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Abstract 
To elucidate the social effects of an influenza outbreak, the World Health 
Organization recommends a concept for excess mortality attributable to an 
influenza outbreak. However, because several models exist to estimate excess 
mortality, we would like to ascertain the most appropriate of three models: 
the Center for Disease Control and Prevention (CDC) model, the seasonal 
autoregressive integrated moving average (SARIMA) model, and the National 
Institution of Infectious Diseases (NIID) model. Excess mortality is defined as 
the difference between the actual number of deaths and the epidemiological 
threshold. The epidemiological threshold is defined as upper bound of 95% 
confidence interval (CI) of the baseline. The actual number of deaths might 
be less than the baseline, which implies inconsistent with the definition of 
baseline. Especially, actual deaths fewer than the lower bound of 95% CI of 
baseline suggest the inappropriateness of a model of excess mortality. Among 
123 months during epidemic periods, the NIID model found excess mortality 
in 56 months, CDC model in 31 months, and SARIMA model in 35 months. 
Conversely, the NIID model found negative excess mortality in only 2 months, 
but the CDC model and SARIMA model found it respectively for 10 and 33 
months. Negative excess mortality represents the logical inconsistency of the 
model. Therefore, NIID model might be the best among the three models 
considered. 
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1. Introduction 

Because published official statistics of causes of death are based only on the most 
fundamental cause of death, the social impact of influenza cannot be estimated 
from them. Influenza is classified sometimes as a cause leading directly to death 
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and other causes are classified the most fundamental cause of death. Actually, 
influenza outbreaks are well known to induce death by stroke or heart attack [1] 
[2] [3] [4] [5]. Given these circumstances, to recognize the social impact of an 
influenza outbreak, the World Health Organization (WHO) recommends a concept 
for excess mortality caused by an influenza outbreak [6]. Hereinafter, “excess 
mortality” is defined as that caused by influenza.  

Actually, it should be impossible to laboratory test for all death. Alternatively, 
estimation of influenza associated death from their last symptoms leads to dras-
tic underestimation. Instead of counting influenza associated death, “excess 
mortality” was estimated using a statistical model with consideration of the pat-
tern of fluctuation of non influenza associated death. In fact, WHO used Serfling 
model [7]. Furthermore, it had been adopted by the Center for Disease Control 
and Prevention (CDC) in the USA after modification. However, because the Ser-
fling model excludes past epidemic seasons, the possibility exists that the num-
ber of excess mortality might be underestimated when the influenza epidemic 
was relatively small [8]. Moreover, the current CDC model uses only the latest 
five years; it might not use sufficient information. On the other hand, Choi and 
Thacker [8] adopted the seasonal autoregressive integrated moving average 
(SARIMA) model to estimate influenza and pneumonia death using data in the 
“non-epidemic seasons” when no influenza outbreak occurred, especially in 
summer. They defined “non-epidemic seasons” from widespread reporting to 
CDC from the states and information of influenza virus isolation. However, it 
sounds artificial. Moreover, they defined the number of deaths caused by in-
fluenza in epidemic season if influenza did not outbreak as the reverse pattern in 
“non-epidemic” seasons. Such a definition is apparently too rough and probably 
leads to underestimate excess mortality. The Serfling model also shared those 
shortcomings in SARIMA model. In Japan, some studies proposed to estimate 
excess mortality had been as a simple average so far [9] [10] [11]. Therefore, they 
were not precise estimations. 

We developed the National Institution of Infectious Diseases (NIID) model, 
which overcomes some of the shortcomings described above such as necessity of 
“non-epidemic season.” It does not presume a baseline as reverse pattern in 
“non-epidemic season.” It is therefore a more appropriate model. Moreover, we 
have applied the NIID model to the timely situation awareness of influenza 
associated death project by Ministry of Health, Labour and Welfare (MHLW) 
and have published the results in Japanese at  
https://www.niid.go.jp/niid/ja/flu-m/2112-idsc/jinsoku/131-flu-jinsoku.html 
since 2000.  

Actually, the NIID model is a kind of Stochastic Frontier Estimation. We ex-
plained its theoretical framework and compared it to other models including the 
CDC model [7], SARIMA Model [8], and the Takahashi model [9] [10] [11]. The 
objective of this study is to compare the NIID model with other models based on 
the same data. Even though the NIID model had been used as a procedure for 
official excess mortality in Japan for almost twenty years, it has not been com-
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pared with other models. In fact, among models other than the NIID model, 
comparison using the same data and under the same condition has never been 
reported.  

