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Abstract 
 
Interacting Multiple Model (IMM) estimator can provide better performance of target tracking than mono 
model Kalman filter. In multi-sensor system ordinarily, availability of measurement from different sensors is 
stochastic, and it is difficult to construct uniform global observation vector and observation matrix appropri-
ately in existing method. An IMM estimator for uncertain measurement is presented. By the method invalid 
measurement is regarded as outlier, and approximation is reconstructed by feedback of system state estima-
tion of fusion center. Then nominally generalized certain measurement can be obtained by substituting re-
constructed one for invalid one. The generalized certain measurement can be centralized to construct global 
measurement and provided to IMM estimator, and existing multi-sensor IMM estimation method is general-
ized to uncertain environment. Theoretical analysis and simulation results show the effectiveness of the 
method. 
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1. Introduction 
 
In many applications of multi-sensor system, such as 
target tracking and surveillance, intelligent robot or 
wireless sensor networks (WSN), a group of heteroge-
neous sensors with different function and performance 
are integrated to operate cooperatively. Typical sensors 
include radar, vision-based sensor (including infrared, 
mono vision and stereo vision), acoustic or laser radar 
(lidar), and differ in field of view, resolution, range and 
procession interval. For instance, radar can measure the 
accurate distance of target in radial direction and support 
all-weather operation, but it has coarse measurement in 
angular direction. Reversely, vision-based sensor has 
sufficient lateral resolution, but the distance measure-
ment is less accurate than radar. To estimate the state 
such as location, size, pose and motion information of 
maneuvering target accurately and reliably, multi-sensor 
fusion is necessary to exploit the advantages of each 
sensor [1–3]. 

Because of variant target maneuvering such as con-
stant acceleration, swerving or constant speed cruising, 
and the transition between them, there are many dynamic 
models to characterize different target motion [4,5]. Be-
cause mono model tracking method can not adapt to the 
target maneuver correctly, then many multiple model  

approaches are available for target tracking and IMM 
method is used widely [6–8]. In IMM estimator, original 
measurement information, including measurement data 
and characteristic of precision, is centralized to construct 
global measurement, and filtered with multiple models 
and combined to obtain uniform optimal target state es-
timate. It is assumed in existing IMM algorithm that ob-
servation is available and covariance of measurement is 
known already. Because of various disturbances in 
measurement and communication, it is untenable to 
multi-sensor system that each sensor is valid at any time. 
In fact, uncertainty of measurement is one of the charac-
teristics of multi-sensor system [9]. Because availability 
of measurement is not expressed, existing measurement 
fusion algorithm of IMM estimator is incomplete and 
inappropriate to apply without improving. Therefore, it is 
quite necessary to discuss IMM estimator for uncertain 
measurement. The estimate method of two sensors fusion 
with partial observation losses is discussed by linear ma-
trix inequality method [10,11]. According to the equation 
of invalid measurement and valid measurement with in-
finite variance，the generalized measurement is recon-
structed to denote the precision and availability of meas-
urement [12]. 

An optimal measurement fusion IMM estimator is dis-
cussed in this paper, and a suboptimal one is brought 
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forward to be convenient for numerical calculation of 
practical application. In the method invalid measurement 
is regarded as outlier, and generalized measurement is 
reconstructed based on target state feedback of IMM 
estimator. 

…… 
 

 
2. IMM Estimator of Certain Measurement 

Fusion 
 
Presuming there are n independent sensors and r models 
utilized in multi-sensor tracking system, target state and 
measurement equation of model i and sensor j are 
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where Xi(k) is state vector, Φi(k-1) is state transfer matrix, 
Γi(k-1) is process noise input matrix of model i at time k. 
Zi

j(k) is observation vector of model i and sensor j at 
time k with corresponding observation spaceΩi

j, H
i
j(k) is 

observation matrix. Process noise {Wi(k)} and measure-
ment noise {Vi

j(k)} are zero-mean white Gaussian noise 
sequence with covariance matrices Qi and Ri

j respec-
tively, and Qi is symmetrical nonnegative matrix, Ri

j is 
symmetrical positive matrix. Then calculation process of 
multi-sensor IMM estimator can be described as follows. 

Step 1: Global measurement constructing 
The first step of multi-sensor IMM estimator is con-

structing global measurement from sensors. It is assumed 
in existing measurement fusion algorithm that measure-
ment of each sensor is valid constantly, then uniform 
global observation vector can be constructed by central-
izing all measurement to form global measurement vec-
tor Zi(k)∈Ωi [13,14], where 
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Global observation equation corresponding to model i 
is expressed as 
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Figure 1. Constructing of global measurement. 

 
Hi(k) is global observation matrix, Vi(k) and Ri(k) is ob-
servation noise and covariance corresponding to model i 
respectively. Equations (1) and (3) constitute state trans-
fer and observation equation of Kalman filter based IMM 
estimator. 

