
Engineering, 2011, 3, 1225-1233 
doi:10.4236/eng.2011.312152 Published Online December 2011 (http://www.SciRP.org/journal/eng) 

Copyright © 2011 SciRes.                                                                                 ENG 

Slip Line Field Solution for Second Pass in Lubricated 
4-High Reversing Cold Rolling Sheet Mill 

Oluleke O. Oluwole*, Olayinka Olaogun 
Department of Mechanical Engineering, University of Ibadan, Ibadan, Nigeria 

E-mail: *oluwoleo2@asme.org, yinka.olaogun@yahoo.com 
Received October 20, 2011; revised November 10, 2011; accepted November 20, 2011 

Abstract 
 
The development of a possible slip line field (slf) for theoretical calculations of the deforming pressure (load) 
in a second pass of a lubricated cold rolling sheet mill and validation using values from an aluminium sheet 
rolling mill was done in this work. This will be relevant in the manufacturing industries providing an easy 
method for determining necessary applied rolling load. Experimental rolling was carried out to observe the 
shear lines in the deformation field. Construction of possible slip line field model was developed adhering 
strictly to assumptions of rigid plastic model. Calculation of the deforming force/load was achieved using 
Hencky’s equation. Results showed that the load calculations for constructed slip line field using aluminium 
sheet rolling as an example tallied with values obtained from Tower Aluminium rolling mill. Slip line fields 
constructed for the second pass described adequately the rolling pressure in the cold rolling process, giving a 
valid solution of the exact load estimates on comparison with the industrial load values. Roll pressure along 
the arc of contact rose fairly linearly from the entrance to a maximum at the exit point. This work showed 
that slf for the first pass in a cold rolling mill cannot be used for subsequent passes; it requires construction 
of slfs for each pass in the cold rolling process. 
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1. Introduction 
 

The rolling process is one of the most popular processes 
in manufacturing industries, such that almost 80 percent 
of metallic equipment has been exposed to rolling at least 
one time in their production period. . 

Being the most wide spread metal forming process, 
rolling has received intensive attention from mechanical 
engineers. Various models are employed for the me- 
chanical study of strip rolling processes such as the slab 
or force balance methods, bounding approaches, slip line 
field analyses and finite element method. 

In comparison with other methods for analyzing the 
rolling process, the slip line field method is the largest 
class of solutions to boundary value problems in plastic- 
ity which gives exact solutions. Exact solutions require 
that both stress equilibrium and a geometrically self con- 
sistent pattern of flow are satisfied simultaneously eve- 
rywhere throughout the deforming body and in its sur- 
faces.  

The general theory for the flow of plastic rigid mate- 
rial under plane strain conditions is now well established, 

and experimental confirmation of the validity of the 
theoretical equations has been obtained for many modes 
of deformation. 

One of the few deformation processes of primary im- 
portance which occurs under almost ideal plane strain 
conditions is that of rolling. Several analyses have been 
published in literature. The mechanics of rolling can be 
traced back to 1925 by T. Von Karman [1]; he suggested 
the theory of homogenous deformation based on simpli- 
fied equilibrium of forces acting on a slab element in the 
deformation zone of strip. Orowan [2] discarded the as- 
sumption of homogeneous deformation and developed a 
theory of homogeneous deformation. The differential 
equation for slab element was derived under various as- 
sumptions and approximations [3-5]. A slip-line field 
solution for hot rolling was presented by Alexander [6]. 
Further slip-line field solutions for cold rolling with fric- 
tion were suggested by Firbank and Lancaster [7] for 
small rolls only and a pass reduction of 20% and later 
slip-line fields for lubricated cold-rolling were proposed 
for 20 in Dia rolls with sheet reduction of 25% [8]. Work 
on slip-line field solutions for compression and rolling 
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with slipping friction was also done by Collins [9]. 
Dewhurst and Collins [10] suggested a matrix tech- 

nique for the construction of slip line fields and illus- 
trated the technique with reference to strip rolling and 
drawing. However, there is lack of information on slip 
line field solutions to subsequent passes after the first 
pass in cold rolling mills which will be quite relevant in 
the cold rolling firm. 
 
