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Abstract 
A probabilistic formalism, relying on Bayes’ theorem and linear Gaussian in-
version, is adapted, so that a monochromatic problem can be investigated. 
The formalism enables an objective test in probabilistic terms of the quanti-
ties and model concepts involved in the problem at hand. With this formal-
ism, an amplitude (linear parameter), a frequency (non-linear parameter) and 
a hyperparameter of the Gaussian amplitude prior are inferred jointly given 
simulated data sets with Gaussian noise contributions. For the amplitude, an 
analytical normal posterior follows which is conditional on the frequency and 
the hyperparameter. The remaining posterior estimates the frequency with an 
uncertainty of MHz, while the convolution of a standard approach would 
achieve an uncertainty of some GHz. This improvement in the estimation is 
investigated analytically and numerically, revealing for instance the positive 
effect of a high signal-to-noise ratio and/or a large number of data points. As 
a fixed choice of the hyperparameter imposes certain results on the amplitude 
and frequency, this parameter is estimated and, thus, tested for plausibility as 
well. From abstract point of view, the model posterior is investigated as well. 
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1. Introduction 

Fourier transformation tools are used to obtain information about spectra for a 
given data set. As any data has an uncertainty, Fourier transformation techniques 
can be supported by probabilistic theory captured by Bayes’ theorem [1] to 
improve scientific results and conclusions. The works [2] [3] demonstrate some 
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advantages of the probabilistic ansatz over a conventional approach.  
A common and misleading assumption in the field is that the Nyquist 

theorem determines the spectral band limitation. However, as the Nyquist 
frequency follows from finite data sampling, it can only be an upper limit but 
cannot be an estimator for the limit caused actually by a source and/or 
diagnostic throughput. A similar reasoning applies to the lower spectral limit. 
After a basic formalism has been derived, it could be shown in Ref. [4] that the 
band limitation can be well inferred from experimental data. Thereby, a linear 
Gaussian inversion technique was used to infer spectral amplitudes. Furthermore, 
a settings posterior was introduced which estimates non-linear parameters and 
hyperparameters of a problem. For instance, the spectral band limits and the 
uncertainty on the derived quasi-continuous spectrum, originating in non-probed 
Fourier coefficients, have been inferred jointly.  

For many applied analysis schemes, certain model assumptions and their 
implications are not tested but assumed to be valid with infinite trust. From 
scientific point of view, any analysis scheme should be tested given simulated 
noisy data for which all model assumptions are clear. Then, analysis results and 
model assumptions can be investigated which is achieved objectively by a 
probabilistic ansatz. If this can be carried out analytically, valuable information 
is available when only actual measured data are given for a scientific problem.  

The problem of a monochromatic source is a good example to show the 
powerfulness of Bayesian inference and to test model assumptions. In this work, 
the formalism derived in Ref. [4] is adapted to a monochromatic problem in 
Section 2 and applied to simulated data with different noise levels in Section 3. 
In addition, analytical and numerical investigations are carried out, so that the 
probabilistic findings can be understood in more detail. For example, a better 
signal-to-noise ratio improves the estimation of the frequency, while more data 
points compensate a worsened signal-to-noise ratio. The conclusion section can 
be found at the end. 

2. Adapted Probabilistic Formalism 

The formalism derived in Ref. [4] is adapted below to a monochromatic problem, 
involving one frequency parameter 1f  and one amplitude parameter 1S . In 
addition, a hyperparameter is at hand, entering in the normal prior for 1S . 
Abstractly, Bayes’ theorem reads then  

( ) ( )
( ) ( ) ( ) ( )

1 1 1

1 1
1 1 , 1 , , 1

| ,
, , | |S Pr S Pr S Pr

p S f
p S f p S p p f

p
σ σ σ=

D
D

D
      (1) 

with the joint posterior on the left-hand, the likelihood ( )1 1| ,p S fD  devided 
by the evidence, the amplitude prior ( )11 ,| ,S Prp S σ  the prior for the 
hyperparameter, and the prior for the frequency ( )1p f . 

The amplitude 1S  maps linearly to the data domain via the vector 
( )1 1f=M M  dependent on the frequency in a non-linear manner. The data D  
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with DN  entries are assumed to be acquired independently, and the 
measurement uncertainty of each data point follows a normal distribution with 
standard deviation Dσ . With these assumptions, the Gaussian likelihood 
becomes  

( )
( ) ( )

( )

T 1
1 1 1 1

1 1 1 22

1exp
2| ,

2π D

D

N
D

S S
p S f

− − − −  =
D M D M

D
Σ

Σ
          (2) 

with the covariance matrix 2
D D ijσ δ=Σ . The amplitude prior takes the form  

( )
( )

1

1

1

2 2
1 ,

1 , 1 2
,

1exp
2|

2π

S Pr

S Pr
S Pr

S
p S

σ
σ

σ

 −  =                  (3) 

for vanishing prior mean and variance 
1

2
,S Prσ . After some analytical operations, 

one obtaines the Gaussian amplitude posterior  

( )
( ) ( )

