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Abstract 

In this paper, we investigate the solvability of boundary value problems for a 
class of vibration differential equation describing the fractional order damped 
system with signal stimulus. By presenting kernel function through the Lap-
lace transform, and using the eigenvalue and the improved Leray-Schauder 
degree, the existence of solutions for boundary value problems is estab-
lished. 
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1. Introduction 

Fractional calculus has been applied more and more widely in many fields of 
science and engineering, many scholars have done a lot of research on it [1]-[8]. 
When describing fractional Brownian motion in Anomalous diffusion, if time 
fractional differential operator is introduced, fractional Langevin equation [9] 
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is obtained. The fractional Langevin equation describes both subdiffusion for
0 1α< <  and superdiffusion for 1 2α< < .  

Fractional differential equations are also used to describe damped vibrations 
in viscoelastic media. In [10], Podlubny studied the initial value problem for the 
inhomogeneous Bagley-Torvik equation 
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and the numerical solutions are presented. The numerical solution is in agree-
ment with the analytical solution, obtained with the help of the fractional 
Green’s function for a three-term fractional differential equation with constant 
coefficients. 

Motivated by the above works, we study the following boundary value prob-
lems for a class of vibration differential equation describing the fractional order 
damped system with signal stimulus 

( ) ( ) ( )( ) ( )
( ) ( ) ( )

0
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0 0, 1 0 ,

cx t b D x t f t x t t

x x cx

α
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              (1.1) 

where 
0

0 1, 1 2, 0, cb c Dαα +< < < < ≥  is the Caputo fractional derivative of or-
der α , [ ] ( ): 0,1 0,f × → ∞  is continuous. Moreover, ( )x t′′  indicates the ra-
tio of inertia force to mass, ( )0

c D x tα
+  is external damping term, namely, dissip-

ative term, f  represents the external force. 
By using the Laplace transform, the kernel function is obtained. And then, by 

using the eigenvalue and the improved Leray-Schauder degree, the existence of 
the solutions to boundary value problem (1.1) is proved, see Theorem 1. So we 
can investigate the state of the oscillator motion under this system. 

2. Preliminaries 

In this part, we recall some definitions and lemmas which are critical to the ex-
istence result. The definitions of fractional integral and fractional derivative can 
be found in [11] [12]. 

Definition 1. [10] Assume that function ( )g t  is defined in ( )0,∞ , then the 
Laplace transform of ( )g t  is defined as 

( ) ( ) ( ) ( )
0

e d , 0,ptg p L g t p g t t p
∞ −= = >   ∫  

as long as the generalized integral is convergent. 
Definition 2. [10] The original ( )g t  can be restored from the Laplace 

transform ( )g p  with the help of the inverse Laplace transform 
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where 0σ  lies in the right half plane of the absolute convergence of the Laplace 
integral. 

Definition 3. [12] Let , 0δ β > . The function  

( ) ( ),
0

,
k

k

zE z
kδ β δ β

∞

=

=
Γ +∑  

whenever the series converges is called the two-parameter Mittag-Leffler func-
tion with parameters δ  and β . 
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Lemma 1. [11] Let 1 ,l l lδ− < ≤ ∈ . The Laplace transform formula for 
( )0

c D g tδ
+  is 
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Let 
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Lemma 2. [12] Let , 0δ β > . The power series ( ),E zδ β  is convergent for all 
z∈ . In other words, ( ),E zδ β  is an entire function. 

Lemma 3. Let , 0,1, 2,z k∈ =  . Then 
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Proof. By Definition 3 and Lemma 2, we can get 
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Thus, the lemma can be obtained. 
Lemma 4. [11] Let ( ),, 0, E zδ βδ β >  be a two-parameter Mittag-Leffler 

function. Then 
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Denote 
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Lemma 5. The functions 1g  and 2g , defined above, have the following 
properties. 

1) ( )1g t  and ( )2g t  are represented by absolutely and uniformly conver-
gent series and ( ) ( )1 2, 0g t g t ≥  on [ ]0,1 ; 

2) ( ) ( )2 ,1
2

1 1g t bE t α
α−

−′ = > ; 
3) ( ) ( )1 2 1g t bg t′ − = . 
Proof. 1) By Lemma 2, we can show ( )1g t  is an entire function. Thus, ( )1g t  

is represented by absolutely and uniformly convergent series on [ ]0,1 . 
Similarly, ( )2g t  is also represented by absolutely and uniformly convergent 

series on [ ]0,1 . And we can easily have ( ) ( )1 2, 0g t g t ≥ . 
2) In view of ( )1g t  is represented by absolutely and uniformly convergent 
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series on [ ]0,1 , 
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3) From the definition of ( )1g t′ , we have 
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The proof is complete. 
Lemma 6. For ( )y t  is continuous on [ ]0,1  and ( )1 1 0c g ′− ≠ , the unique 

solution of 
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Proof. By Lemma 1, we have 
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Apply Laplace transform to both sides of ( ) ( ) ( )0
cx t b D x t y tα

