
American Journal of Computational Mathematics, 2011, 1, 271-280 
doi:10.4236/ajcm.2011.14033 Published Online December 2011 (http://www.SciRP.org/journal/ajcm) 

Copyright © 2011 SciRes.                                                                                AJCM 

Bringing out Fluids Experiments from Laboratory to  
in Silico—A Journey of Hundred Years 

Manickam Siva Kumar1, Pichai Philominathan2 
1Departmentof Physics, Indian School Muscat, Muscat, Sultanate of Oman 

2PG and Research Department of Physics, AVVM Sri Puspham College, Thanjavur, India 
E-mail: shiva@eeclubs.org, philominathan@gmail.com 

Received August 19, 2011; revised September 20, 2011; accepted September 28, 2011 

Abstract 

By making use of the developments in the fields of numerical methods, computational technology and fluid 
dynamics models, computational fluid dynamics (CFD) progress forward to play an active role today in 
various industrial, academic and research activities. In many cases, CFD simulations replace expensive and 
time consuming laboratory experiments successfully by allowing engineers and scientists to capture pressure, 
velocity and force distributions. Researchers are now able to test various theoretical conditions unavailable in 
the laboratory and CFD studies help them to get deeper insights on existing theories. The century-old history 
started just to solve some stress analysis problems numerically and today CFD methodology is being applied 
not only in fluid dynamics also in chemical engineering, mineral processing, fire engineering, sports, medical 
imaging and even in acoustics. This paper reviews the growth of CFD as a discipline and discusses its con-
temporary methodology. 
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1. Introduction 

Fluid dynamics saw a rapid growth during 18th and 19th 
century through the contributions from Bernoulli (1700- 
1782) who derived Bernoulli’s equation and Leonhard 
Euler (1707-1783) who described conservation laws 
through his famous Euler equations. The introduction of 
viscous transport into the Euler equation by Claude 
Louis Marie Henry Navier (1785-1836) and George Ga- 
briel Stokes (1819-1903) changed the scenario of fluid 
dynamics by forming Navier-Stokes equation in which 
the modern day Computational Fluid Dynamics (CFD) 
based on. 

In the first part of 20th century, much work was done 
on improving theories of boundary layers and turbulence. 
In particular Ludwig Prandtl (1875-1953) gave boundary 
layer theory and investigated the mixing length concept, 
compressible flows, and introduced Prandtl number. 
Theodore von Karman (1881-1963) investigated swirling 
vortices produced by the unsteady flow separation of a 
fluid over bluff bodies. Geoffrey Ingram Taylor’s (1886- 
1975) statistical theory of turbulence and George Keith 
Batchelor’s (1920-2000) theory of homogeneous turbu-
lence gave remarkable improvements to our understand-

ing on fluid dynamics. 
The roots of modern computational fluid dynamics 

dates back to 1910 when Richardson published his paper 
on the computation of stress in masonry dam using hu-
man computers [1]. In 1947, Kopal compiled massive 
tables of the supersonicflow over sharp cones by nu-
merically solving governing differential equations using 
primitive computers [2]. Kawaguti (1953), by working 
20 hours per week for 18 months (cited as: “a consider-
able amount of labour”) obtained a solution for flow 
around a cylinder [3]. 

During 1960s, theoretical division at Los Alamos con-
tributed many numerical methods. In 1965, Horlow and 
Fromm in their article in Scientific American stated very 
first time the idea of in silico experiments-experiments 
on computers [4]. Roache’s text book on CFD made sci-
entists and engineers to realize the need for keeping CFD 
as a separate discipline from theoretical and experimental 
fluid dynamics [5]. Till today CFD is heading with phe-
nomenal progress with the help of growing computing 
power. Figure 1 gives the timeline history of important 
milestones in CFD. 

In 1980, Suhas V. Patankar’s contribution to SIMPLE 
Semi-Implicit Method for Pressure-Linkage Equations)  (    
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Figure 1. Some important milestones in CFD. 
 
algorithm and his ground breaking CFD book Numerical 
Heat Transfer and Fluid Flow [6], made him one of the 
most cited authors in science and engineering [7].1980’s 
and 1990’s saw a revolutionary change in CFD—the 
availability of commercial CFD codes removed the prac-
tice of writing program to perform CFD calculations. 

