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Abstract 
Smart Materials are along with Innovation attributes and Artificial Intelli-
gence among the most used “buzz” words in all media. Central to their prac-
tical occurrence, many talents are to be gathered within new contextual data 
influxes. Has this, in the last 20 years, changed some of the essential funda-
mental dimensions and the required skills of the actors such as providers, us-
ers, insiders, etc.? This is a preliminary focus and prelude of this review. As 
an example, polysaccharide materials are the most abundant macromolecules 
present as an integral part of the natural system of our planet. They are re-
newable, biodegradable, carbon neutral with low environmental, health and 
safety risks and serve as structural materials in the cell walls of plants. Most of 
them are used, for many years, as engineering materials in many important 
industrial processes, such as pulp and papermaking and manufacture of syn-
thetic textile fibres. They are also used in other domains such as conversion 
into biofuels and, more recently, in the design of processes using polysaccha-
ride nanoparticles. The main properties of polysaccharides (e.g. low density, 
thermal stability, chemical resistance, high mechanical strength…), together 
with their biocompatibility, biodegradability, functionality, durability and 
uniformity, allow their use for manufacturing smart materials such as blends 
and composites, electroactive polymers and hydrogels which can be obtained 
1) through direct utilization and/or 2) after chemical or physical modifica-
tions of the polysaccharides. This paper reviews recent works developed on 
polysaccharides, mainly on cellulose, hemicelluloses, chitin, chitosans, algi-
nates, and their by-products (blends and composites), with the objectives of 
manufacturing smart materials. It is worth noting that, today, the fundamen-
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tal understanding of the molecular level interactions that confer smartness to 
polysaccharides remains poor and one can predict that new experimental and 
theoretical tools will emerge to develop the necessary understanding of the 
structure-property-function relationships that will enable polysaccha-
ride-smartness to be better understood and controlled, giving rise to the de-
velopment of new and innovative applications such as nanotechnology, foods, 
cosmetics and medicine (e.g. controlled drug release and regenerative medi-
cine) and so, opening up major commercial markets in the context of green 
chemistry. 
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1. Introduction 
1.1. Prelude 

“The use of biomaterials for industrial applications has increased significantly. 
Carbon footprints rationalization and food vs. fuel dilemma have been debated 
and made considerable progress towards a wider acceptance at various levels. 
Open innovation contributes meaningfully with regards to: softer, milder tem-
perature biochemical processing which includes preconditioning, low stress 
reactions, “just-as-needed” purifications, zero waste, fallow land exploitation ra-
tionalization, usable agri-waste, traceable land use, water consumption minora-
tion vs. agronomical food-related practice, partial detachment from internation-
al seasonal trading of agricultural commodities…” [1]. 

In this context, our journey across the “rurban” zones is evolving. The 
sightseeing is a planet “responsible” fairytale that is coming closer to reality; lo-
cally produced, synergically codependent energies. Piezo (due for example to the 
unique crystalline structure and piezoelectric behavior of cellulose as described 
later in Section 2.2) and solar photovoltaic road paving, quietly growing CO2 
harvesting forests, prairie and golden fields ecofuel providers… are among the 
multi centennial castles, monuments and mills now wind, solar and hydraulic 
universal converters. 

Along this fairy trail, alternative energies (Figure 1), as well as new energy 
usage patterns are promoting innovation in the field of energies’ production, 
transmission, transformation, distribution and local usages. 

“The emotional intelligence has become a recognized essential part of a global 
‘balance’, in this virtual-reality.” Let’s see what we said some about 20 years ago, 
on related skills [2]. 

“Can we foresee the profile of the next generation of scientists and engineers? 
The people behind innovation are essential to establish the foundations of the  
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Figure 1. Alternative Energy Illustration designed with author’s private art: wind turbines 
and photovoltaic solar & piezo factories among golden canola fields with forests in the 
background and centrally, “inspirationally redesigned” old wind mill [1]. 
 
future successful businesses. In the chemical industry, the chemist, the physicist, 
the material scientist, the engineers are playing an important role in the creative 
process which is required to follow the pace of change. New organizational con-
cepts have been proposed in order to schematize the industry adaptation to this 
‘new’ global environment. We found that most of them require from the people 
a balance of skills which we propose to abbreviate with the acronym 4C, where 
the 4Cs represent: Connaissance, Creativity, Competence, Communication. 
‘Pursuing with’, the bubble concept is one way of stimulating innovation. It is 
possible to combine enterprises or projects A, B, C in a way that the mentors, the 
promoters, the generators of the enterprise A have a chance to play another role 
in B or in C…”. 

