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Abstract 
The aim of this paper is to develop and validate a procedure for constructing 
prediction intervals. These forecasts are produced by Box-Jenkins processes 
with external deterministic regressors and prediction intervals are based on 
the procedure proposed by Williams-Goodman in 1971. Specifically, the dis-
tributions of forecast error at various lead-times are determined using 
post-sample forecast errors. Fitting a density function to each distribution 
provides a good alternative to simply observing the errors directly because, if 
the fitting is satisfactory, the quantiles of the distribution can be estimated 
and then the interval bounds computed for different time origins. We ex-
amine a wide variety of probability densities to search the one that best fit the 
empirical distributions of forecast errors. The most suitable mathematical 
form results to be Johnson’s system of density functions. The results obtained 
with several time series suggest that a Box-Jenkins process combined with the 
Williams-Goodman procedure based on Johnson’s distributions, provide ac-
curate prediction intervals. 
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1. Introduction 

Energy companies are strongly affected by uncertain price conditions, as they 
are exposed to the different risks from liberalized energy markets in combina-
tion with important and, to a large extent, irreversible investments. Price predic-
tions, however, are usually expressed as point forecasts that give little guidance 
as to their accuracy, whereas, the planning process needs to take into account the 
entire probability distribution of future prices or at least intervals that have a 
pre-specified nominal coverage rate i.e. a given probability of containing the fu-
ture prices. It is the aim of this paper to resume the prediction intervals (PIs) 
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proposed by Williams & Goodman [1], which anticipated bootstrap techniques, 
but was introduced at a time when its heavy computational demands slowed 
down practical applications.  

A literature review in the field of short-term forecasting of electricity prices, 
reveals that limited research has addressed the issue of PIs. Misiorek et al. and 
Weron [2] [3] were the first to consider interval forecasts. Other few exceptions 
are Wu et al., Nowotarski & Weron, and Bunn et al. [4] [5] [6]. However, inter-
val forecasts remain an underdeveloped topic. See [7]. Under the very restrictive 
assumptions of independent and identically distributed Gaussian errors, PIs can 
be obtained by means of standard formulae. Since the distribution of forecast 
errors is unknown, they must be estimated to calculate interval bounds.  

The main problem with assessing the reliability of price forecasts is that the 
magnitude of post-sample errors cannot be exactly evaluated until the prices are 
observed. In order to simulate such a situation, the time series under study can 
be split into two parts: the “training” period, which ignores a number of the 
most recent time points and the “validation” period, which comprises only the 
ignored time points. For the purpose of this study, we have not used the entire 
time series, but kept the very last time points untouched because they serve as a 
benchmark (target period) against which the quality of the PIs is to be judged. 
The training period is used to identify and estimate one of the large variety of 
electricity price models described in literature. Borovkova & Schmeck [8] ob-
serve that, despite the voluminous literature on modeling electricity prices, a 
clear “winner” model has not emerged. Here, we use a Box-Jenkins process.  

Williams & Goodman [1] had the simple and ingenious idea of rolling ahead 
the training period and repeating the forecasting procedure until it is not possi-
ble to make any more multi-step predictions. The collection of multi-step-ahead 
errors forms the empirical distribution of the forecast errors for each lead-time. 
This allows us to estimate the quantiles necessary to compute the interval bounds. 
To implement the Williams & Goodman (WG) procedure, it is necessary to find 
a family of probability distributions having a member which gives a good fit to 
the empirical distribution of forecast errors. We will consider various density 
functions to be combined with SARIMAX processes for time series data con-
cerning Italian electricity hourly zonal prices. Our aim is to find the most effec-
tive way of mixing WG procedure and SARMAX processes.  

The organization of the paper is as follows. In the next section we address 
important aspects of data-preparation. Section 3 provides a brief review of the Box 
Jenkins approach to compute point forecasts. In Section 4, the Williams-Goodman 
procedure is discussed and in Section 5 it is combined with various density func-
tions purportedly useful in describing the empirical forecast error distribution. 
In this same section is presented an application to Italian hourly zonal prices. 
Conclusions are drawn in Section 6.  