( )
1

1

1

2
1 1, , 1 1,

1 1 , 1 2
,

1exp
2| , ,

2π

Po S Po Po

S Pr
S Po

S S S S
p S f

σ
σ

σ

− − − −  =D       (4) 

conditional on 1f  and 
1 ,S Prσ . In the above equation, the posterior variance is 

given by ( )1 1

12 T 2 2
, 1 1 ,S Po D S Prσ σ σ

−− −= +M M , and the posterior mean reads 

1

2 T 2
1, , 1Po S Po DS σ σ= M D .  

From the remaining terms, the so-called settings posterior  

( ) ( ) ( )1
1 1 1

1

, 2 2
1 , 1, , , 1

,

1 1, | exp
2

S Po
S Pr Po S Po S Pr

S Pr

p f S p p f
K

σ
σ σ σ

σ
 =  ′  

D    (5) 

is derived which can be interpreted as Ockham’s razor with respect to 1S . This 
settings posterior has no general analytical solution, and, thus, the normalisation 
constant K ′  cannot be stated further. For the remainder of the paper, 

( )1 , 1S Prp σσ = ∆  and ( )1 1 fp f = ∆  are taken as uniform distributions. By this 
choice, ( ) ( )

1 , 1S PrK Kp p fσ′ =  can be used to investigate analytically and 
numerically the quantity  

1
1

1

, 2 2
1, ,

,

1exp .
2

S Po
K Po S Po

S Pr

p S
σ

σ
σ×

 =   
                (6) 

Finally, the evidence can be identified as  

( )
( )

T 1

1 22

1exp
2 .

2π D

D

N
f D

Kp
σ

− −  =
∆ ∆

D D
D

Σ

Σ
                (7) 

The constant ( )fK σ∆ ∆  varies with the chosen model H, including 
likelihood, priors, and the prior domains for 1f  and 

1 ,S Prσ . Hence, this 
constant is linked to the model posterior ( )|p H D  which is of importance, 
when the model is further abstracted, or a comparison with an alternative model 
is carried out. 
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3. Monochromatic Problem 

For a monochromatic even source, data sets with different noise levels are 
simulated, and the formalism derived in the previous section is applied. To 
explain the results found, analytical and numerical investigations are carried out. 
While this problem is treated abstractly in the following, the main results will be 
presented for two examples with low and high noise contribution to ease the 
presentation. 

(A) Simulated Data: Two Examples 
Data sets are modelled for the real-world interferometer found in Ref. [5] 

which achieves an optical path difference to obtain an interferogram. Formally, 
the interferogram ( )2 cos 2πi iV S fx c=  is simulated with the amplitude 

0.5S =  and the frequency f = 50 GHz. The optical path difference grid ix  is 
chosen as ( )129ix i x= − ∆  with 7 91, 8, DNi ==   with constant increment 

40 mx∆ = µ . Accordingly, the total length L = 31.56 mm and the length 
21.28 mmSSL =  of the single-sided region follow. Two noisy data sets 

( )20,i i i DD V σ= +  are generated with the noise levels Dσ  at 0.05 and 1.0 (see 
Figure 1). 

(B) Application of Formalism 
The linear mapping of the amplitude parameter is given by  

( )1, 12cos 2i iM f x c= π , yielding 1M . For the two simulated data sets, Figure 2 
shows 

 ( )11 1 ,| , ,S Prp S f σ D , varying in 1f  and for three values of 
1 ,S Prσ . Even for the 

high noise level case, 1,PoS  peaks close to 50 GHz, and the uncertainty 
1 ,S Poσ  

remains reasonably small. The peak has the full width at half maximum (FWHM) 
of about 8 GHz which is roughly twice as large as the classical spectral resolution 
stated by ( ) 4.7 z2 5 GHc L ≈ . High and low values of 

1 ,S Prσ  seem to have little 
effect on the results. 
 

 
Figure 1. Simulated interferograms V  (without noise, black) and D  (with noise, red). 

Formally, ( )2 cos 2S fx c= πV  was used with amplitude 2 1S = , frequency f = 50 GHz, 

and optical path difference grid x with increment 40 mx∆ = µ  (number of data points 

789DN = ). The data-like quantity ( )20, Dσ= +D V   resembles a sample of V , 

assuming a Gaussian noise component with variance 2
Dσ . Furthermore, the noise is 

chosen to be independent of x. (a) 0.05Dσ =  (low noise); (b) 1.0Dσ =  (high noise). 
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Figure 2. Conditional Gaussian amplitude posterior ( )11 1 ,| , ,S Prp S f σ D  with mean 

1,PoS  and standard deviation 
1,S Poσ . This posterior depends on the frequency 1f , prior 

standard deviation 
1,S Prσ  for 1S , and noisy interferogram data D . The conditional 

posterior is obtained for two sets D  (see Figure 1) modelled by a monochromatic 
source with the frequency f = 50 GHz, the amplitude S = 0.5 and the noise levels 

0.05Dσ =  (left column) and 1 (right column). The posterior mean (cyan) peaks at 
values of about 0.5 close to 50 GHz. The spectral FWHM of this peak accounts for about 
8 GHz. The posterior standard deviation (dashed-white for its multiples) increases with 
the noise level, as one would expect. Only small values of 

1,S Prσ  affect 1,PoS  when the 

noise level is high. 
 