Figure 2 below helps capture more about the above 4C innovative tetralogy. 
The number of current innovation styles, from open to close, disruptive, col-

laboratory®, from reverse to inclusive, nested and frugal, are more or less 
self-explanatory terminologies and further enlightenment can be found, e.g. in 
Lapray et al. [3] [4] in reviews on the matter, covering some of them [5]. 

More literature on artistic creation and more expressly musical art is dedicat-
ed to the innovation traits of musical production, rather say improvisation; Jazz 
is of an established relevance. 

Figure 3 attempts to provide the 4C’s corresponding Jazz terms and concepts 
therewith developed by the expert Charles Calamel [6], in the creation, integra-
tion, self learning and improvisation model that Jazz culture continues to devel-
op spontaneously.  

One may further cite Charkes Calamel proposed acronym “CRAC” [6], with 
stands for Competent, Responsible, Autonomous, Creative… definitely a series  
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Figure 2. “Foresee, 4C, the innovation path” [2]. 
 

 
Figure 3. 4C® concepts in blue diamonds of Figure 2 compared with the Jazz tetrahedral 
representation of [6], in yellow diamonds. 
 
of traits that innovation in the bigger data surrounding cannot miss. 

Charles Calamel, (http://www.touteduc.fr/fr/archives), says: “Jazz is a model 
in that it leads the individual towards a self-direction in learning, a construction 
of oneself. Due to the conditions of play, the respect and transgression of codes 
and formats, jazz reverses the traditional pedagogic guidance system to set up a 
model of autonomy: it is not a question of receiving knowledge but rather of ‘Go 
find it’ ”. 

Fred Hersch’s song title “Songs without Words” may further highlight the 
improvisation nature and emotional intelligence of creativity and innovation. 

Emotional intelligence which may become more central to diversity innova-
tive approach, to capture developmental potential, may not fit within the trend 
of bigger data and artificial intelligence interaction; although the later may be a 
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source of improvisation. 
In that domain D. Lapray and S. Rebouillat [3] presented some anticipatory 

aspects in a review: “‘Bigger Data’ Visualization to Visual Analytics: a path to 
Innovation. ‘Happening, definitely! Misleading, possibly?’ A review of some 
examples applicable to IP Discovery.” The authors pointed out that aesthetic 
may be privileged and can be misleaded. Figure 4 below is a clear demonstra-
tion. 

In Figure 4, out of [3], “the same analysis was applied to the title of 1000 pa-
tents in the field of natural polymers. The 13 top nodes are displayed using the 
Kamada-Kawai layout (well known force-directed graphs). The three panels 
represent the exact same data on which the layout was reinitialized three con-
secutive times. Note that only the nodes, edges size and color are maintained 
between these three representations. These are the only relevant information, the 
rest being purely aesthetical.” 

No need to be a professional in the advertisement arena or a malicious devel-
oper, of fake impression carried by photography angle shot selections, to realize 
that the above triangles configurations of Figure 4, with bold solid heavy black 
sides, although linking the same matters, Composit (es)-Fiber (s)-Materi (als) & 
(Polym (ers)) may, take different dimension pending on the persons observing 
these figures, their mindset of the time.  

There is indeed an improvising dimension that may arise from bigger data 
analysis and visualization. Such as the representation on the left side may give a 
sharp and central dimension of the three first matters of Composit (es)-Fiber 
(s)-Materi (als)-(Polym (ers)), the central representation may imply a massive 
bulk dimension of the four, and the representation on the right may elude to a 
side lateral importance of the three first. Analogically the jazz player may impro-
vise some mimics and positionings that will attract attention on some elements 
of his production and interactions. 