Today, CFD is considered as a better alternative for 
experimental investigation to test theoretical conditions 
unavailable in the laboratory and to examine prototyping, 
optimizing design and checking industry compliance etc. 
[8]. In particular, the reasons for growing importance to 
CFD in the field of engineering can be attributed to: 

1) Quick forecast of performance; 
2) Better alternative to costly and impossible experi- 

ments; 
3) Better insights unlike experiments with expensive 

probes/sensors; 
4) Availability of faster computational speed and lar- 

ger memory size. 
This paper reviews CFD in the historical perspective 

pertaining to laminar flow. As the body of literature is 
very vast in this field, the application of CFD to thermal, 
electromagnetic, acoustic and other fields was not taken 

into account in this work. 

2. The Overview of Present CFD 
Methodology 

The present approach to CFD methodology is to consider 
it as a numerical experiment which is modeled using go- 
verning equations and observed through running a cho-
sen algorithm [8]. The final step, similar to any conven-
tional fluids experiment, is to interpret results and ana-
lyze (Figure 2). 

In continuum mechanics non-conservation form of 
equations governing fluid’s kinetic energy (K), internal 
energy (U), mechanical power (M) and heat energy (Q) 
can be written as[9], 

K U 
+ M + Q  

D D

Dt Dt
           (1) 

The conservation form of equations, so-called Na-
vier-Stokes equations, is given in terms of conservation 
flow variables (U), convection flux variables (Fi), diffu-
sion flux variables (Gi) and source terms (B) is given by 
[9], 
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CFD involves converting these partial differential 
equations into discretized algebraic equations. These set 
of equations are numerically solved at a given point/time 
to get flow parameters. Any complex geometry of the 
flow can be converted into grid or mesh with discrete 
points where the flow variables are solved. Using appro-
priate interpolation schemes, flow variables are obtained 
at non-grid point locations also. The following flow chart 
(Figure 3) details the steps involved in the contemporary 
CFD methodology [10]. 

3. Discretization 

The literature on discretization methods is huge and ex-
tensive and therefore the most common discretization 
methods that are important for CFD,are discussed briefly 
in this section. 

The governing partial differential equations are con-
verted into a set of algebraic equations using the discre- 

 

 

Figure 2. Fluids experiment versus CFD studies. 
 

 

Figure 3. The contemporary CFD methodology. 

tization process (Figure 4) which describes continues 
flow field in terms of discrete values at prescribed loca-
tions. Discretization offers the following advantages over 
continuum: 
 infinite unknowns become finite, 
 analytical approach is converted into numerical, 
 applicability is widened and 
 approximation becomes possible. 

3.1. Finite Difference Method (FDM) 

Finite Difference Method is based upon the differential 
form of the PDE to be solved and it employs global 
mapping of geometry. It is one of the oldest discretiza-
tion schemes [1]. Thom (1933) gave the first ever nu-
merical solution for flow over a circular cylinder [11]. 
This methodology involves the following steps (Figure 
5(a)): 

1) The infinite set of points is replaced by finite set of 
points called nodes. 

2) Navier-Stokes equations are enforced at these 
nodes. 

3) Differential equation converted into stencils at mesh 
nodes. 

4) Stencils relate velocity and pressure values  
FDM is easy to implement in CFD analysis and pro-

vides discrete solution. But it is restricted to simple grids 
and does not conserve momentum, energy, and mass on 
coarse grids. Higher order FDM is hard to be locally 
conservative.Modern FDM codes make use of overlap-
ping grids, where the solution is interpolated across each 
grid. 

3.2. Finite Element Method (FEM) 

Finite Element Method is based upon an integral form of 
the PDE to be solved and it uses local geometric map-
ping. Though Courant (1943) applied this method to 
solve torsion problem, the name was given by Clough in 
1960 [12]. For analyzing structural mechanics problems, 
this method was refined greatly in 60’s and 70’s and ap-
plied for fluid flow in late 70’s. This methodology pro-
vides a continuous solution up to a point with local ap-
proach. The steps involved are (Figure 5(b)): 
 

 

Figure 4. The process of discretization. 
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1) The flow field is represented as large number of 
known functions; 

2) By using Navier-Stokes equations, the one with the 
best approximation properties is selected; 

3) The domain is divided into elements in which the 
candidate functions are constructed from interpolation 
functions; 

4) The value of the function at the nodes determines 
the value of the function everywhere inside the element; 

5) The mesh is formed by combining all the elements. 
The main advantage of this method in CFD point view 

is high adaptability and accuracy on coarse grids. FEM is 
excellent for diffusion dominated problems, viscous and 
free surface problems. But FEM cannot handle fluid me- 
chanics equations effectively and therefore this method 
has limited accuracy, slow for large problems and not 
well suited for turbulent flow. 