2. Data Preparation 

In this article we analyze data on hourly zonal prices traded at the day ahead 
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Italian energy market. Because of transmission capacity constraints, Italy is par-
titioned into six zones: North, Centre-North, Centre-South, South, Sardinia and 
Sicily with a separate price for each zone. When there are no transmission con-
gestions, arbitrage opportunities restrict the prices in each zone to be equal. See 
[9]. The hourly marginal prices can differ across zones because of transmission 
limits or because of dissimilar behavior of the consumers, but it is the same 
within a zone. The sizes of the zones are not equal. In fact, North (which in-
cludes the Italian regions of Val D’Aosta, Piemonte, Liguria, Lombardia, Tren-
tino, Veneto, Friuli Venezia Giulia, Emilia Romagna) constitutes a large fraction 
of Italian national surface (40%) and its population (46%). The large islands of 
Sicily and Sardinia suffer from poor interconnections and frequent congestions. 
In the present article, we prefer to work with zonal data because they show far 
wilder randomness than the national price and are complex enough to challenge 
the statistical methods used for making predictions.  

Data sets are freely accessible by the Italian independent system operator on 
http://www.mercatoelettrico.org/En/Tools/Accessodati.aspx?ReturnUrl=%2fEn
%2fDownload%2fDatiStorici.aspx. 

According to principles of decentralization and subsidiarity, creatively ex-
tended to long time series, we will treat each hour as a separate time series, such 
that 24 different models are estimated. All the time series go from 1 am on 
Monday, 7/1/2013 to 24 pm on Sunday, 26/2/2017 and hence cover a total of 24 
hourly prices in 1148 days for six zones. We reconstructed the values corres-
ponding to the changes of the daylight-saving time by the arithmetic average of 
the two neighboring hours, while the “doubled” values corresponding to the 
switch from the daylight-saving time, were replaced by the arithmetic mean of 
the two neighboring prices.  

Time series of electricity prices display characteristics not frequently observed 
in other commodity markets. Pronounced daily, weekly, monthly and mul-
ti-monthly seasonal cycles; heteroskedasticity, mean reversion, and a high num-
ber of spikes (very sharp peaks or extremely deep valleys) in a short period of 
time. Knittel & Roberts [10] note that electricity prices also contain what they 
refer to as, an “inverse leverage effect”. Electricity price volatility tends to rise 
more so with positive shocks than negative shocks. Most of these characteristics 
stem from the fact that power cannot be economically stored and, consequently, 
accumulation and selling of stocks/inventories have reduced intervention poten-
tial to smooth supply or demand shocks across over time. Additionally, electric-
ity markets face stringent distribution and transmission constraints.  

To attenuate these effects, prices are log-transformed so that all upward or 
downward spikes are closer to the mean of the time series. The attenuation does 
not absolve us from trying to use more effective albeit more invasive treatment 
of aberrant prices. On the one hand, even if the removal of legitimate data points 
could be accepted as a permissible practice, the number of values suspectable of 
being anomalous is too large to justify their exclusion. Extreme price swings, in 
fact, need not be treated as enemies, because they are very significant for energy 
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market participants. On the other hand, as noted by Fildes [11], the choice of a 
forecasting method should not be dependent on such extremes, unless they con-
tain information we cannot afford not to consider.  

To deal with spike prices, we construct an artificial time series by decompos-
ing the original time series into trend-cycle (expressed through orthogonal po-
lynomials) and periodicities (expressed as a sum of harmonics with random 
phases). Deviations between observed and artificial prices outside the range: 
median plus/minus a factor of the median absolute deviation from the median, 
are considered anomalous residuals which may indicate abnormal price. These 
prices, are considered missing and replaced by a weighted average of the ob-
served prices and the corresponding artificial prices. Although infrequent, nega-
tive or virtually zero prices do occur. These unusual prices can create problems 
with log transformation. So, prices less than one e/MWh are treated as missing 
values and imputed using the artificial time series.  

3. Point Forecast 

The generic time series is represented by 1 2, , , nP P P  where n is the number of 
observations, which, in this section, comprises the training and the validation 
periods (which, taken together, form the fit period). The index of the hour is 
suppressed, but it is understood that tP  refers to a daily time series of one of 
the hours.  