The improvision dimension of innovation is certainly a way to liberate the 
creator away from core dimensions; those are prevalent and revealed in patent 
analysis wherein a language rarely changes as long as it is in the core corporate 
language and know hows. Laterals and boundaries are efficient add-ons in an 
inventive concept presentation. 

In a nutshell, the parallel between innovation and art has been progressively  
 

 
Figure 4. Aesthetical tricks do not necessary carry relevant information. The same analy-
sis was applied to the title of 1000 patents in the field of natural polymers. 
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brought to the attention of the reader from a fairy tale landscape making inno-
vative use of natural resources keeping “monuments in place”. Followed by the 
foresee, “4C”, dimension of the collaborative skills developed back in 1998 by 
Rebouillat. Extended to the Jazz science to education breadth and its 
self-learning integration value; associated with a high degree of intrinsic impro-
vision. Closing the loop with the bigger data and artificial intelligence emotional 
limitations and potential for misleadingness that may deserve a longer propos in 
a review to come. 

Instinctive and improvisional innovations are to be added on the list of [4]. 
Additional references on the above fields with selected technology domains 

are useful [7]-[13]. 

1.2. More Centrally 

The present paper follows up on three reviews [14] [15] [16] that we published 
on important researches related to the valorization of biomaterials, one of them 
[14] reached record downloads of 10,500 and 17,500 views, which supports the 
interest for scientific expert reviews in the context of bigger data; obviously big 
data consolidation can still improve to be even more useful to the “trained in the 
art”. 

Smart or functional materials form a group of new and state of art materials 
now being developed that will have a significant influence on many of pre-
sent-day technologies. Also called active materials, smart materials have the in-
trinsic and extrinsic capabilities, first, to respond to stimuli and environmental 
changes and to activate their functions according to these changes [17] [18]. The 
stimuli could originate internally or externally. Examples of external stimuli can 
be temperature, pressure, electric and magnetic fields, chemicals, light, humid-
ity, hydrostatic pressure, nuclear radiation, pH and more. Smart material re-
sponds to those stimuli with changes in their internal structure and intrinsic 
properties such as shape, stiffness, viscosity, energy absorption capacity, damp-
ing or optical properties like transparency or opacity. 

Most smart materials have reversible properties, reverting back to their origi-
nal state after the stimulus is removed or changed. The cycle can then be re-
peated. Smart materials are also tailorable and tunable, which means they can be 
designed for specific, controlled property changes. To achieve a specific objective 
for a particular function or application, a new material has to satisfy specific 
qualifications related to technical and technological properties, economic crite-
ria, raw material and production costs, supply expenses and availability, envi-
ronmental characteristics and sustainable development criteria, implying reuse 
and recycling capacities. 

If the functions of sensing and actuation are added to this list, the new mate-
rial is considered a smart material [19]. Since the 1990s, a lot of research efforts 
have been devoted to the development [20] [21] [22] and industrial application 
[23] [24] of smart materials. Examples of some well-known smart materials are 
piezoelectric polymers [25], piezoelectric ceramics [26], shape memory alloys 
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[27], electro-active polymers [28], covalent adaptive network polymers [22] and 
electrorheological and magneto rheological fluids [29]. 

Many other materials with added functions: have also been developed. They 
concern 1) sensor materials to detect certain signals, adjust sensitivity according 
to environmental changes, or restore degraded sensitivity, 2) catalytic materials 
to detect the progress of a reaction or distinguish the reaction of a product, 3) 
textile materials to detect a variety of signals from the human body and weather 
conditions so as to allow for greater comfort. 

Smart composite materials: are also manufactured by combining two or 
more single smart materials in order to utilize synergistically the best properties 
of their individual constituents. Many of those composites are able to satisfy all 
of the above specific qualifications. Their advantages and adaptability to the de-
sign requirements mentioned above have led to a profusion of new products. 
There are two essential types of smart composite materials 1) completely tailored 
man-made composite materials which purpose is to improve or add strength or 
stiffness, 2) amalgamation of single/composite materials with fibre/reinforced 
polymers (FRPs) such as the ones used as reinforcement for concrete, steel or 
other construction materials. If the FRP is combined with fibre optic sensors, the 
resulting product will be an attractive and particularly cost effective smart com-
posite.  