3.3. Finite Volume Method (FVM)  

Finite Volume Method is based upon a piecewise repre- 
 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Discretization methods (a) FDM; (b) FEM; and (c) 
FVM. 

sentation of the solution in terms of specified basis func-
tions. Evans & Harlow (1957) well documented the first 
use [13]. During late 70’s body fitted grids and early 90’s 
unstructured grid methods had appeared. FVM is con-
sidered as integral version of FDM and can be derived 
also from FEM [8]. This methodology involves the fol-
lowing steps to be followed (Figure 5(c)): 

1) The volume of the fluid is divided into a finite num-
ber of volumes, or cells;  

2) Navier-Stokes equations are converted into equiva-
lent integral form and applied to each cell; 

3) The local form of the governing equations balances 
mass and momentum fluxes across the faces of each in-
dividual cell. 

There are efficient and well developed solvers are 
available using FEM, though it is applicable on coarse 
grids, there are issues like false diffusion, difficult stabil-
ity and convergence analysis. 

3.4. Other Methods 

Boundary Element Method (BEM) is used for potential 
flows where the integrals over the whole domain are 
transformed over the boundaries [14,15]. This method is 
also called as panel method since each element plays the 
role of a panel on the surface of airfoil. BEM requires 
less data, less time and since discretization takes place on 
the surface, system of equations are smaller. BEM is 
effective for external flows such as potential and stokes 
flows. At the same time, this method is not good for 
non-linear flow problems and involves complex mathe-
matics different from other CFD schemes. 

Coupled Eulerian-Lagrangian (CEL) method is an-
other method used widely in CFD. In the case of moving 
mesh points along with the fluid particles, Lagrangian 
coordinates have to be used in computing variables. 
Therefore it is convenient to have both Eulerian and La-
grangian coordinates coupled, called as the CEL method 
[8]. This method combines advantages of both Eulerian 
and Lagrangian methods and useful in highly distorted 
and multiphase flows. But heat transfer analysis is lim-
ited and mass scaling is not supported. Due to approxi-
mations, the corners of solids are rounded. 

The modern Spectral Methods (SM) was first pro-
posed by Gottlieb and Orszag [16]. This method involves 
multi-dimensional discretization which is formulated as 
tensor products of one-dimensional constructs in or-
thogonal simply-connected domains. Such methods are 
broadly classified as collocation methods and Galerkin 
methods. Sun et al. (2006) proposed another improvised 
method combining with finite volume, called spectral 
finite volume method for 3D space [17]. It takes a global 
approach and has exponential convergence which leads 
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to high accuracy CFD analysis. But it can handle only 
simple geometries and applicable for limited boundary 
conditions. Huynh (2007) has extended spectral method 
using flux reconstruction approach and applied to high- 
order schemes successfully [18].  

Unlike other methods, Lattice Boltzmann Methods 
(LBM) models the fluid consisting of fictive particles 
[18]. It makes use of particles on hexagonal grids where 
particles move according to discrete rules. The macro-
scopic motion of the particles resembles the Navier- 
Stokes equation. This method is efficient in handling 
with complex boundaries, microscopic interaction and 
parallelization of the algorithm [19]. But its main disad-
vantage is rrequirement of higher order terms in solving 
compressible flows and coupling density to temperature 
variations. 

The smoothed particle hydrodynamics (SPH) makes 
use of mesh-free method and involves modeling fluid as 
particles and smoothening them using kernel function 
[19]. This method is capable of simulating flow in real 
time, but its limitation includes requirement of large 
number of particles for better resolution.  

For fine grids each type of method gives the same so-
lution. But some methods are more suitable to specific 
cases than others and the preference is determined by the 
attitude of the developer [10]. 

4. Meshing 

Grid or mesh is a discrete representation of the geometric 
domain where problem is to be solved. Mesh divides the 
solution domain into subdomains like nodes, elements 
and control volumes.Since from the first attempt of ob-
taining numerical solutions to partial differential equa-
tions, the concept of mesh generation has been associated 
with computational methods [20]. Slowly mesh genera-
tion steadily evolved as a separate discipline drawing on 
ideas from mathematics and computer science. In 1950’s 
FDM was put into use through two dimensional simple 
boundary shapes. By using coordinate transformations 
mesh that is aligned with boundaries was in use [21]. 

Due to the development of FEM which involved com-
plex boundaries, manual mesh creation was used during 
late fifties and early sixties [22]. In order to apply FDM 
for their calculations, CFD community started using me- 
shes with simple generic shapes like a rectangle or circle 
to represent complex geometry [23]. Since then CFD 
became key drivers in simulating the development of 
various mesh generating techniques. Though FEM is 
powerful and versatile, the quality of mesh can greatly 
affect the accuracy of result. Manual generation of high 
quality mesh is time consuming and error-prone. It is 
important to note that the appropriate type of mesh and 

its resolution is problem dependent.  
Various mesh strategies were in use during the last 

few decades. For example, in 70’s algebraic methods, 
80’s multiblock types and 90’s composite and overset 
methods were used for generating mesh. Thereare large 
number of types of mesh available as of today (Figure 
6). 