2. Review of Numerical Techniques for 

Solving Forming Processes 
 

2.1. The Slab Method 
 

The slab method is approached from the elementary the- 
ory of the free body equilibrium [11]. The technique re- 
lies on dividing the work piece into a number of finite 
regions (strips, slabs, disks), the geometry of which de- 
pends on the nature of the problem. Each region is placed 
in force equilibrium. The method usually invokes the 
Tresca yield criterion and considers the material to be 
non-hardening (although allowance for work hardening 
can be made in an approximate manner by using a mean 
value of yield stress). It also permits an account to be 
taken of either Coulomb or constant shearing friction, it 
is to be noted that friction has often been treated as an 
adjustable parameter in order to provide the best correla- 
tion between theoretical predictions and experimental 
results. 

The method can also be used to estimate forging loads 
for quite complex forgings. The work piece is divided 
into a number of modules, each of which is analyzed 
separately and then recombined to provide estimate of 
the forging load.  

The slab method provides an unrealistic representation 
of the stress distribution within the deforming material 
because it is only obtained as a one-dimensional distribu- 
tion. No account is taken of the in homogeneity of de- 
formation, temperature and strain rate effects. 

 
2.2. The Bounding Methods 

 
Two extremum principles due to Hill [12] can be used to 
obtain “upper” and “lower” bounds for the loads to cause 
plastic flow. The practical applications of these prince- 
ples have generally been restricted to rigid non-harden- 
ing solids deforming under plane strain conditions. 
 
2.2.1. Upper Bound Method 
As the name implies, the technique provides an over es- 
timate of the load(s) to effect plastic flow. The usual 
procedure is to divide the deformation region into a 
number of finite zones. The material moves as a rigid 

mass within each zone to another. The bounding lines are 
usually straight and a discontuity in the tangential com- 
ponent of velocity occurs across each of these lines. 
From the pattern of discontuity lines in the “physical 
plane” a corresponding velocity diagram (or Hodograph) 
can be constructed. Certain velocity boundary conditions 
have to be satisfied, but no attempt is made to ensure that 
the material in each zone satisfies a yield criterion and 
there is no requirement that the individual zones are to be 
in equilibrium with each other. The rate of external 
working of the unknown traction (or load) is equated to 
the internal energy dissipated as material is sheared across 
each of the discontinuity lines. The method is usually 
adopted in the study of metal working problems since it 
provides an overestimate of the energy requirements to 
be delivered by a machine or press in order to execute 
the forming process. 
 
2.2.2. Lower Bound Method 
Here again the material is divided up into a number of 
finite zones, similar to the discontinuity line pattern in 
the Upper Bound Method. However, in this case the 
emphasis is on establishing a statically admissible stress 
field (as opposed to a kinematically admissible velocity 
field). Each zone is placed in force equilibrium with its 
neighbor and it is stipulated that no zone has to exceed 
the yield criterion (the Tresca and Von Mises criteria 
take the same form under plane strain conditions). The 
unknown surface tractions are revealed through the equi- 
librium stress field. 

The technique is often applied to structural analyses 
since it provides an underestimate of the load to cause 
plastic collapse.  

It is to be noted that in general the Upper Bound and 
Lower Bound methods do not reveal a unique solution. 
However, adjustments can be made to the shape of the 
individual zones to reveal the lowest Upper Bound and 
the highest Lower Bound solution, for a basic zone pat- 
tern. 

Upper Bound solutions far outweigh Lower Bound 
solutions in metalworking studies. The text by Avitzur 
[13] placed emphasis on Upper Bound Methods for other 
than plane strain deformation problems. 

 
2.3. Slip Line Field Theory 

 
Slip line field theory has been most widely applied in the 
study of plane strain deformation of rigid, non-hardening, 
solids [14,15]. It contains features of both the Upper and 
Lower Bound methods, in that it permits a kinematically 
admissible velocity field along with a statically admissi- 
ble stress field which satisfies the yielding condition 
within the deformation zone. It follows that the solutions 
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obtained by the Upper and Lower Bound methods strad- 
dle (or bound from above and below) the slip line field 
solution. 