There is no general consensus at present on the best method to be used for 
electricity prices modeling. In this context, we apply Box-Jenkins forecasting 
method which has proven to be flexible enough to accommodate the electricity 
price behavior satisfactory. See [12] [13]. We do not investigate other time series 
approaches which are potentially useful, but lie beyond the scope of the present 
study. For a recent comprehensive survey see [14].  

The general form of a sarimax model is  

( ) ( )
1* *

0 ,
1

,
m

t j t j t
j

P X B B aβ β φ θ
−

=

 = + +  ∑               (1) 

where tP  is the price at the day t and ta  is a white noise process with zero 
mean and finite variance 2

aσ . The symbol B represents the usual backward shift 
operator and ( )* Bφ  and ( )* Bθ  are polynomials in B 
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Some of the parameters may be zero or otherwise constrained, so that (2) could 
be a multiplicative seasonal ( )( ), , , , sARIMA p d q P D Q  model where  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

*

*

1 1
Dd s s
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B B B B B

B B B

φ φ

θ θ
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               (3) 

Expressions ( )Bφ , ( )sBΦ , ( )Bθ , ( )sBΘ  are polynomials of order, respec-

https://doi.org/10.4236/ojs.2019.92017


I. L. Amerise, A. Tarsitano 
 

 

DOI: 10.4236/ojs.2019.92017 234 Open Journal of Statistics 
 

tively, p, P, q, Q and s indicates the length of the periodicity (seasonality). The 
same notation may be used to take into account multiple seasonality effects if 
necessary. Moreover, *p p s= + , *q q sQ= + . The notation , , 1, 2, ,t jX j m=   
indicates m variables observed at day t influencing the price of electricity; jβ  is 
a parameter measuring how the price tP  is related to the j-th variable ,t jX .  

To keep the problem of estimating Equation (1) tractable, we use only deter-
ministic exogenous variables so we know exactly what they will be at any future 
time (e.g. calendar variables, polynomials or sinusoids in time). The choice of 
known or non-stochastic regressors simplifies the inferential procedures, in-
cluding estimation and testing of the parameters. This choice is also suggested 
by the fact that stochastic exogenous regressors, which must also be forecast, is 
one of the possible causes of inefficiency in prediction intervals. See [15] [Sect. 
6.5]. According to the preparatory work for the present research, the most in-
fluential calendar variables are: days of the week, public holidays (official and re-
ligious) and daylight-saving time. Days immediately before and immediately af-
ter holidays are considered Saturdays and Mondays, respectively. Calendar ef-
fects are accounted for in the model by incorporating sets of dummy variables, 
where one of the categories is omitted to prevent complete collinearity. The 
dummy, or more precisely, binary variables in the process (1), precludes using 
the difference operators. It follows that, from now on the Box-Jenkins processes 
will be associated to the acronym SARMAX. The “burden of regular and season-
al non-stationarity” is placed entirely on the estimated parameters. In this sense, 
we require the roots of the polynomials ( )* Bφ  and ( )* Bθ  lie outside the unit 
circle, with no single root common to both polynomials. If this condition is sa-
tisfied then errors are stationary with finite variance.  

The estimation of the parameters can be realized by optimizing the log-likelihood 
function of (1), provided that , , ,p q P Q  are known and errors are Gaussian 
random variables. Since we ignore the order of the polynomials, the estimation 
should be repeated for different values of , , ,p q P Q . If  

0 ,0 ,0 ,0p q P qp n q n P n Q n≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ , 

then there are ( )( )( )( )1 1 1 1p q P Qn n n n+ + + +  distinct processes to be explored 
for each time series. We execute the search of the best process in automatic 
mode, over a limited set of distinct variations by using the function auto.arima() 
of the R package forecast with the option of a stepwise search to reduce the high 
computational cost of brute force search.  