In order to generate various types of mesh, there are 
large number of methods available. Some of them in-
clude: mesh topology first (mesh smoothing [24]), nodes 
first (topology decomposition, node connection [25]), 
adapted mesh template (grid-based [26], mapped element 
[27], conformal mapping [28]) and simultaneous nodes 
and elements approach (geometry decomposition [29]). 

The mesh generation itself is becoming a separate dis-
cipline and more detailed methods of mesh generation 
can be found in various dedicated texts [30-32]. It is 
also important to note now-a-days CFD users have a 
choice of number of mesh generating software such as 
Gambit from Ansys (www.ansys.com), Gridgen from 
Pointwise (www.pointwise.com) and Gridpro from PDC 
(www.gridpro.com). At the same time, many commercial 
CFD applications have built-in and user-friendly mesh 
generators. (e.g.: Solidworks flow simulation from DSS 
inc. (www.solidworks.com), Flow-3D from Flowscience 
(www.flow3d.com) etc). 

5. Boundary Conditions 

While solving the Navier-Stokes and continuity equa-
tions, boundary conditions need to be applied. Boundary 
conditions for fluid flow are generally complicated due 
to coupling of velocity fields with pressure distribution. 
Incorrect, over or under boundary condition will lead to 
wrong results. 

In CFD analysis there are two types of requirements 
regarding boundary conditions. Some variables will take 

 

 

Figure 6. Some available mesh types. 

Copyright © 2011 SciRes.                                                                                AJCM 



M. S. KUMAR  ET  AL. 276
 

 

a constant value at the boundary (Dirichlet condition) 
while some variable may have constant gradients (Neu-
mann conditions). In one dimensions, as FEM, FDM and 
FVM provide identical final algebraic equations, there-
fore Dirichlet boundary conditions will give same results 
for all these methods [8]. Neumann boundary conditions 
are approximated before applying in FDM, but applied 
exactly in FEM and FVM.We can also apply mixture of 
Dirichlet and Neumann as a boundary condition. It im-
portant to note that at a given boundary, different variables 
may be prescribed with different boundary conditions. 

The general boundary conditions used in CFD studies 
include pressure inlet and outlet, velocity inlet and out-
flow conditions. Compressible flows boundary condi-
tions include mass flow inlet and pressure far-field. In 
addition with these there are special boundary conditions 
like inlet/outlet vent, intake/exhaust fan etc. Many com-
mercial solvers allow users to set boundary conditions 
easily (Figure 7). 

Wall boundary conditions are applied while using 
bound fluid and solid regions. In viscous flows, no slip 
(tangential velocity is equal to wall velocity and normal 
velocity is zero) conditions are usually applied. For tur-
bulent flows, wall shear stress and wall roughness can be 
defined. For moving wall boundary conditions sliding or 
moving mesh techniques are used [10]. 

In the case of symmetric flow field and geometry, us-
age of symmetry boundary conditions reduces computa-
tional effort during CFD simulation. No inputs for these 
boundary conditions are required but one has to define 
boundary locationscorrectly. Such boundary conditions 
are used in modelling slip walls in viscous flow. In case 
of periodically repeating flow pattern, periodic bounda-
ries reduce computational load in CFD simulations. 

6. CFD Solvers 

The process of discretization finally brings out set of 
 

 

Figure 7. Boundary conditions available in Flow 3D © com-
mercial flow solver v 9.3. 

coupled algebraic equations which may be linear or 
non-linear. Irrespective of the method of discretization 
these equations should be solved for a discrete solution 
using direct or iterative methodologies. Direct methods 
make use of standard methods of linear algebra. Matrix 
methods are employed in order to devise efficient solu-
tion techniques. Iterative methods involve guess-and- 
correct methodology till solution is converged. One of 
the simplest iterative methods is Jacobi method involving 
matrix diagonlization. Gauss-Seidel method or Liebmann 
method is twice as fast as the Jacobi method, makes use 
of successive displacements in solving set of linear equa-
tions. But owing to slow convergence, they are not used 
in practice. 