The settings posterior ( )11 ,, |S Prp f σ D  is proportional to the quantity Kp×  
which takes very large values even on logarithmic scale and, thus, ln Kp×  is 
used in the following. For the two cases, ln Kp×  is shown in Figure 3(a) and 
Figure 3(b) versus the spectral parameter and for three prior values of 

1 ,S Prσ . 
All three cross-sections look similar, but close to 50 GHz the peak is highest for 
values near 

1 , 0.5S Prσ = . Identifying this global maximum by ( )max Kp× , the 
ratio ( )maxK Kp p× ×  takes reasonable numbers and is presented for the  
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Figure 3. Kp× , being proportional to joint posterior ( )11 ,, |S Prp f σ D , dependent on 

frequency 1f  and prior standard deviation 
1,S Prσ  given interferogram data set D  (see 

Figure 1) with low and high noise levels 0.05Dσ =  (left column) and 1 (right column), 
respectively. Since Kp×  takes large values, ln Kp×  is presented in (a) and (b). Deviding 

by the global maximum, the ratio ( )maxK Kp p× ×  becomes manageable from numerical 

point of view as shown in (c) and (d). This ratio peaks in the vicinity of 50 GHz and 

1, 0.5S Prσ =  (
1,log 0.3S Prσ = − ). The spectral width of ( )maxK Kp p× ×  increases with the 

noise level from about 10 to 200 MHz but remains well below the classical spectral 
resolution of about 4.75 GHz. The width with respect to 

1,S Prσ  remains constant and 

covers one order of magnitude. (a) ln Kp×  (low noise case) for broad spectral domain at 
three values of 

1,S Prσ ; (b) ln Kp×  (high noise case) for broad spectral domain at three 

values of 
1,S Prσ ; (c) ( )maxK Kp p× ×  (low noise case) for spectral domain 49.9 - 50.1 

GHz; (d) ( )maxK Kp p× ×  (high noise case) for spectral domain 49 - 51 GHz. 

 
relevant domains of 1f  and 

1 ,S Prσ  by Figure 3(c) and Figure 3(d) for both 
data sets. This ratio is narrow in the vicinity of 50 GHz and in the domain 

1 ,0.3 3S Prσ≤ ≤ . Furthermore, the peaking has a spectral width of about 10 MHz 
and 200 MHz for the low and high noise case, respectively. When interpreted as 
spectral resolution, this width is smaller by several orders of magnitude with 
respect to its classical counterpart of about 4.75 GHz. 

(C) Analytical and Numerical Investigations 
To have further inside in the results, the conditional amplitude posterior and 

Kp×  are analytically investigated. In order to do so, the noise contribution in the 
data is neglected, meaning that iD  is replaced with the noise-less interferogram 

( )2 cos 2πi iV S fx c= . This allows the tracking of the dependencies of the 
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posteriors on the original amplitude S and frequency f, noise level Dσ , and 
number of data points DN . Furthermore, a second factorisation  

( ) ( ) ( )1 1 11 , 1 , ,, | | , |S Pr S Pr S Prp f p f pσ σ σ=D D D  can be justified. Parallel to this 
investigation, numerics and conditional posteriors are presented. 

1) Conditional Amplitude Posterior 
Starting point is the variance 

1

2
,S Poσ  of the conditional posterior  

( )11 1 ,| , ,S Prp S f σ D  (see Equation (4)). Formally, one finds for the inverse  

1
1

T
2 1 1
, 2 2

,

1 .S Po
D S Pr

σ
σ σ

− = +
M M                      (8) 

As long as the spatial sampling is well enough, one can use the approximation  

T 1 1
1 1

1

1 1

4 cos 2π cos 2π

2 1 cos 2π sinc 2π ,

DN

i i
i

D SS

f fx x
c c

f fN L L
c c

=

   =    
   

    ≈ +    
    

∑M M
          (9) 

as shown by Equation (A1), to get the posterior variance  

( )
1

1

2
2

, 2
1 1

2
,

2
.

1 cos 2π sinc 2π
2

D D
S Po

D
SS

D S Pr

N
f fL L
c c N

σ
σ

σ
σ

=
   + +   
   

       (10) 

This variance increases quadratically with the noise level and reduces with the 
number of data samples. Thus, more data points per spatial unit can compensate 
the noise contribution, at least partly. However, this assumes that the noise is 
independent of the data sampling.  