+′′ − = , we can 
easily obtain 
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By virtue of Lemma 4, we can show 
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So (2.4) is equivalent to 
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Furthermore, 
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then we can get the inverse Laplace transform for (2.5) is 
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Because ( ) ( ) ( )0 0, 1 0x x cx′ ′= =  and ( )1 1 0c g ′− ≠ , we can show 
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Substituting (2.7) into (2.6), we get 

( ) ( ) ( )1

0
, d ,x t G t s y s s= ∫  

where ( ),G t s  is defined by (2.3). 
On the other hand, by using the above proof, if ( )x x t=  satisfies (2.2), we 

obtain that x satisfies ( ) ( ) ( )0
cx t b D x t y tα

+′′ − =  and ( ) ( ) ( )0 0, 1 0x x cx′ ′= = . 
The proof is complete. 
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where K is a constant and 0λ > . 
Proof. Let ( )x x t=  is the solution of boundary value problem (2.8). Apply 

Laplace transform to both sides of ( ) ( ) ( )0
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By virtue of Lemma 4, we can show, if 
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So (2.9) is equivalent to 

( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 1 2
2 ,2

0

2
2

2 ,1
0

2 2 2
2 ,3

0

0
!

0
!

0 .
!

n
nn

n
n

n

n
n

n

n
nn

n
n

L x t p x L t E bt p
n

t
x L E bt p

n

bx L t E bt p
n

α
α α

α
α α

α α
α α α

λ

λ

λ

∞
+ −

− +
=

∞
−

− +
=

∞
+ − −

− − +
=

 
 
 
 
 
 
  

′=  

+

 
−  

 

∑

∑

∑

   (2.10) 

Furthermore, we can get the inverse Laplace transform for (2.10) is 
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Because ( ) ( ) ( )0 0, 1 0x x cx′ ′= = , we can show 
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The proof is complete. 
Lemma 8. The function ( ),G t s  defined by (2.3) is continuous on

[ ] [ ]0,1 0,1× . 
Proof. By the definition of ( ),G t s  and Lemma 5, we get ( ),G t s  is conti-

nuous for ( ) [ ] [ ], 0,1 0,1t s ∈ × .The proof is complete. 

3. The Existence of the Solutions 

Let 

[ ]

( )
0,1

,
lim .sup

tx

f t x
x

β
→∞ ∈

=  
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Throughout this paper, we always suppose that the following conditions are 
satisfied. 

(H1) There exists constant ( )0, 0,1r τ> ∈  such that ( ) ( )1

,
1
rf x

gτ τ
⋅ >

−
 

for any x r< . 

(H2) There exists 0λ >  such that λ β≠ , here λ  satisfies 
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Let [ ]0,1E C= , with the norm 
[ ]
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x x t
∈

= . Obviously, ( ),E ⋅  is a 

Banach space. 
Define the operators , :T A E E→ , 
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0
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, , d .

Tx t G t s x s s

Ax t G t s f s x s s

=

=

∫

∫
 

By virtue of Lemma 6, the solution of boundary value problem (1.1) is equiva-
lent to the fixed point of the operator A; Boundary value problem (2.8) is equiv-
alent to the following integral equation 

( ) ( ) ( )1

0
, d .x t G t s x s sλ= ∫                    (3.1) 

Therefore, Tx xλ = , we have 1
λ

 is the eigenvalue of operator T correspond-

ing to the eigenfunction (3.1). 
Lemma 9. :A E E→  is completely continuous. 
Proof. Let 

[ ]
( )0 , 0,1

max ,
t s

sG G t
∈

= . Obviously, :A E E→ . 

Let { } ,nx E x E⊂ ∈  such that 0nx x− →  as n →∞ . So there exists 

0ρ >  such that nx ρ≤ , x ρ≤ . 
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t x

D x E M f t xx
ρ ρ

ρ
∈ ∈ −
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( ) ( )( ) ( )( ) 0, , , 2nG t s f s x s f s x s MG− ≤  

By virtue of Lebesgue’s dominated convergence theorem, we have 
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∫

∫  

so 0nAx Ax− →  as n → +∞ . Hence, the operator A is continuous. 
For each x in the bounded area D, 

( ) ( ) ( )( )1
00

, , d .Ax t G t s f s x s s G M= ≤∫  
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Consequently, the operator A is uniformly bounded. 
By the continuity of ( ),G t s  on [ ] [ ]0,1 0,1× , 0, 0ε δ∀ > ∃ >  for any  

[ ]1 2 1 2, , , 0,1t t s s ∈ , if 1 2 1 2,t t s sδ δ− < − < , then we have 

( ) ( )1 1 2 2, ,G t s G t s ε− < . 