The governing stress and velocity equations are hy- 
perbolic and can be solved by the method of characteris- 
tics. It transpires that the characteristics for stress and 
velocity are identical and they lie in the direction of the 
maximum shear stress. Hence the deformation zone is 
covered by a network of orthogonal characteristics, and 
these are commonly referred to as the slip lines. 

Many similarities appear to exist (in fact these tend to 
be superficial) between a slip line field and upper bound 
solution. In both methods the physical plane is covered 
by a network of lines, from which a velocity diagram can 
be constructed. However, with the slip line field solution 
the network is orthogonal (i.e. the characteristics) and 
furthermore not all the slip lines have a discontinuity in 
the tangential component of velocity across them (this is 
always the case with the Upper Bound Method). 

In statically determinate problems the usual procedure 
has been to build up a pattern of slip lines (based largely 
on experience) and to obtain the stress distribution within 
the deforming zone via the so called Hencky equations, 
i.e. the equilibrium equations reformulated along the 
characteristics. It is not always possible to proceed in this 
manner, in which case the slip line field and the hodo- 
graph have to be constructed simultaneously. In the past, 
this has led to laborious trial and error procedures (usu- 
ally graphical) before an acceptable solution is obtained. 
A recent innovation, which obviates much of the labour 
with trial and error methods, is the matrix operational 
method due to Collins [9] and its subsequent develop- 
ment into a systematical computational procedure by 
Dewhurst and Collins [10].  

One of the main criticisms levelled against slip line 
field theory is that it treats non-hardening solids only and 
ignores strain-hardening, strain-rate and temperature ef- 
fects. Allowance can be made for strain hardening, but 
the resulting stress equations along the characteristics 
lose their simplicity and recourse has to be made to nu- 
merical procedures to effect a solution. However, this 
problem may be overcome by finding slip—line fields 
for each strain-hardening pass. The present work is in 
that direction. 
 
2.4. The Finite Element Method 

 
The finite element method has been increasingly em- 
ployed as an analytical tool in dealing with metal form- 
ing processes. The finite element method is the most 
practical and accurate. This approach involves the repre- 
sentation of a body or a structure by an assemblage of 
subdivisions called finite elements. These elements are 

interconnected at joints which are called nodes or nodal 
points. Simple displacement functions are chosen to ap- 
proximate the distribution or variation of the actual dis- 
placement over each element; these equations, for the 
entire body are then obtained by combining the equations 
for the individual elements in such a way that continuity 
of displacements or forces is preserved at the intercom- 
necting nodes, the overall stiffness matrix for the whole 
body results.  

When dealing with metal working operations, the 
analysis is formulated in terms of either elastic-plastic 
solid (which is usually based on the elastic-plastic stress- 
strain matrix developed or rigid-plastic solid. 

In hot forming process the material is often treated as 
an incompressible non-Newtonian fluid, where the vis- 
cosity is related to the strain rate and possibly tempera- 
ture and total strain. 

Many models developed using the finite element 
method have been proposed. For example, Weroński et 
al. [16] worked on drop forging of a piston using slip- 
line fields and FEM. Likewise, Mori et al., [17] used 
finite element method in simulating rigid-plastic plane- 
strain rolling and Synka and Kainz, [18] used a novel 
mixed Eulerian-Lagrangian finite-element method for 
steady-state hot rolling processes. 

However, in metal forming processes the interfacial 
frictional conditions between tools and work piece and 
certain boundary conditions are known imprecisely, and 
there is always some doubt about the appropriateness of 
any constitutive equation particularly when temperature 
and strain rates are involved. Consequently, even the 
most rigorous analytical procedure is controlled by the 
reliability of the input data. 

 
2.5. Slip-Line Field Solution Procedure 

 
In the absence of body forces the state of stress in a body 
deforming under conditions of plane strain satisfy the 
equilibrium Equations; 

0xyx

x y

 
 

 
 

0xy y

x y

  
 

 
              (1) 

The stress state at any point in the deforming material 
can be represented in Mohr circle diagram modeled by 
Mohr-Coulomb failure criterion. The loci of those direc- 
tions of maximum shear stress and shear strain form two 
orthogonal families of curves known as slip lines. 