2. Materials and Methods 
2.1. Data Source 

The mortality data used for this study was all caused death in Vital Statistics 
from January 1987 to March 2017, although CDC model, SARIMA model, and 
Takahashi model were applied for other types of data in the original research [7] 
[8] [9] [10] [11] so as to compare the model performance. It was monthly data 
because weekly data of mortality is not available in Japan. Also, it did not in-
clude virological data depending on circumstances in Japan. 

Aside from the NIID model, a non-epidemic period and an epidemic period 
must be defined ex ante for the three models. The definitions of epidemic period 
mutually differed in their original research [7] [8] [9] [10] [11]. Therefore, we 
presume it as December through March for all years. 

2.2. Concept Framework 

Excess mortality is defined as the difference between the actual number of deaths 
and the epidemiological threshold. The epidemiological threshold is defined as 
the upper bound of 95% confidence interval (CI) of the baseline. The baseline is 
defined as the number of deaths that are likely to have occurred if an influenza 
outbreak had not happened. Therefore, if the actual deaths were fewer than the 
epidemiological threshold, then excess mortality was not observed. 

Sometimes the actual number of deaths might be less than the baseline. The 
baseline was defined as the number of deaths occurring without an influenza 
outbreak. Therefore, it is inconsistent with the definition of the baseline. Estima-
tion should include measurement error. Therefore, occurrence of fewer death 
than in the baseline can happen. However, if the actual number of deaths is less 
than the lower bound of 95% CI, then it must be designated it as negative excess 
mortality, which reflects an unusually good health condition of the population. 
Such a shock was not defined in the conceptual framework of excess mortality. 
Actually, such situations are undesirable because they imply inappropriate use of 
the model: overestimating the baseline and underestimating excess mortality. 
Therefore, the frequency and size of negative excess mortality is expected to be 
an indicator of the estimative capability of the model for excess mortality. We 
adopt it as the evaluation axis for inter-model comparison. 

2.3. Statistical Procedures 
2.3.1. NIID Model 
Our NIID model, the Stochastic Frontier Estimation [12]-[18], is presented as 

2log t t t i it tD T T Mα β γ η ε= + + + Σ +                 (1) 
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and 

t t tε ν ω= + ,                          (2) 

where Dt represents all causes of death in month/year t, Tt denotes the linear 
time trend, and Mit is the dummy variable for a month, which is one if t is the 
i-th month and otherwise zero. Moreover, νt and ωt are stochastic variables as νt 
~N(0, μ2) and ωt ~N(0, ξ2) and are mutually independent. Although νt is stochas-
tic disturbances, ωt represents non-negative death caused by influenza. These 
disturbance terms in this model are parameterized by two parameters: ξ/μ and 
(μ2 + ξ2)0.5. If the null hypothesis ξ/μ = 0 is not rejected, then the Stochastic Fron-
tier Estimation model is inappropriate. 

2.3.2. CDC Model 
The CDC model was defined originally for weekly data in the non-epidemic 
season as 

2log cos 2 52 sin 2 52t t t t tD T T Tα β π γ π η ε= + + + + .          (3) 

However, we can arrange it for monthly data for comparison as 

log cos 2 12 sin 2 12t t t t tD T T Tα β π γ π η ε= + + + + .          (4) 

2.3.3. SARIMA Model 
The SARIMA (k, l, m, n) model is represented in non-epidemic season as shown 
below. 

( )( )( )

( )( )
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1 1 1 log
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m n t
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          (5) 

where L is a lag operator. Also, 1 k
kL Lϕ ϕ− − −１  denotes AR(k) part, 1-L signi-

fies integration, 1 m
mL Lθ θ− − −１  expresses MA(m) part, 12 121 l

lL Lγ γ− − −１  
stands for seasonality AR(l) part and 12 121 n

nL Lδ δ− − −１  represents the sea-
sonality MA(n) part. The number of lags in each part (k, l, m, n) should be se-
lected using the Akaike Information Criterion which minimize −2log likehood + 
2 (number of parameters). 

2.3.4. Takahashi Model 
The Takahashi model assumes a baseline as geometric average for each month in 
the non-epidemic season.  

2.4. Comparison among Models 

To model performance, we apply the NIID, CDC, SARIMA, and Takahashi 
models to all causality data in Japan from January 1987 through May 2017. For 
the CDC, SARIMA and Takahashi model, we assumed the non-epidemic season 
as April-November in each year. As described above, we adopted the number of 
negative excess mortality, which is defined as the number of months during 
which the actual number of deaths is lower than the lower bound of 95% CI of 
the baseline in epidemic season. 
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2.5. Ethical Consideration 

We used only published data. No area of ethical concern is applicable to this 
study. 

