
Open Journal of Applied Sciences, 2019, 9, 403-408
http://www.scirp.org/journal/ojapps

ISSN Online: 2165-3925
ISSN Print: 2165-3917

DOI: 10.4236/ojapps.2019.95034 May 30, 2019 403 Open Journal of Applied Sciences

An NC Algorithm for Sorting Real Numbers in
 
  
 

n nO
n

log
loglog

 Operations

Yijie Han, Sneha Mishra, Md Usman Gani Syed

School of Computing and Engineering, University of Missouri at Kansas City, Kansas City, MO, USA

Abstract
We apply the recent important result of serial sorting of n real numbers in

()logO n n time to the design of a parallel algorithm for sorting real num-

bers in ()1logO nε+ time and log
log log
n nO

n

 
  
 

 operations. This is the first

NC algorithm known to take ()logo n n operations for sorting real numbers.

Keywords
Parallel Algorithms, Sorting, Sort Real Numbers, Complexity

1. Introduction

It is known widely that serial comparison sorting takes ()logn nθ time for
sorting n numbers [1]. Although integer sorting can outperform the ()logn nΩ
lower bound for sorting n integers [2] [3], these algorithms generally do not ap-
ply to the problem of sorting real numbers. It has been known that n integers
can be sorted in ()log logO n n time and linear space [2] [3]. The ()logO n n
time bound remains for sorting real numbers ever since. Only very recently Han
showed that real numbers can be converted to integers for the sorting purpose in

()logO n n time [4], thus enabling the serial sorting of real numbers in

()logO n n time.
Parallel sorting algorithms for sorting real numbers run on the PRAM (Paral-

lel Random Access Machine) model are known [5] [6]. The AKS sorting network
[5] can be transformed into an EREW (Exclusive Read Exclusive Write) PRAM

How to cite this paper: Han, Y.J., Mishra,
S. and Syed, M.U.G. (2019) An NC Algo-
rithm for Sorting Real Numbers in

log
log log
n nO

n
 
  
 

 Operations. Open Journal

of Applied Sciences, 9, 403-408.
https://doi.org/10.4236/ojapps.2019.95034

Received: April 8, 2019
Accepted: May 27, 2019
Published: May 30, 2019

Copyright © 2019 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/ojapps
https://doi.org/10.4236/ojapps.2019.95034
http://www.scirp.org
https://doi.org/10.4236/ojapps.2019.95034
http://creativecommons.org/licenses/by/4.0/

Y. J. Han et al.

DOI: 10.4236/ojapps.2019.95034 404 Open Journal of Applied Sciences

algorithm with ()logO n time and ()logO n n operations. Cole’s parallel merge
sort [6] sorts n numbers in ()logO n time using n processors on the EREW
PRAM. On the CRCW (Concurrent Read Concurrent Write) PRAM Cole showed
[7] that his parallel merge sort can run in ()()log log log 2O n p n time using p
processors. Also see [7].

There are also parallel algorithms for integer sorting [8] [9] [10] [11]. In the
case of integer sorting, the operation bound can be improved to below ()logO n n .
In particular, [10] presents a CRCW PRAM integer sorting algorithm with
()logO n time and ()log logO n n operations and [11] presents an EREW

PRAM integer sorting algorithm with ()logO n time and ()logO n n opera-
tions.

For sorting real numbers, the previous best serial algorithm sorts in ()logO n n
time. It was also known that for comparison sorting, ()logn nΩ is the tight
lower bound. Thus if we use comparison sorting to sort real numbers, then in
serial algorithms, we cannot avoid the ()logn nΩ time bound and in parallel
algorithms, we cannot avoid the ()logn nΩ operation bound. In the past, no
other sorting methods are known to sort real number in less than ()logO n n
time and comparison sorting remained the norm for sorting real numbers.

However, the situation is recently changed completely as Han found a way to
convert real numbers to integers for sorting purpose and he showed that real
numbers can be sorted in ()logO n n time [4]. This result enables us to move
further to improve the operation bound of parallel algorithms for sorting real
numbers to below ()logO n n , as in the past, all parallel algorithms for sorting
real numbers have an operation bound at least ()logO n n .