From Mohrs circle, the stress can be expressed as fol- 
lows: 

sin 2x p k     
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sin 2y p k     

cos 2xy k                 (2) 

where, 
1

2 x yp       is the hydrostatic part of the 

stress tensor and  π 4    is the anti-clockwise rotation 

of the direction of algebraically greatest princepal stress 
from the positive direction of the x axis 

Differentiating and substituting Equation (2) in Equa-
tion (1) 

2 cos 2 2 sin2 0
p

k k
x x

    
   
  y

 

2 sin 2 2 cos 2 0
p

k k
x y y

    
  

  
       (3) 

Equations (3) are hyperbolic and yield two families of 
characteristics inclined to the x-axis at angles   and   
π 2  respectively, thus forming an orthogonal net- 
work known as slip lines [19]. The members of the fam- 
ily given by the parameter   are, by convention, called 
the α-lines and β-lines coincide with the trajectories of 
maximum shear stress. 

The hydrostatic pressures along the slip lines satisfy 
Hencky’s equations, which in the absence of work- 
hardening may be expressed as: 

2 constant along an -line,andp k    

2 constant along a -linep k         (4) 

The velocities along the slip-lines are related by Geir- 
inger’s equations written as, 

0 on an -line,anddu v d     

0 on a -linedv u d              (5) 

where, u and v are the velocity components in α and β 
directions respectively. 

A field of slip-lines possesses several geometrical 
properties, which are enunciated in the two theorems due 
to Hencky [12]. Hencky’s first theorem states that the 
angle between two slip-lines of one family, where they 
are intersected by a pair of slip-lines of the other family, 
is constant along their length. Thus, we have 

,orD A C B     

C D B   A              (6) 

Hencky’s second theorem states that as we move 
along a slip-line, the radius of the slip line of the other 
family at the points of intersection changes by the dis- 
tance traveled. Thus, the changes can be represented as 

0 along an -line,anddS Rd     

0 along a -line.dR Sd               (7) 

Solution to boundary value problems by analytic inte- 

gration of the plain strain equations is possible only in a 
few simple cases. Hence, construction of the slip line 
network is usually carried out by the graphical proce- 
dures [12]. 

 
3. Materials and Method 

 
Experimental cold rolling was done by subjecting cast 
lead to two passes on a laboratory rolling mill. Slip line 
fields were constructed based on the shear line observa- 
tions after which calculations of deforming pressure us- 
ing slip line field equations were done. Validation was 
done using values obtained from Tower Aluminium Roll- 
ing Mills, OTA, Ogun State, Nigeria. 
 
3.1. Experimental Rolling to Determine Shear 

Patterns 
 
Lead alloy was used in simulating shear patterns occur- 
ring in the second pass of a cold rolling mill. The alloy 
was cast into a rectangular-shaped slab (180 mm by 40 
mm by 14 mm) using a pattern mould, and machined into 
various thickness of 10 mm, 8 mm and 7 mm thickness. 
Each prepared thickness lead sample was subject to cold 
rolling on a manually operated laboratory cold rolling 
machine, where it was deformed into various thick- 
nesses (8.55 mm, 5.70 mm, and 5.35 mm respectively) in 
two passes. The deformed zones were subjected to mac- 
roscopic examination using macro etching. 
 
3.2. Macro Etching of Lead Samples 
 
The macro etchant solution used for macroscopic ex- 
amination was composed of water (H2O), concentrated 
Nitric acid (HNO3) and Molybdic acid (140 ml, 40 ml, 
and 30 ml respectively). The solution was mixed and 
placed in a glass beaker. The mixed macro etchant solu-
tion was applied on the surfaces of the lead samples for 
5minutes before it was rinsed, dried and viewed under a 
magnifying lens Figures 1 and 2). 
 
3.3. Construction of Slip-Line Fields for Second 

Pass Using Real Life Scale 
 
The slip line field for the first pass (Figure 3) was drawn 
using the generalized slf for rolling [20]. The slip line 
field was modified for the second pass incorporating the 
observed shear zones (Figure 4). 
 