The modulated sinc function in the denominator of Equation (10) depends on 

1f , L and SSL  for which the interferogram is available. The sinc function 
becomes unity and vanishes for small and large frequencies, respectively. For 
instance, since both data examples share the same spatial domain, the sinc 
function is close to 0 above about 20 GHz. The amplitude prior influences 

1

2
,S Poσ , when the ratio ( )1

2 2
,2D D S PrNσ σ  becomes larger than 1 which is 

obtained for a large noise level, a small value of 
1 ,S Prσ  and/or few data points.  

For the posterior mean, 

( )
( )

1

1

1
2

, =1T
1, 1 12 2

1 1
2

,

2 cos 2π 2

1 cos 2π sinc 2π
2

DN

i i D
S Po i

Po
D D

SS
D S Pr

fV x N
cS f

f fL L
c c N

σ

σ σ
σ

 
 
 = =

   + +   
   

∑
M V   (11) 

follows, leaving aside the noise contribution but the uncertainty on the mean is 
still captured by 

1 ,S Poσ . With the approximation (A1) and the trigonometric 
identity (B1), one can resolve  

( )

1

1 1 1 1

1, 1 2
1 1

2
,

cos π sinc π cos π sinc π
.

1 cos 2π sinc 2π
2

SS SS

Po
D

SS
D S Pr

f f f f f f f fL L L L
c c c cS f S

f fL L
c c N

σ
σ

− − + +       +       
       =

   + +   
   

 (12) 
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Indeed, one finds the original amplitude 1,PoS S=  for 1f f=  and prior 

values with the condition ( )
1

2 2
,2D D S PrNσ σ . Furthermore, due to  

1 1cos π sinc π SS
f f f fL L

c c
− −   

   
   

 there is a peaking of ( )1, 1PoS f  in the  

vicinity of 1f f≈  with the FWHM determined by both trigonometric 
arguments. Away from f, the oscillating amplitude drops like ( )11 f f−  due to 
the sinc function which can be seen in Figure 2.  

2) Conditional Posterior for f1 
Now the information is available to investigate ( )11 ,, |S Prp f σ D . Neglecting 

the noise, the triple product in the exponent of the exponential in Kp×  reads  

1 1

1

T T
2 21 1

1, , 1, ,2 2

2 2
2 1 1

, 4

2
1 1

1 1
2 2

41 cos π sinc π
2

cos π sinc π .

Po S Po Po S Po
D D

D
S Po SS

D

SS

S S

N S f f f fL L
c c

f f f fL L
c c

σ σ
σ σ

σ
σ

− ≈

 − −   =     
   

+ +    +    
   

M V M V

        (13) 

The global maximum is close to 1f f= , and, assuming a sufficiently large 
frequency f, one gets the approximation  

2
1 1

2 2
1 1

cos π sinc π

11 π π
3

SS

SS

f f f fL L
c c

f f f fL L
c c

 − −    
    

    
 − −   ≈ − −    

     

              (14) 

when the Taylor series expansions ( ) 2sinc 1 3!z z≈ −  and ( ) 2cos 1 2z z≈ −  
are used. Then,  

( )
1 1

22 2
22 2 2 2

1, , 1, , 14

41 1 π 11
2 2 3

D
Po S Po Po S Po SS

D

N SS S f f L L
c

σ σ
σ

−
    ≈ − − +    

     
  (15) 

remains, and the term which is independent on 1f f−  takes very large 
numerical values and is treated in more detail in the next subsection. The 
remaining term can be rewritten by a quadratic exponent of a Gaussian with 
posterior mean 1,Pof f=  and square root of the variance  

1
1

1 22

, 2 2
,

1 2

1 2 2 2

1 1 3
2 π 3 1

1 3 1 ,
π 2 3 1

D
f Po

S Po D SS

D

D SS

c
N S L L L

c
LSN L L

σ
σ

σ

σ

 
=  

+ 

 
≈  

+ 

             (16) 

using Equation (10) for large frequencies and ( )
1

2 2
, 2S Pr D DNσ σ . This 

uncertainty increases with the noise but decreases with the square root of the 
number of data points per spatial unit, the signal level and the spatial domain 
covered. For the data set examples, one inserts 31.56L =  mm, 21.28SSL =  
mm, 789DN = , 0.1D Sσ =  and 2 to find the astonishing numbers 

1 , 8.6f Poσ =  
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and 171.9 MHz, respectively. This explains the narrowness of ( )11 ,, |S Prp f σ D  
with respect to 1f  as shown in Figure 3(c) and Figure 3(d). 