If 1 2 ,t t x Dδ− < ∈ , we obtain 
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2 1 2 10

, , , d .Ax t Ax t G t s G t s f s x s s Mε− = − ≤∫  

Then, through the Arzela-Ascoli theorem, the operator A is compact on D. 
To summarize, :A E E→  is completely continuous. The proof is complete. 
Lemma 10. The operator A is Frechét differentiable at ∞ , and ( )A Tβ′ ∞ = . 

Proof. Since ( )
[ ]

( )
0,1

su
,

plim
tx

f t x
A

x
β

∈→∞
′ = , then for any 0ε >  and x N> ,  

there exists 0N >  such that 
( ),

2
f t x

x
εβ− < , for any [ ]0,1t∈ . Namely,  

( ),
2

f t x x xεβ− < . Let 
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So we have 
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0 00

, , d
2
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 ∫ . 

Thus, 
( ) 0 0

0 02
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x M GAx Tx M G
x x x
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β ε

 + −  ≤ = + . 

For the above ε , there exists 0 0N >  such that 0 0

2
M G

x
ε

< , namely, 

( )Ax Tx
x
β

ε
−

≤  for 0x N> . Thus, we can show 

lim 0.
x

Ax Tx
x
β

→∞

−
=  

The proof is complete. 
Lemma 11. [13] Let Ω  be a bounded open set in infinite dimensional real 

Banach space E, θ ∉∂Ω  and :A EΩ→  be completely continuous. Suppose 
that Ax x≥ , Ax x≠ , x∀ ∈∂Ω . Then ( )deg , , 0I A θ− Ω = . 

Lemma 12. [14] Let A be a completely continuous operator which is defined 
on a Banach space E. Assume that 1 is not an eigenvalue of the asymptotic de-
rivative. The completely continuous vector field I A−  is then nonsingular on 
spheres { }S x xρ ρ= =  of sufficiently large radius ρ  and   

( )( ) ( )deg , , , 1 ,kI A B θ ρ θ− = −  
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where k is the sum of the algebraic multiplicities of the real eigenvalues of 
( )A′ ∞  in ( )1,+∞ . 

Generalizing the previous lemmas, we obtain the following result. 
Theorem 1. If (H1) and (H2) hold, then boundary value problem (1.1) has at 

least one nontrivial solution. 
Proof. Obviously ( ),B rθ  is bounded open set, and ( )( ),B rθ θ∉∂ . Via 

Lemma 9, we get ( ): ,A B r Eθ →  is completely continuous. 
Combining (H2) and Lemma 10, we obtain the eigenvalue of ( )A′ ∞  is 

1β
λ
≠ . Therefore, through Lemma 12, we get 

( )( ) ( )deg , , , 1 .kI A B θ ρ θ− = −  

By Lemma 7, we have ( ) ( )2 ,1
0 !

n
n

n
n

c E b
n α α
λ∞

− +
=

= ∑ . Therefore, 

( ) ( )

( )
( ) ( )( )

( )( ) ( )

2 ,1
0

0 0

1
0

!
1

! 1 2 2 1

1 .
2 1

n
n

n
n

jn

n j

n

n

c E b
n

b n j
n j j n

b g
n

α α
λ

λ
α

α

∞

− +
=

∞ ∞

= =

∞

=

=

Γ + +
=

Γ + Γ − + +

′> =
Γ − +

∑

∑ ∑

∑

 

Through the definition of ( ),G t s  and Lemma 5, we get ( ), 0G t s ≥  for 
( ) [ ] [ ], 0,1 0,1t s ∈ × . Considering (H1), for any x r= , 

( )( ) ( ) ( )( )
( ) ( )( )

( ) ( )

1

0

10

1
1

1 1, , d

1 , d

1
1

Ax G s f s x s s

g s f s x s s

rg x
g

τ

τ τ
τ τ

=

≥ −

≥ − ⋅ =
−

∫

∫
.

 

i.e. Ax x≥ . By Lemma 11, we get 

( )( )deg , , , 0.I A B rθ θ− =  

In conclusion, ( ) ( )( ) ( ) ( )deg , , \ , , 1 0 1 0k kI A B B rθ ρ θ θ− = − − = ≠− . 

So we get at least one ( ) ( ), \ ,x B B rθ ρ θ∈  is a fixed point of the operator A. 
That is to say, x is one nontrivial solution of nonlinear problem (1.1). The proof 
is complete. 

4. Conclusion 

Theorem 1 is the main result of this paper. By Theorem 1, boundary value prob-
lem (1.1) has at least one nontrivial solution under the conditions of (H1) and 
(H2). Because boundary value problem (1.1) has at least one nontrivial solution, 
we can investigate the state of the oscillator motion under this system in the later 
research. 
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