A smart structure is a system that incorporates particular functions of sensing 
and actuation to perform smart actions in an ingenious way. It is composed of 
the following components: 
• Data Acquisition (tactile sensing) which collects the required raw data 

needed for an appropriate sensing and monitoring of the structure. 
• Data Transmission (sensory nerves) to forward the raw data to the local 

and/or central command and control units.  
• Command and Control Unit (brain) which manages and controls the whole 

system by analyzing the data, reaching the appropriate conclusion, and de-
termining the actions required. 

• Data Instructions (motor nerves) which transmits the decisions and the as-
sociated instructions back to the structure. 

• Action Devices (muscles) which take action by triggering the controlling 
devices/units.  

The Main areas of R&D involved in smart materials are: 
• For sensors and actuators: photo-sensitive materials, fibre optics, conduc-

tive polymers, thermally sensitive materials, shape memory materials, intelli-
gent coating materials, chemical responsive materials, micro-capsules, micro- 
and nano-materials. 

• For signal transmission, processing and control: neural networks and 
control systems, cognition theory and systems. 

• For integrated processes and products: wearable electronics and photonics, 
adaptive and responsive structures, bio-mimics, tissue engineering, chemi-
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cal/drug releasing. 
Figure 5 summarizes how does a smart material works. 
In the last ten years, the field of smart materials has received much attention 

as a result of the development of new electro-active polymer (EAP) materials 
that exhibit a large displacement displacement response which changed the po-
tential capability and paradigms of these materials. The main attractive charac-
teristic of EAP is their operational similarity to biological muscles, particularly 
their resilience and ability to induce large actuation strains [30]. This character-
istic is a valuable attribute that has enabled a myriad of potential applications, 
and it has evolved to offer functional similarity to biological muscles. EAP mate-
rials are able to offer a range of performance and characteristics that may not be 
reproduced by other technologies. Therefore, it is rather certain that EAP mate-
rials have a promising future for applications, such as biologically inspired ac-
tuators driving various mechanisms for manipulation and mobility including 
micro-robots, micro-flying objects, and animatronic devices. 

Today, the focus is on specialty products engineered for specific end-uses and 
on creative ways to market these products and the current generation of smart 
materials has many new dynamic features that enable them to adapt to the envi-
ronment and make them the materials of the future, mainly, as this will be fur-
ther outlined in this paper, in the domain of renewable biomass-materials.  

The present paper follows upon three reviews [14] [15] [16] that we published 
on important researches related to the valorization of polysaccharides with the 
objectives of reducing the fossil resource dependence and producing therefore 
environmentally-friendly new materials. Indeed, the great biodiversity of nature 
(i.e., plants, animals, insects, enzymes, microbes, etc.) coupled with the enor-
mous advances developed in biotechnological processes, makes it today possible, 
through adequate transformations of bio-sourced products, to elaborate high  

 

 
Figure 5. General presentation of smart material actions. 
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value-added sustainable products endowed with physical, chemical and biologi-
cal properties leading to particularly innovative applications.  

This paper reviews recent works developed on those natural resources with 
the objectives of manufacturing smart materials. The biosourced products which 
will be considered are polysaccharides, including cellulose, hemicelluloses, chi-
tin, chitosan, alginates, and their by-products (copolymers, blends and composites). 

Polysaccharides are the most abundant materials that can be obtained from 
renewable and sustainable resources. They are biodegradable, carbon neutral 
with low environmental, health and safety risks and serve as structural material 
in the cell walls of plants. Some of them (e.g. cellulose and hemicelluloses) are 
used, for many years, as engineering material in many industrial processes such 
as pulp and papermaking and manufacture of synthetic textile fibres (e.g. or-
ganic and inorganic esters, alkyl, hydroxy alkyl and carboxyl alkyl ethers) which 
are important components in coatings, optical films, foodstuffs, pharmaceutics, 
cosmetics, additives in building materials, etc. [14]. 

Moreover, owing to polysaccharides properties, functionality, durability and 
uniformity, their use continue today in other domains (e.g. conversion into bio-
fuels such as ethanol as an alternative fuel source and, more recently, in the de-
sign of processes using polysaccharide nanoparticles for the generation of novel 
polysaccharide-based biomaterials and composites [14]). 

