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Abstract 
Our purpose of this paper is to apply the improved Kudryashov method for 
solving various types of nonlinear fractional partial differential equations. As 
an application, the time-space fractional Korteweg-de Vries-Burger (KdV-Burger) 
equation is solved using this method and we get some new travelling wave 
solutions. To acquire our purpose a complex transformation has been also 
used to reduce nonlinear fractional partial differential equations to nonlinear 
ordinary differential equations of integer order, in the sense of the Jumarie’s 
modified Riemann-Liouville derivative. Afterwards, the improved Kudrya-
shov method is implemented and we get our required reliable solutions where 
the results are justified by mathematical software Maple-13.  
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1. Introduction 

Fractional differential equations have a significant role in describing the com-
plicated nonlinear physical phenomena such as the fluid flow, viscoelasticity, 
signal processing, control theory, systems identification, biology, physics and 
other areas [1]-[6]. 

Fractional differential equations are generalizations of classical differential 
equations of integer order. In recent years, nonlinear fractional partial differen-
tial equations (FPDEs) have been attracted by the mathematician and other re-
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searchers. It is caused by both the development of the theory of fractional calcu-
lus itself. In the recent year, many analytical and numerical methods have been 
proposed to obtain solutions of nonlinear FPDEs, such as local fractional varia-
tional iteration method [7], local fractional adomian decomposition method [8] 
[9], local fractional fourier series method [10], finite element method [11], varia-
tional iteration method [12] and so on. In these methods, researchers have in-
vestigated analytical and numerical solutions and a few of them have depicted 
some related graphs.  

The improved Kudryashov method [13] is also a similar method to these 
above methods and the basic principle of this method is to solve nonlinear par-
tial differential equations analytically. This method is straight forward and easy 
for finding exact solutions FPDEs. 

In this article, the improved Kudryashov method has been applied to find the 
new exact travelling wave solutions of the nonlinear time-space fractional order 
KdV-Burger equation, given by the following form [14] 

2 3

2 3 0, 0, 0 , 1.u u u uu t
t x x x

α β β β

α β β βω η υ α β∂ ∂ ∂ ∂
+ + + = > < ≤

∂ ∂ ∂ ∂
       (1.1) 

It is applied as a nonlinear model of the propagation of waves on an elastic 
tube filled with a viscous fluid. 

The Jumarie’s modified Riemann-Liouville derivative [15] of order α , de-
fined by the following expression 
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Moreover, some properties for the modified Riemann-Liouville derivative 
have also been given as follows 
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The rest of the writing is organized as follows. In Section 2, the improved Ku-
dryashov method has been described to find the solutions of nonlinear fractional 
partial differential equations with the help of fractional complex transformation. 
As an application, the new exact travelling wave solutions of KdV-Burger’s equ-
ation have been found in Section 3. In last Section 4, the conclusion has been 
stated. 

2. Outline of the Improved Kudryashov Method 

We consider a time-space fractional nonlinear fractional partial differential equ-
ation, with independent variables x, t and dependent variable u, is given by 
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( ), , , , , , , ,0 , 1x y t x y tP u u u u D u D u D uβ γ α α β< ≤           (2.1) 

We use the variable transformation  

( ) ( ) ( ) ( ) ( )
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= = + +
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        (2.2) 

where K, M and L are non-zero arbitrary constants, fort transforming (2.1) to 
the following nonlinear fractional ordinary differential Equation (FODE) with 
independent variable ξ . 

( ), , , , , , ,P u Ku Mu Lu K D M D u L D uβ β γ γ α α
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          (2.3) 

We seek for the exact solution of Equation (2.3) in the following form: 
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where ( ), 1, 2,3, , and 1, 2,3, ,i ja b i M j N= =   are unknown constants and 
( )Q ξ  are the following functions 
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Here the above functions ( )Q ξ  satisfy to the first order differential equation 

3d , 0
d
Q Q Qλ λ
ξ
= − ≠                     (2.6) 

To calculate the necessary number of derivatives of function ( )u ξ , Equation 
(2.6) is necessary. We can obtain the positive integers M and N by considering 
the homogeneous balance between the highest order derivatives and nonlinear 
terms appearing in Equation (2.3) 

We substitute ( )u ξ  and its various derivatives in Equation (2.3). Then we 
collect all terms with the same powers of function ( )Q ξ  and equate the result-
ing expression to zero. We obtain algebraic systems of equations. Solving this 
system, we get values for the unknown parameters. 

Finally we put these values of unknown parameters and use the solutions of 
Equation (2.6) for constructing the travelling wave solutions of the nonlinear 
evolution Equation (2.1). 

3. Application of the Method 

In this section, the improved kudryshov method has been used to construct the 
exact solutions for nonlinear space-time fractional KdV-Burger equation given 
in (1.1). 

Here we use the fractional complex transform 
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where K and L are constants, permits to reduce the Equation (1.1) into an ODE.  
After integrating Equation (1.1) once, we have the following form 

2 2 31 0
2

Lu Ku K u K uω η υ′ ′′+ + + =                (3.2) 

taking the integrating constant as zero. 
Considering the homogeneous balance between u′′  and 2u  in Equation 

(3.2), we obtain 4M N= + . Suppose 1N =  and then 5M = . 
Thus the travelling wave solution takes the following form: 
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where 0 1 2 3 4 5, , , ,,a a a a a a  and 0 1,b b  are unknown constants.  
Substituting Equation (3.3) into Equation (3.2) and taking into account rela-

tion Equation (2.6), we get a polynomial of ( )Q ξ . Collecting all the terms with 
the same power of ( )Q ξ  together and equating each coefficient to zero, we can 
obtain a system of algebraic equations. Solving the resulting system by using 
Maple-13, we get the following sets of values of unknown constants and the cor-
responding solutions. 
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The travelling wave solution of Equation (1.1) is: 
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And for example, one of the solitary wave solutions is: 
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The travelling wave solution of Equation (1.1) is: 
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And for example, one of the solitary wave solutions and its corresponding 
graph is: 
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And for example, one of the solitary wave solutions and its corresponding 
graph is: 
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The travelling wave solution of Equation (1.1) is: 
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And for example, one of the solitary wave solutions and its corresponding 
graph is: 
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when 13, 1, 1, 2, 1, 0.5, 0.3cλ η ω υ α β= = − = = = = = . 
In the above, Equations (3.4), (3.5), (3.6) and (3.7) yield the new types of tra-

velling wave solutions of (1.1) whereas Figures 1-4 give their respective velocity 
profiles. These four figures are sketched by choosing particular values of arbi-
trary constants involving in these equations and such types of solutions are 
called also solitary wave solutions. 
 

 
Figure 1. Profile of ( )1 ,u x t . 

 

 
Figure 2. Profile of ( )2 ,u x t . 
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Figure 3. Profile of ( )3 ,u x t . 

 

 
Figure 4. Profile of ( )4 ,u x t . 

 
Implication of the Maple-13: The mathematical software Maple-13 is used 

for obtaining a system of algebraic equations and finding unknown constants by 
solving this system. Justification of the results and finally figures are also 
sketching by this software. 

4. Conclusion 

The improved Kudryashov method has been explored successfully to solve the 
nonlinear fractional partial differential equation using the sense of Jumarie’s 
modified Riemann-Liouville derivative and the fractional complex transforma-
tion. As a result, some new types of exact travelling wave solutions for the 
space-time fractional KdV-Burger equation have been found and these solutions 
are verified. It can be concluded that this method is very simple, reliable and can 
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be used to solve any higher fractional order nonlinear partial differential equa-
tions. 
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