A common index to compare rival models is the bias-corrected version of the 
Akaike criterion  

( ) ( )* *
2

* *

1
ˆAICC 2 log 2π

2a

p q
n

n p q
σ

 + +
 = − +

− − −  
              (4) 

where 2ˆaσ  denotes the estimated error variance of the candidate process. The 
process associated with the smallest AICC is presumed to be the best process. Let 

0L >  be the number of prices to be foreseen (lead-time). The selected process 
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serves to compute, standing at time n, forecast n̂ kP +  of the price at day 
, 1, 2, ,n k k L+ =   which are optimum in the sense of quadratic loss, conditional 

on an information set { }1 2, , ,n nI P P P= 
, i.e. ( )ˆ | , 1, 2, ,n k n k nP E P I k L+ += =  . 

It turns out that, under reasonably weak conditions, the optimal forecast is the 
expected value of the series being forecast, conditional on available information. 
See [16] (p. 172).  

Forecasting the regression term in (1) does not present particular difficulties 
because of the perfectly predictable nature of the regressors. The future values of 
the stochastic process term can be computed by using the infinite moving-average 
representation of the optimal process  

( ) ( ) ( ) ( )1
0

0
, with , 1.i

t t i
i

B B a B a B Bφ θ ψ ψ ψ ψ
∞−

=

= = =   ∑        (5) 

where iψ < ∞∑  (this constraint is equivalent to the requirement of roots 
outside the unit circle). The coefficients iψ  in (5) are functions of the parame-
ters in (2) and can be easily obtained by recursive equations. See [17]. In practice, 
however, the parameters of (2) have to be estimated, and it is customary to subs-
titute estimated values into all the formulae.  

4. Prediction Intervals 

Short-term point forecasts cannot reflect all the uncertainties in the price of 
energy. In this regard, it is far more interesting to have information on how re-
liable the extent of the prediction is. In short, given a time series of n prices 

1 2, , , nP P P , we seek forecast limits such that the probability is ( )1 α−  that 

n kP +  lies in  

( ) ( ), ,, , 1 2 , , 1 2
ˆ ˆ,n k n k n kn k n kP P Q P Qα α+ − +

 ∈ + +                (6) 

where ,n kP  is the price (/kWh) at a given hour of k days after day n and n is the 
last period at which a price is available. The point forecast ,n̂ kP  is obtained by 
identifying and estimating a SARMAX process to the fit period (i.e. training plus 
validation periods). , ,n kQ α  is the quantile of order α  of the distribution of the 
forecast error ,n ke  at origin n and lead-time k. If the hypothesis of Gaussianity 
is accepted for each k, then PIs can be derived from the standard formulae given 
by Box & Jenkins [18] 

, 2
ˆ ˆ .n k n k kP P zα σ+

 ∈ ±                        (7) 

where 2zα  is the upper ( )100 1 2 %α−  point of the Gaussian distribution 
with zero mean and variance one. Moreover,  

1
2 2 2

0

ˆˆ ˆ .
k

k a i
i

σ σ ψ
−

=

= ∑                          (8) 

PIs in (7), typically called Box-Jenkins prediction intervals (BJ PIs), are the most 
commonly used even in the cases there are no specific reasons to assume a 
Gaussian distribution of the errors. [15] [Sect. 7.7] illustrates various possible 
reasons why PIs in (7) are inadequate to encompass the required proportion of 
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future prices and the lack of Gaussianity of the forecast errors is indicated as one 
of the causes. See also [19].  

4.1. Williams Goodman Procedure 

To simulate distribution of forecast errors, the time series is split into two parts: 
the “training” period and the “validation” period. As a preliminary, we choose a 
window size, ν  (the number of consecutive daily prices) which, together with 
the maximum lead-time L, establish the complexity of the Williams Goodman 
(WG) procedure.  

Initially, the training period contains prices for day 1 through ν  whereas, the 
prices from ( )1ν +  to ( )Lν +  act as the first validation period. The class of 
SARMAX model discussed in Section 3 is fit to the training time series to find 
the best process which minimizes the AICC criterion (4). The selected process is 
then used to calculate the L-step-ahead point forecasts: 1,

ˆ , 1, 2, ,kP k Lν + =   at 
the time origin 1ν + . The post-sample forecast errors are obtained from differ-
ence with the corresponding values of the validation period:  

1, 1, 1,
ˆˆ , 1, 2, ,k k ke P P k Lν ν ν+ + += − =  . 