In fact, 
1 ,S Poσ  changes with 1f  on a GHz, but the peaking in 1f  is of the 

order of MHz. Hence, the factorisation  

( ) ( ) ( )1 1 11 , 1 , ,, | | , |S Pr S Pr S Prp f p f pσ σ σ≈D D D  with the conditional Gaussian 
posterior  

( )

( )

( )
1

1

1

2
1 1,

2
,

1 , 1 2
,

1exp
2

| ,
2π

Po

f Po

S Pr
f Po

f f

p f
σ

σ
σ

 −
 −
 
 =D                (17) 

and 

( ) ( )
1

1
1 1

1

2 2
2

, 4
1 2,

, ,
,

41exp
2

| 2π

D
S Po

S Po D
S Pr f Po

S Pr

N S

p
K

σ
σ σ

σ σ
σ

 
 
 =D        (18) 

is justified. Thereby, 
1 ,S Poσ  needs to be taken at 1 1,Pof f= . The remaining 

probability ( )1 , |S Prp σ D  is investigated in the next subsection. 
Numerics  
Because the variance 

1

2
,S Poσ  changes in 1f  on GHz scale but  

1

2
1, , 1,

1exp
2 Po S Po PoS Sσ − 
  

 on MHz scale, only the exponential needs to be taken  

into account for the determination of 1,Pof  and 
1 ,f Poσ . Furthermore, one faces 

large numbers, and, hence, the exponent is dealt with directly. 
At a given 

1 ,S Prσ , the frequency at which the maximum of the exponent 
occurs is identified as the posterior mean ( )11, ,Po S Prf σ . The posterior standard 
deviation ( )1 1, ,f Po S Prσ σ  is obtained when the ratio of the exponent to its  

maximum at 1,Pof  reads 
1 1

2 2
1, , 1, 1, , 1,

1 1max 1 2
2 2Po S Po Po Po S Po PoS S S Sσ σ− −  = − 

 
. For  

both data sets, the ratios are shown in Figure 4(a) and Figure 4(b) in the 
vicinity of the peak. While the uncertainty of 1,Pof  and, hence, the width of the 
Gaussian augment with the noise level (see also Figure 5(a) and Figure 5(b)) as 
described by Equation (16), f remains included in the 2-

1 ,f Poσ  band centred at 

1,Pof . Furthermore, the choice of 
1 ,S Prσ  affects 1,Pof  and 

1 ,f Poσ  only for small 
values (see Figure 5(a) and Figure 5(b)). 

3) Posterior for Prσ1,  
After the factorisation, one combines Equations (16) and (18) like 

( ) ( )
1

1
1 1

1

2 2
2

, 4
1 2,

, ,
,

2 2

2 2

41exp
2

| 2π

3
2π 3

D
S Po

S Po D
S Pr f Po

S Pr

D

D SS

N S
Pp
K K

P c L
K N S L L L

σ
σ σ

σ σ
σ

σ

 
 ′  = =

=
+

D
     (19) 

with the important term 
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Figure 4. Ratio of exponent to its maximum dependent on frequency 1f  and keeping 
constant prior standard deviation 

1,S Prσ . For the data set with low noise level 

( 0.05Dσ = , left), the peaking is more narrow than the one for the high noise level 
( 1Dσ = , right). The maximum location and the width of the ratio are used to estimate 

posterior mean ( )11, ,Po S Prf σ  and standard deviation ( )1 1, ,f Po S Prσ σ . (a) Ratio for low 

noise data set at three values of 
1,S Prσ . For 

1, 0.5S Prσ = , 1, 50.016Pof =  GHz and 

1, 8.5f Poσ =  MHz are extracted which are consistent with 50 GHz used to simulate the 

data; (b) Ratio for high noise data set at three values of 
1,S Prσ . For 

1, 0.5S Prσ = , 

1, 50.167Pof =  GHz and 
1, 173f Poσ =  MHz are estimated. 

1,f Poσ  and the deviation of 

1,Pof  from 50 GHz increase with the noise level. Furthermore, small prior values for 

1,S Prσ  affect 
1,f Poσ . 

 

 
Figure 5. Posterior mean 1,Pof  and standard deviation 

1,f Poσ  for frequency 1f  

dependent on prior standard deviation 
1,S Prσ  for noise levels 0.05Dσ =  (left) and 1 

(right). The original frequency f = 50 GHz (red line) is included usually in the band 

1,1, 2
PoPo ff σ± . However, 

1,Pofσ  increases from about 10 MHz to 200 MHz given both 

noise levels. The posterior ( )1, |S Prp σ D  (bottom row) changes little for the different 

noise levels and has a global maximum close to S = 0.5 (dashed-black). (a) 
1,1, 2

PoPo ff σ±  

for 0.05Dσ = ; (b) 
1,1, 2

PoPo ff σ±  for 1Dσ = ; (c) ( )1, |S Prp σ D  for 0.05Dσ = ; (d) 

( )1, |S Prp σ D  for 1Dσ = . 
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1

1

2 2
2

, 4

,

41exp
2

.