On the other hand, it is noteworthy that chemical modifications of polysac-
charides, “tailor-made” towards specific properties can also result in new mate-
rials, including smart materials. Indeed, owing to their unique and valuable 
functional properties, modified polysaccharides can confer smartness through 
somewhat unique mechanisms such as:  
• reversible, stimuli-responsive self-assembly (gelation), 
• biospecific interactions with enzymes and lectins (carbohydrate-binding 

proteins) 
• And interactions that confer nanoscale (e.g. fibril-forming) and hierarchical 

supramolecular assembly.  
Nevertheless, today, the fundamental understanding of the molecular level in-

teractions that confer smartness to polysaccharides remains relatively poor and 
one can predict that new experimental and theoretical tools will emerge to de-
velop the necessary understanding of the structure-property-function relation-
ships that will enable polysaccharide-smartness to be better understood and 
controlled, giving rise to the development of new and innovative applications. 
This would allow making polysaccharides materials of choice in the very prom-
ising areas of nanotechnology, foods, cosmetics and medicine (e.g. controlled 
drug release [31] and regenerative medicine [32] [33]) and so, opening up major 
commercial markets in the context of green chemistry. 

2. Cellulose-Based Smart Materials 

Cellulose is the major constituent of the plants cell walls [34] [35]. It has many 
prominent properties such as high modulus and tensile strength, excellent me-

https://doi.org/10.4236/jbnb.2019.102004


S. Rebouillat, F. Pla 
 

 

DOI: 10.4236/jbnb.2019.102004 50 Journal of Biomaterials and Nanobiotechnology 
 

chanical strength, hydrophilicity, biocompatibility, biodegradability and relative 
thermal-stability [36] [37]. 

Cellulose is a linear syndiotactic homopolymer composed of  
D-anhydroglucopyranose units which are linked by β-(1→4)-glycosidic bonds 
(Figure 6). 

The high content of hydroxyl groups along the skeleton of cellulose, is the ba-
sis of an extended system made of intra- and inter-molecular hydrogen bonds 
allowing the formation of highly ordered, three-dimensional crystal structures, 
making cellulose a semi-rigid polymer made of elementary microfibrils with two 
structure regions: the crystalline region and the amorphous region [38]. 

2.1. Cellulose Nanofibers and Nanoparticles  

Despite its high hydroxyl groups content, cellulose has limited functionalities 
and, to our knowledge, there are very few reviews on “smart” materials based on 
cellulose unless hydrogels which were referred to [39] [40] [41]. Nevertheless, 
the physical structures of cellulose fibers, (particularly cellulose nanofibers: 
CNFs) and nanoparticles (nanocelluloses: CNCs), have opened up interesting 
opportunities to manufacture blends and composites used to make high valued 
products (Table 1). 
 

 
Figure 6. Chemical structure of cellulose. 

 
Table 1. High value cellulose nanofiber and nanoparticle smart materials and corre-
sponding potential applications. 

Type of cellulose Fabricated material Potential application Reference 

Nanofiber 
Optically Transparent  

Nanofiber Paper 
Flexible circuits [47] 

Nanofiber Transparent nanocomposites Electronics device industry [48] 

Nanofiber 
Transparent cellulose-based  

nanocomposites 
Solar panels [47] 

Nanocellulose 
Antibiotics/Carbonated  

hydroxyapatite coatings on titanium 
Implant materials [49] 

Nanocellulose Scaffold materials Cartilage tissue engineering [50] 

Bacterial  
nanocellulose (BNC) 

Scaffold materials Tissue engineering [51] 

Bacterial  
nanocellulose (BNC), 

BNC membranes 
 

Biomedical applications 
(drug delivery, cytotoxicity 

against cancer cells) 
[52] 

Carboxymethylcellulose 
(CMC) 

Spherical CMC nanoparticles Biomedical applications [53] 
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CNFs photo-responsive nature can act as adaptive fillers in soft polymer ma-
trices. CNCs properties such as low density, thermal stability, chemical resis-
tance, high mechanical strength, biocompatibility and biodegradability allowed 
to consider them as functional materials in actuation systems and sensors for 
detecting pH, organic vapors, ions and humidity [39] [42]. 