Note that, in this case, 1,kPν +  is a real price and not a random quantity.  
In the successive step, a block of γ  contiguous prices is dropped from the 

start of the training period and, simultaneously, γ  contiguous prices from the 
start of the validation period is shifted back to the end of the training period so 
that the second window contains prices for day ( )1 γ+  through day ( )ν γ+ . 
The second validation period includes prices from ( )1ν γ+ +  to ( )Lν γ+ +  
due to the inclusion of the next block of prices taken sequentially from the time 
points of the validation period not yet processed. The same class of models as in 
the initial step is fitted to the new training period, the new L-step-ahead fore-
casts calculated and the corresponding post-sample errors obtained at the time 
origin 1ν γ+ +  as , 1, , 1, , ,

ˆˆ , 1, 2, ,h k h k h ke P P k Lν γ ν γ ν γ+ + + + += − =  .  
The procedure is iterated until the last training period ( ) ( ):n L n Lν γ− − + −  

and the last validation period ( ) :n L nγ− +  achieve the end n of the fit time se-
ries. Overall, the procedure forms ( )1r n Lν= − − +  distinct sequences of 
L-step-ahead forecast prices and post-sample forecast errors. We can arrange 
errors as a matrix.   

1,1 , 1,2 , 1,

2,1 2,2 2,

,1 ,2 ,

ˆ ˆ ˆ
ˆ ˆ ˆ

ˆ ˆ ˆ

h h L

L

r r r L

e e e
e e e

e e e

ν ν ν

ν ν ν

ν ν ν

+ + +

+ + +

+ + +

 
 
 =
 
 
  

G





   



                   (9) 

Rows correspond to different time origins and columns to different lead-times. 
If the forecast error distributions are the same, then column kg  can be intended 
as a sample of size r of the forecast errors that would have been made by the se-
lected SARMAX process, at lead-time k across horizon origins  

1, 2, , rν ν ν+ + + .  
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The construction of PIs requires knowledge of the quantiles of the forecast error 
distribution, which are typically unknown and have to be estimated. An obvious 
way to generate PIs is to assume k-step-ahead forecast errors follow a continuous 
distribution function. If the fitting is satisfactory, the quantiles of the distribution 
can be estimated and then prediction bounds determined for each lead-time.  

Chatfield [15] [Sect. 7.5.5], notice that, although the WG procedure is attrac-
tive in principle, it seems to have been underutilized, not only because of the 
lack of time series long enough to give credibility to the fit of empirical distribu-
tions, but also because of the heavy computational requirements involved. Of 
course, the length of the time series is not a problem with time series collected in 
the electricity market and analyzed in the present study. In addition, the effort 
required to implement WG for time series of moderate length (1000 - 1500 time 
points) is compatible with the hardware/software resources generally at disposal. 
An R script is available from the authors upon request.  

4.2. Density Selection 

In the framework of electricity price forecasting, it might be reasonably argued 
that prices are not Gaussian (see, [7] [10]) but it is not clear what is precisely 
their distribution. In this subsection, however, we discuss the distributional 
properties of post-sample forecast errors whose behavior cannot be automati-
cally deduced with certainty from observed values and/or in-sample forecast er-
rors. If the empirical situation does not suggest an obvious choice, one can be 
selected among myriad examples of probability density functions (pdfs). Wil-
liams & Goodman [1] adapted a gamma density to the absolute value of the 
forecast errors. Isengildina-Massa et al. [20] found that forecast errors from the 
data set used in their study most often followed a logistic distribution. Bordig-
non & Lisi [21] and Lee & Scholtes [22] propose the Gaussian distribution. We 
choose the mathematical function in the first row of Table 1 after a long and 
complicated search for a powerful and versatile curve. Obviously, we are aware 
that, trying many densities and keeping the “best fitting” one, does not guarantee 
that another model will not look better than those we have already seen.  

In all the densities, 1θ  controls the location of the distribution; 2 0θ >  af-
fects the scale, 3θ  and 4θ  are shape parameters. The densities are referred to  
 
Table 1. Density functions for post-sample forecast errors. 

Name Support Model R package Est.Met. 