D
S Po

D

S Pr

N S

P
σ

σ
σ

 
 
 =                    (20) 

The exponent of P  becomes  

1

1

2
2

, 2

2
1, 1,2

, 1 cos 2π sinc 2π
2

D
S Pr

D

Po Po D
S Pr SS

D

N S

f f
L L

c c N

σ
σ

σσ
    
+ +    

    

        (21) 

which is monotonically rising in 
1 ,S Prσ  from 0 to about 2 2

D DN S σ . In case 
( )

1

2 2
, 2S Pr D DNσ σ>  and 1DS σ = , the number of data points dominates. For 

the two examples with 789DN = , large numbers ( )exp 78900  and ( )exp 197  
are at hand as could be seen in Figure 3(a) and Figure 3(b).  

As the exponent vanishes for 
1 , 0S Prσ = , 

1 ,1 S Prσ  and, thus, P and P′  
diverge. Hence, this global maximum should be excluded by a proper choice for 
the prior of 

1 ,S Prσ . Doing so, P has the global maximum GMaxP  at  

1

1 22 22 2
2

, , 21 2
2 2 2

D D
S Pr GMax

D D

S S
N N S
σ σ

σ
 

= − + − 
 

            (22) 

supposed a large 1,Pof . Interestingly, DN  reduces the noise impact drastically, 
so that even for elevated noise levels D Sσ ≈ , the maximum is still given by S 
with minor corrections.  

The uniform prior ( )1 ,S Prp σ  may be finite for the domain 
1 1, , , ,S Pr L S Pr Uσ σ≤ , 

and the maximum of P in this domain is denoted by MaxP . Then, the peaking 
can be made more obvious by  

1 1 1

1
1 1

2 2 2
, , , , ,

2 2
2 2,

, , ,

1exp
2

2 2

S Pr Max S Pr Max S Pr

Max S Pr D D
S Pr S Pr Max

D D

P S
P

N N

σ σ σ
σ σ σσ σ

 
 − = −
 

+ + 
 

      (23) 

after some algebra for a large 1,Pof . With the normalisation of the above 
equation  

( )
, ,1

1 , 1 11
, ,1

, , , , ,d , ,
S Pr U

S Pr
S Pr L

S Pr S Pr L S Pr U
Max

P K
P

σ

σ
σ

σ σ σ=∫             (24) 

the posterior becomes  

( )1
,1

,
1| .
S Pr

S Pr
Max

Pp
K Pσ

σ =D                   (25) 

In case, the prior is finite for the domain 
1 1 1, , , , , ,S Pr L S Pr GMax S Pr Uσ σ σ≤ ≤ , so that 

Max GMaxP P= , one can set ( )
1

2 2 2
, , 2S Pr Max D DS Nσ σ= − . This reveals the simple 

forms  
2

2

2
2

1exp
2

2

D

D
GMax

D

D

N S

P

S
N

σ

σ

 
− 

 =

−

                    (26) 
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and 

1
1

2
2

2

2
2,

,

2 1exp 1
2

2

D

D

GMax S Pr D
S Pr

D

S
NP S

P
N

σ

σ σσ

  
−   

  = −
  

+  
   

          (27) 

of Equation (23). With the above expression and Equation (19), the constant  

, ,1 1

2

22 2

2 2 2
2

1exp
23

2π 3
2

S Pr S Pr

D

DD
GMax

D SS D

D

N S
c LK P K K

N S L L L
S

N

σ σ

σσ

σ

 
− 

 ′= =
+

−

   (28) 

follows with proper unit Hz. K depends in a complicated way on the noise level, 
the signal, the number of data points, the spatial domain for which the data is 
acquired, and the limits 

1 , ,S Pr Lσ  and 
1 , ,S Pr Uσ . For the two examples, one gets 

( )ln Hz 78910GMaxP′ =  ( 0.05Dσ = ) and ( )ln Hz 214GMaxP′ =  ( 1Dσ = ).  
Numerics 
Starting point is Equation (19) which is rewritten like  

( )

( )

1

1
1 1

1

,

1 2, 2
1, , 1, ,

,

ln | ln ln

1ln max exp 2π
2

S Pr

S Po
Po S Po Po f Po

S Pr

p K P

S S

σ

σ
σ σ

σ
−

′+ =

   =        

D

       (29) 

to handle large numerical values. Thereby, 
1 ,S Poσ  is evaluated at 1 1,Pof f= . 

The far right-hand side of the above equation is numerically available, and the 
maximum ln MaxP′  at 

1 , ,S Pr Maxσ  and the normalisation 
,1S Pr

Kσ  can be 
determined for the domain from 

1 , ,S Pr Lσ  to 
1 , ,S Pr Uσ . 