In this paper, we will apply the ()logO n n time serial real number sorting
algorithm [4] to the design of an NC algorithm with ()1logO nε+ time and

log
log log
n nO

n

 
  
 

 operations on the CREW (Concurrent Read Exclusive Write)

PRAM. NC stands for Nick’s Class [12]. NC algorithms are parallel algorithms
with polylog time and polynomial operations. Algorithm in [4] is an inherently
serial algorithm without much parallelism within it. Here, we use it in the design

of an NC algorithm with ()1logO nε+ time and log
log log
n nO

n

 
  
 

 operations. This

is the first NC algorithm for sorting real numbers with ()logo n n operations.

The computation model used for designing our algorithm is the CREW
PRAM. On this model, in one step, any processor can read/write any memory
cell. Concurrent read of one memory cell by multiple processors in one step is
allowed and concurrent write of one memory cell by multiple processors in one
step is prohibited. Parallel algorithms can be measured with their time complex-
ity and the number of processors used. They can also be measured with time
complexity and operation complexity which is the time processor product. The
operation complexity (Tpp, with Tp time using p processors) of a parallel algo-
rithm is often compared with the time T1 of the best serial algorithm. In general,

https://doi.org/10.4236/ojapps.2019.95034

Y. J. Han et al.

DOI: 10.4236/ojapps.2019.95034 405 Open Journal of Applied Sciences

1pT p T≥ . When 1pT p T= , the parallel algorithm is said to be an operation op-
timal algorithm.

The main contribution of this paper is the demonstration of the existence of
an NC parallel algorithm with ()logo n n operations for sorting real numbers.
All previous parallel algorithms for sorting real numbers have at least ()logO n n
operations. The algorithm presented in this paper is derived from Han’s

()logO n n time serial algorithm [4] for sorting real numbers by applying pa-
rallel algorithm design techniques. These parallel algorithm design techniques
are specially tuned for the derivation of our parallel algorithm.

The remaining part of this paper is organized as follows. In Section 2 we
present our NC algorithm for sorting real numbers with ()1logO nε+ time and

log
log log
n nO

n

 
  
 

 operations. In Section 3, we present a running example of our

algorithm and conclude our paper with the Main Theorem.

2. The Algorithm

Consider an algorithm for sorting n real numbers. Suppose each of the n/m lists
with m real numbers in each list has already been sorted, we are to merge these
n/m lists into one sorted list. We will do k-way merge in each pass to merge
every k-lists into 1 sorted list and there are ()log logn m k passes to have all
n/m lists merged into 1 sorted list.

For simplicity, let us break down n elements into lists with m elements in each
list. We can do parallel sort on the individual list of m elements recursively. Now
we pick every k-lists and have them merged together.

The k-way merging of sorted lists 0 1 1, , , kL L L − is done as follows. For each
sorted list of m real numbers we pick every k2-th real number, i.e. we pick the
0th real number, the k2-th real number, the 2k2-th real number, the 3k2-th real
number, and so on. Thus from each list Li we picked m/k2 real numbers and
these m/k2 real numbers form a sorted list iL′ . and from these k lists we picked
m/k real numbers they form sorted lists 0 1 1, , , kL L L −′ ′ ′

 . We merge 0 1 1, , , kL L L −′ ′ ′


into one sorted list L' using Valiant’s merging algorithm [13] (its improved ver-
sion is given by Kruskal in [14] with time complexity of ()log logO m and li-
near operations for merging two sorted lists of m elements each) in logk passes
and ()log logO m time and ()O m k operations in each pass. Thus the total
time for merging 0 1 1, , , kL L L −′ ′ ′

 is ()log log logO k m and the total operation
is ()logO m k k .