Step 2: Model interacting 
Let pij denote Markov transition probability and μi(k) 

denote the probability of the mode i at time k, model 
interacting is calculated as 
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where i=1,2,..,r, 
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is mixing probabilities, and 
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is normalizing factor. 
Step 3: Model filtering 
Based on r models from (4) and corresponding to 

global measurement Zi(k), target state and covariance 

estimation  is calculated by Kalman 

filters. 
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State prediction equations are 
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Filtering updating equations are 
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Step 4: Model probability updating 
The likelihoods of each model are calculated as 
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where Vi(k) is residual of model i with zero mean and the 
covariance Si(k), N is Gaussian distribution. Then prob-
abilities of each model are calculated as 
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Step 5: State estimation and covariance fusion 
State estimation and associated covariance are com-

bined by 
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i.e. total state estimation is probabilistic weighted sum-
mation of every filters. 

The method above differs from ordinary IMM estima-
tor in Step 1 where global measurement is constructed by 
multiple sensors. Because of the presuming that meas-
urement of any sensor is valid constantly, the method is a 
certain algorithm. 

To multi-sensor tracking system with different perform-
ance and complicated environment, uncertainty of meas-
urement is one of the characteristics, and it is necessary to 
discuss IMM estimator for uncertain measurement. 
 
3. IMM Estimator for Uncertain 

Measurement 
 
3.1. Optimal Uncertain IMM Estimator 
 
To any sensor i, it is possible that some element zi

i,j(k) of 
observation vector Zi

i(k)∈Ωi
i is invalid at time k. When 

invalid measurement exists in multi-sensor system, if 
certain method is applied to construct global measure-
ment by (4) and (5), because availability of measurement 

is not considered in certain method and all measurement 
data are regarded as valid ones, the global observation 
vector Zi(k) is incorrect and filters of IMM estimator can 
perform incorrectly. 

The problem above can be resolved by only combin-
ing valid measurement data to construct new observation 

space  and new global observation equation. 
Because of any measurement of any sensor being invalid 
by any possibility, the type and amount of invalid data 

are uncertain, i.e. to any , Zi(k)∈Ωi′ may be 
valid. Thus constructing different Zi(k) and observation 
equation in different Ωi′ is required in each filter and 
each filtering step. Apparently, to satisfy all the condi-
tions of uncertain measurement, the amount of filters 

corresponding to model i is , and the total 
amount of filters in IMM estimator will be 
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Then extreme complexity and inconvenience is resulted, 
and the resolution is difficult to be applicable. 

Because there is no parameter to express availability 
of measurement in fusion filters of IMM estimator, ap-
parently existing method can not solve the problem of 
invalid data in uncertain measurement appropriately. 
Then it is necessary to generalize existing method. If 
uncertainty of measurement is avoided by reconstructing 
the measurement, existing filtering method of IMM es-
timator can be applicable. 

In state estimate equation of Kalman filter (14), the 

proportion of Zi(k) and  in  is 

determined by filter gain Ki(k). If Ki(k) reduces, the pro-

portion of Zi(k) will reduce and the one of  

will increase. Ki(k) is determined by Ri(k) and Pi(k, k-1) 
according to (12) and (13). If Ri(k) increase, Ki(k) will 
reduce and the proportion of Zi(k) will reduce also. In 
limit case, when ||R(k)||→∞, it is satisfied that ||K(k)||→0, 
and Equation (7) will be 
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here Zi(k) has no effect on optimal estimation of target 
state, and it is equivalent to that Zi(k) is invalid when 
||Ri(k)||→∞. Then Ri(k) can indicate the available extent 
of measurement. Ri(k) only denotes precision of valid 
measurement in existing algorithm, and is necessary to 
be generalized. 

To evaluate availability of measurement, availability 
function of zi

i,m(k), i.e. component m of Zi
i(k) corre-

sponding to sensor i at time k is defined as 
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Then Ri
i(k)=[ri

i,lm(k)] of Zi
i(k) can be generalized as 
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where a(zi
i,l(k), t) and a(zi

i,m(k), t) is availability function 
of component i and j of Zi

i(k). It means that when zi
i,l(k) 

and zi
i,m(k) are valid, availability functions equal to 1 and 
),(

~
tki

iR =Ri
i(k). When zi

i,l(k) or zi
i,m(k) is invalid, corre-

sponding availability function tends to infinite, i.e. 
a(zi

i,l(k), t)→∞ or a(zi
i,m(k), t)→∞, and variance of invalid 

measurement will tend to infinite also and be irrelevant 
to other measurement. 

By defining availability function to reconstruct gener-

alized variance , uncertainty of measurement is 

avoided formally and existing fusion filtering method 
can be applicable to IMM estimator. Constructing Zi(k, t) 
from {Zi

m(k), m=1,2,…,n} according to (4)-(5) and 

 from (22)–(24), multi-sensor IMM estimator is 

achieved and estimation of target state  is ob-

tained according to (6)–(20). Let t→∞, optimal estima-
tion of target state from IMM estimator without parame-
ter t is obtained as 
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3.2. Suboptimal IMM Estimator Based on 

Target State Feedback 
 
It is inconvenient in practical application that availability 
function is defined using limit operation t→∞ according 
to (25). To solve the problem, invalid measurement can 
be regard as outlier, and corresponding valid measure-
ment can be reconstructed with target state feedback of 
IMM estimator approximatively. 

