DCM, dichloromethane;  
NMP, (N-Methyl-2-pyrrolidone);  
HBTU, 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate;  
DIC, N, N'-Diisopropylcarbodiimide;  
DIPEA, N, N-Diisopropylethylamine;  
GnRH, gonadotropin-releasing hormone;  
FSH, Follicle-stimulating hormone;  
LH, Luteinizing hormone;  
LHRH, luteinizing hormone-releasing hormone;  
FACS, Fluorescence Activated Cell Sorter. 
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