3.3.1. General Procedures 
Slip-line field was constructed for the first pass and 
compared with industry value to validate our calculation 
procedure. After this, the slip-line field for the second 
pass was developed. 
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Figure 2. Segmented top portion of macro-etched lead sam-
ple with arrow showing shear line running across plate 
caused by upper roll after two passes. 

Figure 1. Macro-etched lead sample with arrows showing 
shear lines running across plate caused by lower and upper 
rolls after two passes. 
 

 
*H (sheet thickness inlet) = 7.0 mm; *h (sheet thickness outlet) = 4.5 mm. 

Figure 3. Constructed slip line field for 1st Pass in a cold-roll mill. 

 

 
*H (sheet thickness inlet) = 4.5 mm; *h (sheet thickness outlet) = 3.4 mm. 

Figure 4. Constructed slip line field for 2nd pass of a cold-roll mill. 
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The shear pattern observed in the simulated second 

pass rolling of lead was used in developing a slip-line 
field for the second pass in a cold-roll sheet mill. The 
plastic region generally consists of a number of subsidi- 
ary domains with the curvature of the slip lines changing 
discontinuously across their boundaries. The construc- 
tion of the slip line field depends on the boundary condi- 
tions. Here, a lubricated smooth roller surface was con- 
sidered conforming to lubricated cold rolling in real life 
practice. It is a statically determinate problem, in which 
the slip line field is uniquely defined by the stress 
boundary conditions and represents a plastically deform- 
ing zone. 

The assembly of the slip line field was based on their 
45˚ intersections with axes of symmetry and their reflec- 
tions at stress discontinuities. In determining slip lines 
for interior yielding, tangents were projected to the roller 
boundary at various points in the plastic region. α-and 
β-lines were in conformity with convention that the di- 
rection of the algebraically greatest principal stress passes 
through the first and third quadrants of the local system. 
The α- and β-lines intersect at the boundary points and at 
their intersections, the α- and β-lines are subjected to the 
same hydrostatic stress.  

The shear region was included in the slip-line field 
pattern. The shear region was considered to harbour a slip- 
line field. 

 
3.3.2. Assumptions and Additional Procedures Made 

in the Construction of slf for the Second Pass 
1) It was assumed that the shear region covered the 

entire arc length of contact. 
2) That the shear occurred as a result of slip. 
3) That the shear morphology tapers to the roll surface 

at the end of the arc length of contact. 
4) That the shear morphology is not necessarily a per- 

fect arc but straightens out at the middle of the arc of 
contact due to pressure from remaining mass of un- 
sheared material between the sheared surfaces. 

5) That a whole series of new α- and β-slip lines are 
formed within the sheared zones bounded by the shear 
zone. 

6) That the initial β-slip line from the slf running 
through the centre of the sheet must run through the shear 
zone and be a β-line in the upper shear zone for continu- 
ous mass movement which will not make the shear zone 
disjointed from the main mass of material and maintain 
mass movement. 

 
3.4. Numerical Solution Procedure 
 
3.4.1. General Procedure 

The solution proceeded as follows: 

1) Labeling of the α- and β-slip lines in conformity 
with the convention that the direction of the algebraically 
greatest principal stress passes through first and third 
quadrant of the local system. 

2) Denotation of the family of slip lines that are α- and 
β-lines. 

3) Determination of angular distortion in the slip-line 
field net for each point considered by measurement (The 
slip-line fields were drawn to scale). 

4) Calculation of the normal stress at each point con- 
sidering the angular distortion of each point using 
Hencky equations until we get to the point at the bottom 
of the roll.  

5) Determination of the deforming force (load) by mul- 
tiplication of area of contact and normal stress (pressure). 
 
3.4.2. Additional Assumption and Procedure for 

Calculating Normal Stresses in the  
Constructed slf for the Second Pass  

It was assumed that the the β-line running through the 
center of the sheet (i.e. BG) hits a corresponding one 
within the shear zone thereby running through to the roll 
surface. Thus, the force is transmitted along the same β- 
line to the roll surface can easily be calculated and linked 
up with slip lines in the shear zone.  

The full procedure calculations for the second pass of 
the cold-rolling mill are placed in the appendix. 