Now for each real number r in iL′ and for any jL′ , r knows the largest real
number s in jL′ that is smaller than r and smallest real number l in jL′ that is
larger than r. s and l are actually neighbors in jL′ . There are k2 elements be-
tween s and l in Lj. r then uses binary search in ()logO k time to find the larg-
est real number among these k2 real numbers that is smaller than r and the
smallest real number that is larger than r. That is, r finds the exact insertion
point of r in Lj. Because there are k-lists and there are m/k real numbers in L' thus

https://doi.org/10.4236/ojapps.2019.95034

Y. J. Han et al.

DOI: 10.4236/ojapps.2019.95034 406 Open Journal of Applied Sciences

the time for this binary search is ()logO k and the operation is ()logO m k . The
operation for all lists is ()logO n k k because there are n/m lists and every
k-lists are merged in the k-way merge, we picked n/k2 real numbers and every
one of them has to use k processors to check k-lists in the k-way merging. Be-
cause r is arbitrary picked and thus we know that every real number in L' knows
its insertion point in every Lj. Let the real numbers in sorted order in L' be

0 1 1, , , m kr r r − . To merge 0 1 1, , , kL L L − we need now to merge or sort all real
numbers between the insertion points of ri and ri+1 in 0 1 1, , , kL L L − . There are
no more than k2 real numbers in Lj between the insertion points of ri and ri+1 and
therefore the total number (), 1R i i + of real numbers (call them a block) in

0 1 1, , , kL L L − between the insertion points of ri and ri+1 is no more than k3 (i.e.
() 3, 1R i i k+ ≤). When () 3, 1R i i k+ < we will combine multiple blocks together

to reach k3 real numbers. We use the ()logO n n serial sorting algorithm to
sort them in ()3 logO k k time. This represents ()3 logO k k time and

()logO n k operations in our parallel algorithm.
Thus the time for each stage is ()3 logO k k and the operation for each stage

is ()logO n k . When we start with m as a constant then there are log logn k

stages and therefore the time of our algorithm is
3 log
log

k nO
k

 
  
 

 and the opera-

tion is log
log

n nO
k

 
  
 

.

Pick logk nε= , we get ()1logO nε+ time and log
log log
n nO

n

 
  
 

 operations.

3. Procedure

Step 1: Let’s say we have “m” sorted elements in each list, and we have a total of
“n” elements to sort (Figure 1).

This implies that we have “n/m” lists to sort. To sort these blocks, we will ap-
ply k-way merging.

Step 2: Each stage of k-way merging is to merge every k sorted lists into 1
sorted list. This is repeatedly until all n/m lists are merged into one list (Figure
2).

Step 3: To merge k lists into 1 list, we need to pick the “0-th”, “k2-th”, “2k2-th”,
“3k2-th”, … real numbers in each list Li to form a new list iL′ of m/k2 elements.
This is shown as Figure 3.

Step 4: We merge 0 1 1, , , kL L L −′ ′ ′
 into one sorted list L'. The elements of this

new formed list L' then use binary search to find their exact insertion point in

Figure 1. n/m sorted lists of m elements each.

‘m’ elements ‘m’ elements ‘m’ elements

‘n’ elements

https://doi.org/10.4236/ojapps.2019.95034

Y. J. Han et al.

DOI: 10.4236/ojapps.2019.95034 407 Open Journal of Applied Sciences

Figure 2. k-way merging of k lists.

Figure 3. Pick every k2-th element of each list.

0 1 1, , , kL L L − . These insertion points then partition 0 1 1, , , kL L L − into m/k
blocks with each block containing no more than k3 real numbers.

Step 5: When every one of these m/k blocks are sorted, we effectively merged

0 1 1, , , kL L L − into one sorted list L.
Main Theorem: n real numbers can be sorted in ()1logO nε+ time and

log
log log
n nO

n

 
  
 

 operations on the CREW PRAM.

Proof: The algorithm and its time complexity analysis are presented in Sec-
tion 2. An example of the running of the algorithm is presented in Section 3. □

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Corman, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. (2009) Introduction to Al-

gorithms. Third Edition, The MIT Press.