3. Results 

The Takahashi model required a non-epidemic season in the same month, for 
example, in January. Therefore, we declined this model to compare other models 
under the current assumption of the non-epidemic season.  

3.1. Estimation Results Obtained Using the NIID Model, CDC Model,  
and SARIMA Model 

Table 1 presents the estimation result obtained using the NIID model. The null 
hypothesis of ξ/μ = 0 was rejected. Therefore, the Stochastic Frontier model was 
appropriate. The p-values of all coefficients except for dummy variable for March 
were less than 0.004 and this were significant. 

Table 2 shows the CDC model. Table 3 shows AIC in combination of and the 
number of parameter of AR, MA, SAR and SMA parts, (k, l, m, n) in Equation 
(4) for SARIMA model. Based on AIC, we selected the (2, 1, 1, 2) model. Table 4 
presents the estimation result obtained using the SARIMA (2, 1, 1, 2) model. The 
p-values of all coefficients of CDC model and SARIMA model were less than 
0.004 and this were significant. 

 
Table 1. Estimation result of NIID model. 

Explanatory variables Estimated coefficients p-value 

Constant 11.1257 <0.0004 

Time trend 0.001389 <0.0004 

Time trend2 0.00000058 <0.0004 

January 0.069472 <0.0004 

February −0.057158 <0.0004 

March −0.012998 0.160 

April −0.102083 <0.0004 

May −0.122798 <0.0004 

June −0.210181 <0.0004 

July −0.177392 <0.0004 

August −0.173152 <0.0004 

September −0.210230 <0.0004 

October −0.120948 <0.0004 

November −0.089646 <0.0004 

ξ/μ 2.32648 <0.0004 

(μ2 + ξ2)0.5 0.047928 <0.0004 

Note: The number of observations was 365. Log likelihood was 822.690. ξ2 denotes the variance of the 
non-negative disturbance term. μ2 is the variance of the disturbance term. 
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Table 2. Estimation results obtained using the CDC model. 

Explanatory variables Estimated coefficients p-value 

Constant 11.0403 <0.0004 

Cosine 0.073132 <0.0004 

Sine 0.068068 <0.0004 

Time trend 0.001591 <0.0004 

Note: The number of observations was 273. Log likelihood was −515.693. The coefficient of determination 
was 0.959138. 

 
Table 3. Model selection in SARIMA model. 

Number of parameters 
AIC 

AR MA SAR SMA 

1 0 0 0 6796.8 

0 1 0 0 6765.94 

0 0 1 0 6561.86 

0 0 0 1 6562.24 

1 0 1 0 6346.46 

0 1 1 0 6524.44 

0 0 2 9 6535.94 

0 0 1 1 6549.14 

2 0 1 0 6320.6 

1 1 1 9 6286.42 

1 0 2 0 6318.1 

1 0 1 1 6279.92 

2 0 1 1 6252.74 

1 1 1 1 6204.94 

1 0 2 1 6353.82 

1 0 1 2 6222.52 

2 1 1 1 6185.64 

1 2 1 1 6187.4 

1 1 2 1 6206.26 

1 1 1 2 6201.12 

3 1 1 1 6187.56 

2 2 1 1 6187.56 

2 1 2 1 6186.58 

2 1 1 2 6184.1 

3 1 1 2 6188.38 

2 2 1 2 6188.88 

2 1 2 2 6199.46 

2 1 1 3 6207.86 

Note: The AR column shows the number of parameters in the autoregressive part, k, in Equation (3). The 
MA column shows the moving average part, m. The SAR column shows the seasonal autoregressive part, l. 
The SMA column shows the moving average part, n. AIC is defined as −2 × log of likelihood +2 Number of 
parameters. Finally, we selected (2, 1, 1, 2) model. 
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Table 4. Estimation result of SARIMA model. 

Explanatory variables Estimated coefficients p-value 

φ1 1.40103 <0.0004 

φ1 −0.401645 <0.0004 

θ1 0.849380 <0.0004 

γ1 0.708207 <0.0004 

δ1 1.67546 <0.0004 

δ2 −0.756086 <0.0004 

Note: The number of observations was 273. Log likelihood was −3086.05. The coefficient of determination 
was 0.586015. Also, φs are parameters of autoregressive (AR) part, θ is the moving average (MA) part, γ is 
the seasonal autoregressive (SAR) part, and δs is the seasonal moving average (SMA) part. 

3.2. Comparison among Three Models 

Table 5 presents the number of months during which excess mortality was ob-
served and when the negative excess mortality was observed during epidemic 
season in the current assumptions in the three models. Among 123 months, the 
NIID model found excess mortality in 56 months, the CDC model in 31 months, 
and the SARIMA model in 35 months. Conversely, the NIID model found nega-
tive excess mortality in only 2 months, but the CDC model and SARIMA model 
found it respectively in 10 months and 33 months. 