Johnson’s system ( ),−∞ ∞  ( ) ( ) 2
4 3 23 e

2π
g yg y θ θθ −

+  ′  SuppDists qme 

Gamma ( )0,∞  
( )

3 1

2 3

e yyθ

θ θ

− −

Γ
 fitdistrplus mme 

Logistic ( ),−∞ ∞  ( )2

e
1 e

y

y

−

−+
 stats mme 

Gaussian ( ),−∞ ∞  
2 21 e

2π
y−  stats mle 
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( )1 2y x θ θ= − . The gamma density is fit to the absolute value of post-sample er-
rors and hence 1 0θ = . The system proposed by Johnson [23] contains three classes 
of distributions which are based on the transformation ( )4 3 logz g yθ θ= +     
where z is a standard Gaussian random variable and g (with derivative g ′ ) has 
three possible forms  

( )
( )
( ) ( )

2

: the logGaussian

: 1 an unbounded distribution
: 1 a bounded distribution

L

U

B

S g y y

S g y y y
S g y y y

=

= + +
= −

       (10) 

In using (10), a first problem to be solved is to determine which of the three 
families should be used and, once the class is selected, the next problem to be 
solved is to estimate the parameters. In both problems, we follow the technique 
proposed by Wheeler [24] as implemented in package in the package SuppDists 
with quantiles ( )0.1,0.25,0.5,0.75,0.9 .    

The column headed “R package” refers to the package used for parameter es-
timation. The notation “stats” indicates standard computational algorithms. The 
last column of Table 1 reports the technique of estimation of the parameters: 
mle (maximum likelihood), qme (quantile method), mme (method of moments).  

The usual strategy behind fitting a given distribution to data is to identify the 
type of density curve and estimate the parameters that give the highest probabil-
ity of producing the observed values. Instead, we follow an indirect approach: we 
compare the different density curves by testing how accurately the PIs generated 
by a SARMAX process, in tandem with Williams-Goodman method, capture the 
true prices.  

5. Forecasting Accuracy 

Let us consider the matrix of estimated forecast errors G  discussed in the pre-
ceding section. For each lead-time 1,2, ,k L=   we fit the distributions shown 
in Table 1. Let , ,

ˆ
k vQ α  be the α-th estimated quantile of the v-th distribution, 

1,2,3v = . The quantiles are used to derive ( )1 α−  parametric prediction limits  

( ) ( )
1 2

, , , , , , , ,, , 1 2 , , 1 2
ˆ ˆˆ ˆ: , :k v n k n k n k k v n k n k n kk v k vC P Q C P Qα αµ σ µ σ− ++ + + +        (11) 

The means and standard deviations are computed over the post-sample errors  

22
, , , , ,

1 1

1 1ˆ ˆ, , 1, 2, ,n k t k n k t k n k
t t

e e k L
ν ν

ν νµ σ µ
ν ν+ +

= =

 = = − = ∑ ∑  
        (12) 

Notice that the mean of post-sample errors ,n kµ  is not necessarily zero.  
To assess the performance of the various PIs, we compare the prediction in-

terval actual coverage (PIAC) to ( )1 %α− . The PIAC is measured by counting 
the number of true hourly prices of the target period enclosed in the bounds (11)  

1 2
, ,1

, ,
1

1 if ,
100 where

0 otherwise

L
n k k v k v

v k v k v
k

P C C
PIAC L c c +−

=

  ∈  = = 


∑     (13) 

If the PIs are accurate, then ( )1vPIAC α≥ − . All other things being equal, nar-
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row PIs are desirable as they reduce the uncertainty associated with fore-
cast-based decision making. However, there is a trade-off between PI widths and 
PIAC: the wider the PI, the higher the corresponding PIAC and hence the great-
er is the accuracy of predictions, at least to a certain extent, because very wide 
PIs are not practically useful. On the other hand, very sharp PIs with a low cov-
erage probability are useless as well. It is necessary to introduce, in this connec-
tion, a scoring rule for addressing the sharpness of PIs. We use a score function 
of the form proposed by Winkler & Murphy [25] 

( ) ( ) ( )

( ) ( )