Choosing for the moment 
1

2
, , 10S Pr Lσ −=  and 

1

3
, , 10S Pr Uσ = , so that the 

global maximum GMaxP′  is included, the above formalism yields  
( )ln Hz 76861GMaxP′ =  (213) and 

,1
6.32

S Pr
Kσ =  (6.36) for the data set  

simulated with 0.05Dσ =  (1). For both examples, the order of magnitude of 
( )ln HzGMaxP′  is well described by Equation (26).  
For the data sets, both GMaxP′  are located at 

1 , , 0.499S Pr GMaxσ =  and 0.501 
which is in the vicinity of S (see Figure 5(c) and Figure 5(d)) and is in 
agreement with expression (22). For the different noise levels, ( )1 , |S Prp σ D  has 
a similar shape; the probability reduces drastically below 

1 , ,S Pr GMaxσ  but 
remains finite above up to 

1 , 10S Prσ = , at least. 
4) Model Posterior 
The posterior of the model with uniform priors for 

1Sσ  and 1f  is given by  

( ) ( )( )
,1

1 1, , , , 1, , 1, ,

| .S PrMax

S Pr U S Pr L Pr U Pr L

P K
p H

f f
σ

σ σ

′
=

− −
D            (30) 

This posterior weighs the constants obtained with respect to the spectral and 
amplitude domains. Hence, ( )|p H D  increases with the constants in the 
numerator and smaller domains in the denominator. When one investigates 
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Figure 3(a) and Figure 3(b), it is obvious that ( )|p H D  increases, when 

1, ,Pr Lf  and 1, ,Pr Uf  are chosen to include 1,Pof  and are separated by few GHz 
or even some 100s MHz. Similarly, choosing 

1 , ,S Pr Lσ  and 
1 , ,S Pr Uσ  to include 

the global maximum GMaxP′  at 
1 , ,S Pr GMaxσ  (see Figure 5(c) and Figure 5(d)) 

elevates ( )|p H D . Furthermore, ( )|p H D  has a global maximum when 

1 , ,S Pr Lσ  and 
1 , ,S Pr Uσ  approach 

1 , ,S Pr GMax Sσ ≈  from either side. This is 
numerically confirmed by scanning 

1 , ,S Pr Lσ  and 
1 , ,S Pr Uσ  over several orders of 

magnitude and evaluating the model posterior for the two data sets (see Figure 
6(a) and Figure 6(b)). 

(D) Joint Posterior and Marginal Posteriors for S1 and f1 
Because the model posterior peaks at 

1 , ,S Pr GMaxσ , the marginal posterior for 

1f  is simply given by the Gaussian ( )1 11 , , ,| ,S Pr S Pr GMaxp f σ σ= D  with posterior 
mean 1,Pof  and standard deviation 

1 ,f Poσ  (see Section III C2 and Figure 5(a) 
and Figure 5(b)). Furthermore, the joint posterior  

( ) ( ) ( )1 1 11 1 , , 1 1 , , 1 , ,, | , | , , | ,S Pr GMax S Pr GMax S Pr GMaxp S f p S f p fσ σ σ=D D D   (31) 

can be evaluated and is shown for both data sets in Figure 7(a) and Figure 7(b). 
This joint posterior peaks close to S and f used to simulate the data, and its width 
increases with the noise level. However, S and f are usually located inside the 
peak, and, hence, one can trust the results within the posterior uncertainties.  

The marginal posterior for 1S  is obtained by the marginalisation 

( ) ( )1 11 , , 1 1 , , 1| , , | , d .S Pr GMax S Pr GMaxp S p S f fσ σ= ∫D D           (32) 

The above integration is performed numerically, and the results are shown in 
Figure 7(c) and Figure 7(d) for both data sets. Another way to achieve the 
marginalisation is to draw samples for 1f  from ( )11 , ,| ,S Pr GMaxp f σ D , and for 
each of those samples draw samples for 1S  from ( )11 1 , ,| , ,S Pr GMaxp S f σ D . 
Histograms of these posterior samples are given in Figure 7(c) and Figure 7(d).  
 

 
Figure 6. Model posterior ( )|p H D . The stated model uses a uniform prior for the 

prior standard deviation 
1,S Prσ  in the domain from 

1, ,S Pr Lσ  to 
1, ,S Pr Uσ . As these limits 

approach 
1, , 0.499S Pr GMaxσ ≈  for 0.05Dσ =  and 0.501 for 1Dσ =  (dashed-white), the 

posterior increases. Thereby, ( )
1

2 2
, , 2S Pr GMax D DS Nσ σ≈ −  is closely linked with the 

original amplitude S = 0.5. (a) Low noise case 0.05Dσ = ; (b) High noise case 1Dσ = . 
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Figure 7. Joint posterior ( )11 1 , ,, | ,S Pr GMaxp S f σ D  and marginal posterior  

( )11 , ,| ,S Pr GMaxp S σ D  of frequency 1f  and amplitude 1S  for low noise ( 0.05Dσ = , left) 

and high noise data set ( 1Dσ = , right). The joint posterior peaks close to the original 
values S = 0.5 and f = 50 GHz used to simulate the data sets. For the higher noise level, 
the posterior width increases, and the location of the global maximum separates further 
from S and f. By numerical integration, the marginal ( )11 , ,| ,S Pr GMaxp S σ D  is evaluated, 

and its shape is close to a normal distribution. This is confirmed by a second approach 
which uses 105 samples from the joint posterior to estimate the marginal posterior mean 
and standard deviation for 1S . The histogram of the samples is given as well. (a) 

( )11 1 , ,, | ,S Pr GMaxp S f σ D  for low noise level; (b) ( )11 1 , ,, | ,S Pr GMaxp S f σ D  for high noise 

level; (c) ( )11 , ,| ,S Pr GMaxp S σ D  for low noise level. The marginal mean and standard 

deviation read 0.4998 and 0.0013, respectively; (d) ( )11 , ,| ,S Pr GMaxp S σ D  for high noise 

level. One finds that the marginal mean and standard deviation account for 0.505 and 
0.026, respectively. 
 