CNC based smart materials display intelligent behavior in response to envi-
ronmental stimuli such as light, temperature, electrical input, pH, and magnetic 
force [43] [44] [45]. Moreover, owing to their high aspect ratio and mechanical 
properties, CNCs can also serve as renewable reinforcing agents in nanocompo-
sites, as well as a handle for adding stimuli responsiveness [46].  

On the other hand, the properties of cellulose enable cellulose to be applied to 
the vast fields of smart electroactive polymers and hydrogels which can be fabri-
cated through chemical modifications or physical incorporating/blending proc-
esses.  

Chemical modifications of cellulose are realized using homogeneous or het-
erogeneous processes. 

Homogeneous processes are mainly carried out by dissolution of cellulose de-
rivatives (e.g. carboxymethyl cellulose (CMC), hydroxypropyl cellulose (HPC), 
hydroxyethyl cellulose (HEC), and cellulose acetate (CA)) in suitable solvents 
(e.g. water or common organic solvents). 

Heterogeneous processes are usually performed, after swelling in suitable sol-
vents, on cellulose nanocrystals (CNCs), films/membranes, fibers, and cellulose 
particle suspensions. 

In the processes of physical incorporating/blending, cellulose or cellulose de-
rivatives act as matrices, fillers, or coatings/shells [15].  

2.2. Cellulose Electroactive Paper 

Recently, cellulose has been discovered as a smart material named cellu-
lose-based electroactive paper (EAPap) [54] [55] [56] [57]. The electroactive be-
havior of EAPap is due to the unique crystalline structure and piezoelectric be-
havior of cellulose [58]. Indeed, cellulose II crystal is monoclinic and 
non-centrosymmetric in nature and thus it exhibits piezoelectric characteristics 
[54] [59] [60]. This piezoelectricity is able to induce large displacement output, 
low actuation voltage, and low electrical power consumption in the application 
of biomimetic sensors/actuators and electromechanical system.  

Moreover, nanocellulose-based EAPap portrayed several superior characteris-
tics such as ultra-lightweight, large bending deformation, low actuation voltage 
and low power consumption. These characteristics are very appealing for deli-
cate biomimetic actuators and sensors, dynamic wings for flying articles, active 
sound-absorbing materials, adaptable speakers and smart shape control gadgets 
[56] [61] (Table 2). 

In addition, preparation of nano-cellulose-based smart material via chemical 
modification and physical incorporation or blending in various forms can affect  
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Table 2. Potential applications of EAPap actuators. 

EAPap characteristic/quality Potential application Reference 

Low electrical power consumption Microwave-driven actuators [62] 

Biocompatible and hydrophilic properties Biosensors [63] [64] 

Microwave-driven innovations 
Controlled actuators,  

Biomimetic robots 
[65] 

Reasonable quality Vibration sensors [66] [67] 

Acoustic characteristics Acoustic applications [67] 

Stacked and unimorph EAPap actuator Haptic applications [68] 

Piezoelectric paper EAPap speakers [69] [70] 

Ultra-lightweight and consumption of less 
energy ≥ response to electrical stimulatio 

Microscale robotic insects,  
Tiny flying objects, Wireless 

power supplies 
[71] 

 
responsiveness to pH, temperature, light, mechanical forces, electricity, and 
magnetic field. The presence of porosity and refractive index variation has made 
EAPap a feature with extraordinary light-scattering effect (used as a transparent 
paper) for use in integrated transparent sensors and 3D microfluidic application.  

However, even if there are already many potential applications for cellulose 
EAPap, it must be noted that, today, several important challenges remain and 
should be considered, for example in terms of reliability, material robustness and 
force improvement. 

2.3. Cellulose Hydrogels 

Gels are three-dimensional natural or synthetic polymer networks that can swell 
and absorb large amounts of solvents without dissolving, provided that chemical 
or physical crosslinks exist among the macromolecular chains.  

Hydrogels are, mainly, structures formed from biopolymers and/or polyelec-
trolytes, and contain large amounts of trapped water. They can be divided into 
chemical gels and physical gels. Chemical gels are formed by covalent bonds 
while physical gels are formed by molecular self-assembly through ionic or hy-
drogen bonds [72]. They have wide potential applications in the fields of food, 
biomaterials, agriculture, water purification, etc. (Table 3). 