2 1 1
, , ,1

, ,

2
,2

,

1
2

, 1,2, ,

k v k v k v n k
v k n k k v

n k n k

n k k v
n k k v

n k

C C C P
S I P C

P P

P C
I P C k L

P

α +
+

+ +

+
+

+

− −− = + < 
 

−
+ > = 

         (14) 

The use of ratios facilitates comparability across price levels. The symbol ( )I  
represents an indicator function taking one if the argument is true and zero oth-
erwise. The first addend in (14) reflects a cost associated with the width of the 
interval. The cost decreases as ( )1 α−  increases, to compensate the tendency of 
the bounds to be broader as the confidence level increases. The other two ad-
dends penalize PIs if the target is outside the interval. The penalty increases with 
increasing distance from the nearest interval endpoints. The average of (14) 
across time points provides an indication of the sharpness of PIs  

,
1

1 L

v v k
k

MS S
L =

= ∑                            (15) 

Criteria (13) and (15) should be judged keeping in mind the stochastic beha-
vior of the electricity prices. Here, we have a potentially severe problem. Price 
peaks and valleys have been smoothed for the training and validation periods, 
but the same has not been done for the target period. These prices, in fact, are 
left as they are observed, to simulate real conditions. Spike prices, however, are 
recurring events and, therefore, it would not be surprising to find some of them 
in the target time series. Our SARMAX processes, being developed within a 
cleaned-up data set, have hardly any possibility to predict satisfactorily all, or at 
least a good part, of the outliers. Remaining outliers imply poor prediction in-
tervals in practice. Further research is required to formulate a model which is 
not only generally enough to merge Box-Jenkins processes, WG prediction in-
tervals and spike prices, but also it is numerically tractable to provide a quantita-
tive description of the complex patterns of electricity market time series. 

Predictive Performance 

To this end, we analyze 144 24 6= ×  different time series, one for each hour of 
the day and each zone of the Italian electricity market. All the daily time series 
are long 1148 days, but the last three weeks ( 21L = ) are reserved for assessing 
the predictive accuracy of the intervals. Thus, only the first 1127 days are used 
for estimation and validation of SARMAX models. The size of the rolling win-
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dow is fixed at 959ν =  (15%) which leads to 168r =  samples of 21-step 
ahead forecasts. The search of the SARMAX processes is conducted within the 
bounds 2p q P Qn n n n= = = = , which include 81 different processes. Each 
process is combined with the WG procedure applied to any one of the density 
functions in Table 1. For completeness, we include the BJ PIs described in (7) 
and Tchebycheff PIs  

( ) 0.5
, , , , 2

1ˆ ˆ 1 , with 1n k n k k n k n k n k kPr P c P P c c
c

µ σ µ σ α −
+

 + − < < + + ≥ − = −     (16) 

At this point it is necessary to remind that the point estimates are obtained for 
log-prices ,n kP , which have to be transformed back to the original scale to give 
forecasts for ,e n kP . A simply way is to transform the bounds obtained for ,n kP  
by applying a simple fractional multiplier  

( ), , ,, , 1 2 , ,
ˆˆ ˆ

e e en k n k n kk v n k n k k n kn k
P Q P c PPαµ σ µ σδ δ− ++

+ + + + << <
 

           (17) 

where 
2ˆ0.5e kσδ =  is the correction factor proposed by [Baskerville, 1972] and 

ˆkσ  is the standard deviation introduced in (8). Expression (17) is a genuine 
( )1 α−  PI since ,e n kP  is a monotone function of n kP + , but they do not have 
necessarily the same structure. For example, the interval (17) is asymmetrical 
even though the interval in the log scale is symmetrical. Furthermore, the an-
ti-logarithms of forecasts are biased. See [26].  

Table 2 shows the results of PIAC and MS at ( )60,65,70, ,90,95
. The row  

 
Table 2. Quality of PiIs. 