 
4. Results and Discussions 

 
4.1. Results 

 
Figure 1 shows shear lines on a lead sample after two 
passes of a cold-rolling operation. Figure 2 shows the 
top portion of another sample subjected to two passes in 
the cold-rolling process. Shearing is well pronounced 
after the second pass. 

Figure 3 shows slip line fields constructed for the first 
pass using well known slip line field model. Input and 
output values of sheet thickness used were the same as in 
industry values Tower Aluminium rolling mills, OTA, 
(Nigeria). 

Figure 4 shows slip line fields constructed for the 
second pass in a cold rolling mill showing the inclusion 
of the shear zones in the upper and lower segments of the 
sheet. Values of input and output sheet thickness were 
the same as that used in the Tower Aluminium rolling 
mills factory. 

Figure 5 shows the variation of roll pressure along the 
arc of contact for the first and second passes. 

Table 1 presents the summary of results from the slip 
line field calculations of normal stress (pressure) at vari- 
ous points on the roller surface for the first pass. 
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Table 2 is the presentation of slip line field calcula- 
tions of normal stress (pressure) at various points on the 
roller surface for the second pass using the modified slip 
line field for rolling.  

The tensile yield strength (  ) of Aluminium with 
grade Al 1200 is about 25 N/mm2. Al 1200 is the grade 
of Aluminium used for hollowares. Since we are consid- 
ering a rigid perfectly-plastic isotropic material, shear 
yield strength ( ) will have a constant value throughout 
the plastic region. Therefore, Tresca criterion 

Y

k
2k Y  

is used because it does not affect the equivalent flow 
stress. 

Table 3 presents a comparison of calculations of slip 
line field calculations with Industrial values. It could be 
seen that the load values using the slf for rolling for the 
first pass of cold-rolling tallies exactly with industrial 
values. Using the same slf for calculating the second pass 
was seen to be non-representative as the value was way 
below the real value needed for deformation. However, 
using the modified slf constructed specifically for the  

second pass, the value fell within range of the real values 
used in industry. 
 

 

Figure 5. Distribution of the roll pressure along the arc of 
contact in the Slip line Field Models (Measured length of 
arc of contact was 17.33 mm and 12.84 mm for slf1 and slf2 
respectively). 

 
Table 1. Summary of calculated load from slip line field for 1st pass. 

Points on roller 
surface 

Shear yield stress,  for k

Al 1200 
2

Y
k  , N/mm2 

Normal Stress 
(Pressure), N/mm2 

Area of Contact,
mm2 

Load per roll 
(Force), KN 

Total Load 
exerted by both 

rolls, KN 

6G
P  12.5 32.125 15.597 501 1002 

6H
P  12.5 70.875 15.597 1105 2210 

6J
P  12.5 101.375 15.597 1581 3162 

6K
P  12.5 126.375 15.597 1971 3942 

6L
P  12.5 149.500 15.597 2332 4664 

Note that: Area of contact = width of sheet *projected length of the arc of contact. Load (Force) = Pressure. *Area of contact. The projected length of the arc of 
contact (measured) was 17.33 mm for slf1 and 12.84 for slf2. Width of sheet was 900 mm. 

Table 2. Summary of calculated load from slip line field model for 2nd pass. 

Points on roller 
surface 

Shear yield stress,  for k

Al 1200 
2

Y
k  , N/mm2 

Normal Stress  
(Pressure), N/mm2 

Area of  
Contact, mm2 

Load per roll 
(Force), KN 

Total Load 
exerted by 

both rolls, KN

2G
P  12.5 32.125 11.556 371 742 

2H
P  12.5 54.875 11.556 634 1268 

2J
P  12.5 81.625 11.556 943 1886 

2K
P  12.5 108.625 11.556 1255 2510 

2L
P  12.5 134.875 11.556 1559 3118 

2M
P  12.5 162.875 11.556 1882 3764 

2N
P  12.5 190.875 11.556 2206 4412 

2O
P  12.5 212.875 11.556 2460 4920 
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Table 3. Comparison of calculations of slip line field values with Industrial values. 