[2] Han, Y. (2015) A Linear Time Algorithm for Ordered Partition. International
Workshop on Frontiers in Algorithmics (FAW'15), LNCS, 9130, 89-103.
https://doi.org/10.1007/978-3-319-19647-3_9

[3] Han, Y. (2004) Deterministic Sorting in O(nloglogn) Time and Linear Space. Jour-
nal of Algorithms, 50, 96-105. https://doi.org/10.1016/j.jalgor.2003.09.001

[4] Han, Y. (2017) Sort Real Numbers in ()logO n n Time and Linear Space. In ar-

Xiv.org with paper id 1801.00776.

[5] Ajtai, A., Komlós, J. and Szemerédi, E. (1983) An O(nlogn) Sorting Network. Pro-
ceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, Bos-

‘m’ ‘m’ ‘m’ ‘m’ ‘m’ ‘m’ ‘m’ ‘m’ ‘m’ ‘m’

‘k’ lists ‘k’ lists ‘k’ lists…….

‘m’
elements

‘m’
element

s

‘m’
element

s

k2-th 2k2-th 3k2-th

‘k’ lists

k2-th 2k2-th 3k2-th k2-th 2k2-th 3k2-th

‘m/k’elements

a b c d e f g h i

https://doi.org/10.4236/ojapps.2019.95034
https://doi.org/10.1007/978-3-319-19647-3_9
https://doi.org/10.1016/j.jalgor.2003.09.001

Y. J. Han et al.

DOI: 10.4236/ojapps.2019.95034 408 Open Journal of Applied Sciences

ton, MA, 11-13 May 1983, 1-9. https://doi.org/10.1145/800061.808726

[6] Cole, R. (1988) Parallel Merge Sort. SIAM Journal on Computing, 17, 770-785.
https://doi.org/10.1137/0217049

[7] Saxena, S., Chandra, P., Bhatt, P. and Prasad, V.C. (1994) On Parallel Prefix Com-
putation. Parallel Processing Letters, 4, 429-436.
https://doi.org/10.1142/S0129626494000399

[8] Bhatt, P.C.P., Diks, K., Hagerup, T., Prasad, V.C., Radzik, T. and Saxena, S. (1991)
Improved Deterministic Parallel Integer Sorting. Information and Computation, 94,
29-47. https://doi.org/10.1016/0890-5401(91)90031-V

[9] Hagerup, T. (1987) Towards Optimal Parallel Bucket Sorting. Information and
Computation, 73, 39-51. https://doi.org/10.1016/0890-5401(87)90062-9

[10] Han, Y. and Shen, X. (1995) Conservative Algorithms for Parallel and Sequential
Integer Sorting. International Computing and Combinatorics Conference, Lecture
Notes in Computer Science, 959, 324-333. https://doi.org/10.1007/BFb0030847

[11] Han, Y. and Shen, X. (2002) Parallel Integer Sorting Is More Efficient than Parallel
Comparison Sorting on Exclusive Write PRAMs. Tenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA’99), Baltimore, Maryland, January 1999,
419-428. https://doi.org/10.1137/S0097539799352449

[12] Cook, S.A. (1981) Towards a Complexity Theory of Synchronous Parallel Compu-
tation. L’Enseignement Mathématique, 27, 99-124.

[13] Valiant, L.G. (1975) Parallelism in Comparison Problems. SIAM Journal on Com-
puting, 4, 348-355. https://doi.org/10.1137/0204030

[14] Kruskal, C.P. (1983) Searching, Merging, and Sorting in Parallel Computation. IEEE
Transactions on Computers, C-32, 942-946.
https://doi.org/10.1109/TC.1983.1676138

https://doi.org/10.4236/ojapps.2019.95034
https://doi.org/10.1145/800061.808726
https://doi.org/10.1137/0217049
https://doi.org/10.1142/S0129626494000399
https://doi.org/10.1016/0890-5401(91)90031-V
https://doi.org/10.1016/0890-5401(87)90062-9
https://doi.org/10.1007/BFb0030847
https://doi.org/10.1137/S0097539799352449
https://doi.org/10.1137/0204030
https://doi.org/10.1109/TC.1983.1676138

	An NC Algorithm for Sorting Real Numbers in Operations
	Abstract
	Keywords
	1. Introduction
	2. The Algorithm
	3. Procedure
	Conflicts of Interest
	References