Responsive hydrogels can undergo a swelling transition in response to envi-
ronmental stimuli, such as the changes in temperature, light, pH, etc. Because of 
this unique feature, responsive hydrogels have received an extensive attention in 
the fields of drug delivery [82], bioseparation [83], sensors, and optical trans-
duction of chemical signals [83] [84]. For example, the drug release from re-
sponsive hydrogels can be remotely controlled by the local heating of magnetic 
nanoparticles [85]. The same concept has been transferred to the application in 
catalytic reaction, which is particularly attractive due to the unique tunable and 
responsive properties as well as the improvement of reactive properties [82] [83] 
[84]. Specifically, the swelling and deswelling of the hydrogel with temperature  
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Table 3. Examples of some classical hydrogels and corresponding applications. 

Hydrogels Application Reference 

Polymer blends of natural and/or synthetic polymers Drug delivery [73] 

Supramolecular hydrogels Drug delivery [74] 

Chitosan and Polyethylenimin Tissue engineering [75] 

Natural polymers (collagene, hyaluronic acid alginate, 
chitosan) and synthetic polymers (PEO, PEG and 

corresponding block copolymers with poly (lactic acid) 
Tissue engineering [76] 

Methacrylate/acrylic acid (AA) copolymers 
Inverse opal  
pH sensors 

[77] 

Poly(acrylic acid)/poly(vinyl alcohol) 
Piezoresistive  

pH sensors 
[78] 

GM3 material (terpolymer, based on high-purity  
glycerol methacrylate) from Contamac,  

UK (49.3% Water content) 
contact lenses [79] 

Nanofilm-encapsulated silicone-hydrogel contact lenses [80] 

Ni2+-poly (2-acetamidoacrylic acid) hydrogel 
Purification of  

histidine-tagged green 
fluorescence proteins 

[81] 

 
change can control the loading/unloading of reactants in the hydrogel network, 
which, in turn, changes the reactivity. 

There are plenty of methods for preparing hydrogels. The mixing of anionic 
and cationic polymers solutions is widely used for preparing reversible hy-
drogels. The final properties of the 3D network of physical hydrogel should de-
pend on several factors such as the anionic/cationic charge ratio, the pH and the 
existence, or not, of stirring and the respective speed during the preparation, as 
well as several other parameters. 

After these basic definitions and examples, the following paragraphs aim at 
highlighting some of the most recent developments in cellulose-based hydrogels 
materials, including pure cellulose, cellulose composite and cellulose hybrid hy-
drogels. 

2.3.1. Pure Cellulose-Based Hydrogels 
Two routes have been thoroughly developed for their preparation: 
• Direct preparation from native cellulose 

Due to its highly extended hydrogen bonded structure, native cellulose is very 
difficult to be dissolved in common solvents. Recently, new solvents have been 
developed to dissolve cellulose providing great opportunities for the preparation 
of cellulose hydrogels. The main solvents used for those hydrogel preparations 
are: LiCl/dimethylacetamide (DMAc), N-methylmorpholine-N-oxide (NMMO), 
Ionic liquids (ILs), Alkali/urea (or thiourea) aqueous systems. 
• Cellulose derivatives-based hydrogels 

Cellulose derivatives such as MC, HPC, HPMC and CMC have been used to 
fabricate cellulose-based hydrogels through physical and chemical cross-linking. 
Physical cross-linked gels are formed by ionic bondings, hydrogen bondings, or 
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associative polymer-polymer interactions. Chemical cross-linked hydrogels are 
prepared by cross-linking two or more polymer chains with a functionalized 
cross-linker. 

With the development of cellulose derivatives, mainly cellulose ethers, some 
stimuli-responsive hydrogels have been developed leading to temperature sensi-
tive hydrogels and pH sensitive hydrogels from MC, HPC, HPMC and CMC. 

Cellulose-based hydrogels have many favorable properties such as hydro-
philicity, biodegradability, biocompatibility, transparency, low cost, and 
non-toxicity. Therefore, cellulose-based hydrogels have many applications 
(Table 4). 