Rolling 
Pass 

Range of 
Rolling thickness 

Calculated Load 
Values (KN) 

using slf model 
for first pass 

Range of Industrial 
load outputs (KN) 

(from Tower  
Aluminium mills, 

OTA) 

Deviation of slf 
from (lower,  

upper)  
industrial loads 

(KN) 

Calculated Load Values (KN) 
using slf model for second 

pass 
(modified slf for second pass) 

Deviation from 
(lower, upper)  

industrial loads 
(KN) 

1 7.0 ± 0.1 - 4.5 ± 0.1 4664 4530 - 4670 Falls within range Not used for calculating load Not applicable 

2 4.5 ± 0.1 - 3.4 ± 0.1 3216 4700 - 5200 (–1484, –1984) 4920 Falls within range 

 
4.2. Discussion 

 
4.2.1. Shear Lines on Lead Sample after Second Pass 

Cold-Rolling 

Figures 1 and 2 show clear shearing after the second 
pass rolling of lead samples. It is assumed the same de- 
formation process observed in the cold-rolling of the lead 
samples will occur in metal/alloy rolling. This was ap- 
plied in the constrction of a slf model for the second pass 
in a cold-roll mill as shown in Figure 4. 

 
4.2.2. slf Calculations for First Pass and Comparison 

with Industrial Values 

Figure 3 needs little introduction as it is the well known 
slf model for rolling. The α- and β-slip lines were con- 
structed to scale with the input and output sheet thick- 
nesses simulating the first pass in an industrial cold- 
rolling process. The calculations for the rolling pressure 
and applied loads at each point on the roll surface could 
be seen in Table 1. Comparison of the calculated values 
to industrial values in the first pass cold-rolling process 
showed good tally (Table 3). This proved the usefulness 
of the existing slf model for determining applied loads 
for the first pass in a cold-rolling sheet mill. 

 
4.2.3. Using Existing slf for Second Pass 
The existing slf model was used in predicting the applied 
loads for the second pass in an Aluminium cold-roll mill. 
The result as expected fell far short of industrial load 
needed to cause deformation (Table 3). While the calcu- 
lated value was 3216 KN, the industrial range of applied 
loads was 4700 - 5200 KN. This has proved again the 
unsuitability of the same model for the second pass in a 
cold-rolling sheet mill. 

 
4.2.4. Modified slf for Second Pass 
Figure 4 shows the modified SLF for the second pass in 
a cold-rolling sheet mill. It shows the α- and β-slip lines 
in the shear zones superimposed on the existing SLF 
model constructed using input and out-put sheet thickness 
values as obtained in Aluminium sheet rolling. The initial 
α- and β-slip lines running through the middle of the 

sheet were observed to cross at G. The β-slip line was 
assumed to run continously through the shear zone and 
hit the roll at G2. With these assumption already stated in 
the methodology, the loads were calculated and pre-
sented in Table 2. The total load was seen to be higher 
(4920 KN) than the load for the first pass (4664 KN) 
shown in Table 1 and fell within the values used in in-
dustrial Aluminium rolling for second pass (4700 - 5200 
KN; Table 3). This modified slf model seems to have 
taken into consideration the effect of shearing which 
occurred on the surface of the rolled sheet during the 
second pass which the existing slf could not account for 
as revealed in Table 1. 

 
4.2.5. Variation of Rolling Pressure with Rolling Arc 

Length 
It was generally observed from Tables 1 and 2 that roll 
pressure exerted on the sheet metal increased from the 
point of roll surface contact at the entrance of the sheet 
metal (roll gap entrance) to the point of exit of the sheet 
(roll gap exit). At the point of exit plane of the metal 
sheet the roll pressure is maximum (Figure 5). 

 
5. Conclusions 
 

1) The distribution of the roll pressure along the arc of 
contact showed that the pressure rose fairly linearly to a 
maximum at the exit point.  

2) Slip line fields must be obtained for each 
cold-rolling pass to get valid solutions of the exact load 
estimates.  

3) Existing slf is valid for the first pass of a cold-roll- 
ing sheet mill alone. 

4) A modified slf model for second pass in a cold-roll- 
ing sheet mill has been proposed and developed in this 
work which describes well the load estimates for the 
second pass in a cold-rolling sheet mill. 
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