Figure 1 depicts excess mortality and negative excess mortality during the 
epidemic season under the current assumption. Negative excess mortality in the 
NIID model was observed only in the earlier two years. The highest negative 
excess mortality in the SARIMA model was higher than CDC model. At some 
period, when the NIID model found excess mortality, the SARIMA model and 
CDC model found negative excess mortality. The correlation among the esti-
mated excess mortality based on three models was higher than 0.8 and signifi-
cant. 

4. Discussion 

This paper presented NIID model which applies the situation in Japan, with re-
sults published officially for almost twenty years. Results demonstrate that little 
negative excess mortality existed in NIID model, but the other two models were 
adversely affected by several instances of negative excess mortality. Negative 
excess mortality demonstrates the logical inconsistency of estimation model. 
Therefore, the NIID model might be the best model among the three models 
considered. In other words, the baseline is apparently overestimated, i.e. excess 
mortality seems to underestimate in the other two models. 

One benefit of the NIID model was that the arbitrary setting of non-epidemic 
season is unnecessary, unlike other models. Therefore, we can use all data. In the 
other models, during the ex post epidemic period, the estimation result is obtained 
when excess mortality is observed does not necessarily match the ex ante epidemic 
period as arbitrarily set before estimation. That is apparently an inconsistency in  
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Table 5. Number of months during which excess mortality observed and during which 
negative excess mortality was observed in the three models among December through 
March in each season. 

 NIID model CDC model SARIMA model 

No. months excess mortality 56 31 32 

No. months negative excess mortality 2 10 33 

Note: The number of months under consideration was 123. 

 

 
Figure 1. Excess mortality and the negative excess mortality during epidemic season. 
Note: The line shows excess mortality and negative excess mortality by the NIID model. 
The black bar shows the CDC model. The gray bar represents the SARIMA model. 
Epidemic season is defined as December through March of the following year. Bars or 
lines higher than zero signify excess mortality. Values lower than zero represent negative 
excess mortality. If the actual number of deaths is less than the upper threshold and high-
er than the lower threshold, then both excess mortality and negative excess mortality are 
expected to be zero. 
 
estimation model. Conversely, the NIID model can avoid such internal incon-
sistency. 

Finally, one must recall that comparison among four models was conducted 
using the same data: all causes of death. However, the original research of the CDC 
and SARIMA model used other data for mortality. Moreover, those models includ-
ing the Takahashi model adopted their unique definition of the non-epidemic pe-
riod. Therefore, precise comparison including the type of data and definition of 
non-epidemic period was impossible. To compare those three models, we used 
common monthly data of mortality and common definition of non-epidemic 
season for CDC model and SARIMA model in the present study. Therefore, it is 
noteworthy that we did not compare the benefits and shortcomings of the four 
original models. 

The present study was constrained by some limitations. First, we compare 
three models using Japanese monthly data and under the same simple assump-
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tion of non-epidemic season, even though the original CDC model and SARIMA 
model used weekly data and a flexible definition of non-epidemic season. If we 
compare the four models using weekly data and/or with original flexible defini-
tion of non-epidemic season might be different from the present study. Howev-
er, in Japan, weekly mortality data is not available in general. It remains as chal-
lenge for future research.  

Second, we do not compare the Takahashi model to the other three models 
because of simple assumption of non-epidemic season. The Takahashi model 
might be compared to other three models if one were to adopt the original defi-
nition of non-epidemic season in the Takahashi model. However, in fact in the 
last ten years, influenza activity in January or February were quite high and thus 
those period should be included to epidemic season, the Takahashi model might 
not work in this period.    

Thirdly, although we used only calendar information, recent studies tend to 
examine virological data specifically [19]-[24]. Unfortunately, the positive rate 
by semi-types of influenza over all the tested sample were not collected and pub-
lished in Japan, although the proportion of semi-types over all influenza-positive 
sample were published. Therefore, we cannot use virological data to predict 
excess mortality model as previous studies. For that purpose, we need 
information of the number of all tested sample including negative sample. That 
improvement of data remains as a challenge. However reform for testing policy 
will be necessary.  

5. Conclusion 

We demonstrated that the NIID model might be more appropriate than the oth-
er two models in the respect of logical adequacy concerning about “negative 
excess mortality.” The other two models apparently underestimate of excess 
mortality under the same data and definition of non-epidemic season. It has 
been used as a procedure for official excess mortality in Japan for almost twenty 
years and has been applied to large cities, with results of estimated excess mor-
tality published timely as an MHLW project. 
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