In any typical present day CFD simulations, there are 
multi-dimensions with larger number of grid points. There- 
fore both Jacobi and Gauss-Seidel becomes ineffective 
and expensive. Peaceman and Rachford (1955) proposed 
Alternating Direct Implicit (ADI) method which consid-
ers multidimensional problem as a set of low dimen-
sional problems [33]. Stone (1968) proposed Strongly 
Implicit Procedure (SIP) which involves matrix appro- 
ximation and Lower-Upper factorization [34]. This is used 
in some commercial CFD codes to solve non-linear 
equations in the case of multigrid methods.  

Patankar and Spalding (1972) proposed a class of it-
erative methods called Semi-Implicit Method for Pres-
sure-Linkage Equations (SIMPLE) for coupling pres-
sure-velocity for an incompressible flow [35]. This is 
available today in almost all commercial codes (Figure 
8). Followed by this, Van Doormal and Raithby (1984) 
proposed SIMPLEC (SIMPLE-Consistent) which omits 
less significant terms in velocity correction equation [36]. 
Issa (1986) proposed Pressure Implicit with Splitting of 
Operators (PISO) algorithm, which involves an addi-
tional pressure correction equation for speedy conver-
gence [37]. These solvers are readily available for the 
users in various commercial CFD software (Figure 9). 

At the same time, multigrid methods offer fastest nu-
merical algorithms for solving systems of equations [38]. 
Geometric multigrid methods offer optimal scaling and 
memory cost, but highly depending on geometric infor-
mation with trouble in plug-in black-box. Based on same 
principle, algebraic methods have been proposed with is 
robust and ideal without any other information. Unlike 
other methods, this is abstract, complex and involving 
repeat overhead costs. 

Saad and Schultz have developed general minimum 
residual method (GMRES) algorithm to solve nonsym- 
metric linear system of equations [39]. This algorithm is 
capable of non-linear scaling and preconditioning for 
better performance. It is now considered as very robust, 
memory intensive and easy to parallelize therefore used 
widely in many commercial codes. 
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Figure 8. SIMPLE algorithm. 
 

 

Figure 9. Solvers available in ANSYS © FLUENT V13.0.0. 
 

Irrespective of the procedures used, the solutions ob-
tained should be accurate (free from modelling and trun-
cation errors), consistent (to ensure refines mesh/time 

step yield more accurate results) and stable (single, mesh 
independent solution). 

7. Post-Processing 

The output of computational results of CFD study is usu-
ally colourful and vivid. Usually almost all CFD study 
results are presented graphically through one of the fol-
lowing categories: 

1) XY plots (time/iterative history of residuals and forces); 
2) 2D/3D contour plots (dynamic-, absolute-, and to-

tal-pressure, velocity, vorticity, eddy viscosity etc.); 
3) 2D/3D velocity vectors; 
4) 3D Iso-surface plots (pressure, vorticity magnitude, 

Q criterion etc.); 
5) Streamlines, pathlines and streaklines etc;  
6) Animations. 
Various techniques have been used to analyse and 

visualize the fluid parameters of the study. Early visuali-
zations made use of glyphs to represent vector fields in 
the data [40]. Later, line integral convolution (LIC) and 
texture based approaches [41] were used to depict realis-
tic flow. Feature based visualization were also used on 
extracted features directly to analyse flow data. Accurate 
core feature detection algorithms [42] were widely used 
in many commercial codes. During post processing de-
rived variables (vorticity, shear stress etc.) integral vari-
ables (forces, lift/drag coefficients) and turbulent quanti-
ties (Reynolds stresses, energy spectra) are calculated. 
Figure 10 shows a typical post processed results using 
CFD methodology [43]. 

Almost all commercial CFD applications have their 
built-in GUI visualization tools. In addition with them 
there are some standalone CFD visualisation tools like 
FIELDVIEW (ilight.com), TECPLOT (amtec.com), and 
ENSIGHT (ceintl.com) are available today. GNUPLOT 
(gnuplot.info) is another open-source popular plotting 
package in CFD industry. 

8. Conclusions 

The application domain of CFD is widening with the 
advancement with accurate numerical methods, compu-
tational models and visualisation techniques. CFD that 
was just meant for fluid dynamics, now it is used as re-
search tool (to test theoretical advances unavailable in 
the lab), educational tool (to teach thermal and fluid sci-
ences), design optimization tool (in aerospace and auto-
mobile industry). It has been also extended in studying 
chemical, mineral processing and civil, environmental 
engineering, power generation and even sports. 

With the exorbitant growth of computer simulation 
technology, CFD is evolving rapidly with more tech-  
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Figure 10. Top: flow trajectories past sphere at Reynolds number 150. Bottom: post processed results showing velocity con-
tours across a cross-section of a rotating solid helix in viscous fluid at zero Reynolds number [43]. 
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