In target tracking system, when target is faint or in-
terference is strong, there are outliers in measurement 
sequence ordinarily and tracking accuracy reduces. 
Presuming measurement Zi

i(k) of sensor i at time k is 
outlier, typical solution is discarding Zi

i(k) and recon-
structing one step prediction of the observation 

 by state estimation of  ac-

cording to (10) as 
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Substituting  for Zi),(Ẑ 1kki
i i(k) to filter, the effect 

of outliers can be avoided. Defining generalized meas-
urement as 
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And keeping covariance matrix Ri
i(k) invariant, the inva-

lid measurement is converted to approximate generalized 
one having availability always. 

When all measurement is valid, each generalized 
measurement in (27) is equal to corresponding actual 
measurement, and IMM estimator for uncertain meas-
urement is degenerated to certain one. Therefore, exist-
ing method is a special case of method presented and the 
latter is more general. 

Compared to existing method, IMM estimator for un-
certain measurement presented only adds a calculation 

step of constructing generalized measurement )(Z
~

ki  in 

(26),(27). Calculational cost of this step can be ignored 
almost comparing to one of IMM algorithm, so that cal-
culational cost of uncertain method presented is almost 
as the same as certain one. 
 
4. Simulation Results 
 
To evaluate effect of method presented, simulation data 
are obtained from a multi-sensor target tracking system 
including two detectors with different precision. The 
target moves with constant velocity at time ]40,0[t , 

]140,91[t  and ]210,191[t

]90,41[

, with constant accelera-

tion at time t  and . The perfect 

state of target is shown in Figure 2. 

]190,141[t

It is assumed that IMM estimator is composed of two 
filters based on CA and CV model respectively. Markov 
transition probability is [0.95 0.05; 0.05 0.95], and the 
probability of two models are 0.5 at initial time. Sam- 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The perfect state of target. 

1

500

50000

0

1500

500

ac
ce

le
ra

ti
on

(m
/s

2 ) 
ve

lo
ci

ty
(m

/s
) 

 d
is

pl
ac

em
en

t(
m

) 

20

0

-20

40      80     120    160    200 

time (s) 

Copyright © 2009 SciRes.                                                                                   CN 



72 M. CEN  ET  AL.                                          
 
pling time is T=1s, process noise is σ=10m, observation 
noise of detector 1 is σ1=100m and that of detector 2 is 
σ2=10m. Let detector 1 is valid and detector 2 is invalid 
at , detector 1 is invalid and detector 2 is valid 

at , and detector 1 and 2 are both valid at 

, and target state are estimated by the 

method presented at each moment. Executing simulation 
10 times, and calculating standard deviation of estima-
tion errors at each moment, the results of three uncertain 
cases are shown in Figure 3. 

]70,0[t

140,71[t

]210,141[
]

t

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Standard deviation of tracking error (σ1=100, σ2=10). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Standard deviation of tracking error (σ1=100, 
σ2=50). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Standard deviation of tracking error (σ1=100, 
σ2=100). 

Performing the simulation with σ2=50m and 
σ2=100m respectively, the result is shown in Figure 4 
and Figure 5. 

In situation 1 and 2 only one sensor is valid. From Fig-
ure 3, since σ1>>σ2, tracking error of situation 1 is com-
parative larger than that of situation 2. Each sensor is 
valid in situation 3, so tracking error of situation 3 is 
least. Because σ1>>σ2 similarly, estimation result of tar-
get state is determined by measurement of detector 2 
mainly and almost the same as which of the situation 2. 
From Figures 4 and 5, there are 2 valid sensors at 

]210,141[t , and corresponding tracking error is least. 
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Simulation results demonstrate a typical scenario of 

multi-sensor IMM estimator for uncertain measurement. 
The results are consistent with theoretic analyses, so 
method presented can solve the problem of multi-sensor 
IMM estimator with varied validity preferably. Simulta-
neously calculational cost of method presented is almost 
the same as existing one. 
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5. Conclusions 
 
In multi-sensor system there’s invalid measurement 
sometimes, and uncertainty of measurement is one of the 
typical characteristics. Existing IMM estimator is a cer-
tain algorithm where it is presumed that all measurement 
is valid always, so it can not perform uncertain meas-
urement appropriately. 
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One of approaches to avoid uncertainty of measure-
ment defines availability function for each component of 
observation vector and reconstructs observation covari-
ance matrix to express uncertainty of measurement. But 
limit operation is involved in this approach. The ap-
proach presented substitutes target state feedback for 
invalid measurement to reconstruct generalized meas-
urement. Then target state estimation can be obtained by 
existing IMM estimator with generalized measurement, 
and existing method is generalized and as a special case 
of uncertain one presented. 
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