( )1 %α−   Johnson’s Gamma Logistic Gaussian BJ Tchebycheff 

60 PIAC 75.7 77.6 68.0 65.5 83.3 81.9 

 MS 5.9 9.3 6.6 7.6 53.1 111.0 

 Frct 36.1 14.6 24.3 8.3 9.7 6.9 

65 PIAC 78.4 77.6 73.6 69.4 85.7 81.7 

 MS 5.6 9.8 5.9 7.7 51.7 169.0 

 Frct 43.8 14.6 19.4 8.3 9.7 4.2 

70 PIAC 82.7 83.6 76.5 73.5 87.1 - 

 MS 5.0 8.2 5.7 6.6 50.2 - 

 Frct 46.5 12.5 18.8 4.9 9.7 - 

75 PIAC 85.7 84.2 83.5 78.8 90.9 87.4 

 MS 4.5 8.0 5.0 5.6 37.2 110.0 

 Frct 49.3 9.0 16.7 9.0 8.3 7.6 

80 PIAC 88.5 89.9 84.6 86.5 94.4 92.9 

 MS 3.9 6.4 4.6 4.9 37.8 84.2 

 Frct 55.6 5.6 17.4 4.2 7.6 9.7 

85 PIAC 91.3 92.9 92.3 88.9 95.7 94.6 

 MS 3.1 5.8 3.7 4.1 4.1 90.3 
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Continued 

 Frct 54.9 5.6 16.7 4.2 7.6 11.1 

90 PIAC 94.8 95.2 96.4 90.5 97.4 97.9 

 MS 2.3 4.3 2.9 2.0 3.1 80.9 

 Frct 56.2 5.6 20.1 0.7 6.2 11.1 

95 PIAC 97.7 95.2 - 98.3 97.1 97.0 

 MS 1.4 2.5 - 1.7 1.8 91.9 

 Frct 52.1 4.9 - 28.5 6.9 7.6 

 
entitled “Frct” denotes the percentage of times, out of the 144 cases studied, the 
corresponding density determined PIs with the lowest magnitude among all the 
PIs associated with an actual coverage rate greater than or equal to ( )1 α− . The 
symbol “-” indicates that the corresponding distribution has never taken the first 
place in the two rankings of forecast accuracy used in this study.  

On a first general examination, we note the consistent behavior between ac-
tual coverage rate (PIAC) and mean relative scores (MS), with the latter de-
creasing as the former increases. Naturally, this is a confirmation of the expected 
behavior of the score function (14). Tchebycheff intervals show, perhaps not 
surprisingly, the largest widths. Box-Jenkins prediction intervals (BJ PIs) appear 
to be the most conservative approach, i.e. it yields largest coverage rates, but 
with prevalently smaller widths than the Tchebycheff PIs. The substantial relia-
bility in performance of the WG procedure based on Johnson’s system, gamma, 
logistic and Gaussian distributions is due to actual coverage rates which are de-
cidedly lower than the corresponding nominal coverage rates than BJ and Tche-
bycheff PIs. But, above all, the formers have a much smaller sharpness than the 
latters at all confidence levels. The distributions nested within Johnson’s system 
come more frequently on top in terms of actual coverage probability and sharp-
ness of the intervals and hence can be considered the optimal probability density 
within the experimental set up of our study.  

6. Conclusions 

Prediction intervals (PIs) are random sets designed to contain a future value 
with a given probability. The principal reason for constructing them is to pro-
vide an indication of the reliability of point forecasts avoiding a complete de-
scription of the probability distribution of the uncertainty associated with a pre-
diction. Box-Jenkins or BJ PIs (the procedure in common use currently) assume 
Gaussian errors, known parameters and intervals are centered about the condi-
tional expectation. Consequently, BJ PIs cannot take into account the variability 
due to parameter estimation and behave poorly when the errors are not Gaus-
sian. Our findings confirm these observations.  

The primary concern in this paper is with the Williams & Goodman [1] (WG) 
procedure and the gain of accuracy brought by WG PIs in comparison to con-
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ventional BJ PIs. Our findings show point forecasts for day-ahead hourly prices 
in Italian wholesale electricity market may be of greater utility if accompanied by 
PIs calculated using WG centered around a member of the Johnson system of 
density functions. This mix offers PIs having a coverage rate greater than the 
nominal rate, but, what is more important is that this desirable conservativeness 
is not at the expense of widening the intervals, which instead are admirably 
sharp. The procedure has proven to be very competitive on two other procedures: 
Box-Jenkins and Tchebycheff PIs.   
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