Evaluating the mean and standard deviation from these samples approximates 

( )11 , ,| ,S Pr GMaxp S σ D  by a Gaussian. In doing so for the data set with 0.05Dσ =  
(1), the marginal posterior mean 1, , 0.4998Po MaS =  (0.505) and standard 
deviation 0.0013 (0.026) are obtained. Both normal distributions are good 
approximations for ( )11 , ,| ,S Pr GMaxp S σ D  (see Figure 7(c) and Figure 7(d)). 

4. Conclusions 

The presented work investigates a monochromatic problem with an adapted 
version of Bayes’ theorem to infer an amplitude parameter, a frequency 
parameter and a hyperparameter which acts on the amplitude prior only. The 
amplitude at a given frequency is a parameter which has a linear mapping to the 
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data domain. If the measurements have a normal noise contribution (Gaussian 
likelihood) and the amplitude prior is chosen to be Gaussian, an analytical linear 
inversion technique is enabled. The amplitude posterior, being conditional on 
the frequency and prior information, has similiarities with the result of a 
conventional Fourier transformation analysis approach. However, the estimation 
of the frequency reveals a well localised domain which is in accordance with the 
measured data. The corresponding posterior for the frequency is orders of 
magnitude narrower than the width of the convolution function used by 
conventional approaches to estimate the spectral resolution. The prior 
information captured by one hyperparameter is tested as well, and its posterior 
peaks over a one order of magnitude and is very robust for significantly different 
noise levels on the data.  

The findings for the monochromatic problem are investigated analytically. 
This reveals, for instance, the influence of the signal-to-noise ratio, the amount 
of data points and the spatial domains covered by the measurements on the 
results. The presented approach can be followed to examine more complex 
problems which involve more than one frequency and one amplitude and other 
diagnostic imperfections like a variable offset. Since this offset has a linear 
correspondence to the data domain, it would enter in the conditional amplitude 
posterior. Any non-linear parameter and additional hyperparameter would be 
estimated by the joint settings posterior specific for a certain problem. In doing 
so, a profound understanding of model implications could be established in 
analytical terms for applications relying on Fourier transformations. This is 
essential for designing a diagnostic for a given problem with somewhat known 
signal-to-noise ratio and hardware limitations, or for comparing results of 
different models in an objective way when a data set is given and, for example, 
the number of contributing frequencies is unknown. 
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Appendix A: Integral Approximation 

The spatial grid ix  with [ ]1,i N∈  may be given by the set 0ix i x x= ∆ +  of 
uniformly distributed locations separated by the constant increment x∆ , so that 

1 DSx L= −  and N DSx L L= − + . Then, the sum  

1 2
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1 cos 2π cos 2π d
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2 2π 2 2π
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DS DS
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i i
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L L
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L L L L
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      = +      ∆ ∆      
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2 SS
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+ +     +     
     

  (A1) 

is approximated by an integral over the spatial domain using the trigonometric 
identities (B1) and (B2). The approximation reveals two modulated sinc 
functions with a spatial and a spectral dependence. The spectral dependence is 
due to the sum and difference frequencies 1 2f f f− = −  and 1 2f f f+ = + , 
respectively. Spatially, the modulation depends on the length 2SS DSL L L= −  of 
single-sided domain which is present on side only. The spatial dependence of the 
sinc function is given by the length L of the total domain covered. 

Appendix B: Trigonometric Identities 

The trigonometric identities are  

( ) ( ) ( ) ( )1cos cos cos cos ,
2

x y x y x y= − + +              (B1) 

( ) ( )sin sin 2cos sin .
2 2

x y x yx y + −   − =    
   

            (B2) 

 

https://doi.org/10.4236/jamp.2019.74054
https://doi.org/10.1007/978-1-4684-9399-3
https://doi.org/10.1155/2017/9265084
https://doi.org/10.1063/1.4962809

	Analytical and Numerical Investigations of Probabilistic Monochromatic Problem
	Abstract
	Keywords
	1. Introduction
	2. Adapted Probabilistic Formalism
	3. Monochromatic Problem
	4. Conclusions
	Acknowledgements
	Conflicts of Interest
	References
	Appendix A: Integral Approximation
	Appendix B: Trigonometric Identities