2.3.2. Cellulose-Polymers Composite Hydrogels 
Cellulose (or its derivatives) has been blended with both natural biodegradable 
polymers and synthetic polymers. Combining the different properties of cellu-
lose and other polymers has given rise to novel hydrogel smart materials with 
specific applications. Various composite hydrogels were designed in wide size 
from macroscopic materials such as membranes, fibers, and beads to micro-
scopic materials such as microgels, and nanogels (Table 5). 
 
Table 4. Examples of cellulose-based hydrogels and their applications. 

Cellulose-based hydrogel Application Reference 

Si-HPMC Tissue engineering [86] 

Na-CMC and cellulose Controllable delivery systems [87] 

Cellulose acetate and phospholipids Blood purification [88] 

Crosslinked (HEC) and (CMC) Sensors and actuators [89] 

CMC/Acrylamide 
Super absorbents for agriculture  

and horticulture 
[90] 

Poly[(N-tert-butylacrylamide)-co-acrylamide]/
HPC 

Swelling temperature-sensitive 
agents 

[91] 

Cellulose/chitin beads Water purification [92] 

Regenerated cellulose beads  
modified with silane 

Chromatographic supports [93] 

 
Table 5. Examples of cellulose-polymers composite hydrogels. 

Cellulose-polymers composite hydrogels Application Reference 

CMC/Chitosan Cells immobilization [94] 

Starch/Cellulose-based polymers  
(sodium alginate, HPMC, NaCMC) 

Thermal behaviour [95] 

CMC/Starch Textile sizing and floculation agents [96] 

Na alginate/gelatin, and Na  
alginate/NaCMC blend beads 

Release of carbaryl [97] 

Alginate/MC pH-sensitive hydrogels [98] 

Hyaluronic acid/HEC; Hyaluronic acid/NaCMC 
Use in prevention of postsurgical  

soft tissue adhesion 
[99] 
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2.3.3. Cellulose Hybrid Hydrogels 
In recent years, polymeric-inorganic hybrid materials have attracted increasing 
attention due to potential applications in electric, optical, magnetic, and bio-
logical fields. Introduction of inorganics into cellulose hydrogel networks is an 
effective way to develop materials with high functionality. Indeed, cellulose hy-
drogels have been used as matrices to incorporate inorganic nanoparticles for 
preparing cellulose-inorganic hybrid hydrogels [100] [101] [102] [103] [104]. It 
is worth noting that with the development of nanotechnology, this strategy is 
suitable for fabricating novel cellulose-based hydrogels with multifunctional 
properties. The smart behaviour of some cellulose derivatives (e.g., NaCMC, 
HPMC) in response to physiologically relevant variables (i.e., pH, ionic strength, 
temperature) makes the resulting hydrogels particularly appealing for in vivo 
applications.  

On the other hand, even if cellulose is known to be non-bioresorbable, it 
seems possible to functionalize cellulose-based hydrogels with bioactive and 
biodegradable extracellular matrix domains. This suggests that, in the near fu-
ture, such hybrid hydrogels might constitute ideal platforms for the design of 
scaffolding biomaterials that could be used in the fields of tissue engineering and 
regenerative medicine. 

3. Hemicelluloses-Based Smart Materials 

Hemicelluloses, as natural polysaccharides, are categorized as the second most 
abundant components of the plants after cellulose and constitute about 20% - 
30% (w/w) of the total weight of the lignocellulosic biomass [34] [105]. Hemi-
celluloses have a random, amorphous structure. They are hetero-polymers with 
various chemical linkages between different monomer units such as pentoses 
(xylose, lyxose, arabinose, ribose…) and/or hexoses (glucose, fructose, galactose, 
mannose, rhamnose…). Different hemicellulose chemical compositions, struc-
tures and amounts are present in biomass. Hemicelluloses are polysaccharides 
that have beta-(1→4)-linked backbones with an equatorial configuration and in-
clude mainly xyloglucans, xylans, mannans, glucomannans, galactoglucoman-
nan, O-acetyl-(4-O-methylglucurono)-xylan, O-acetyl-galactoglucomannan etc. 
Figure 7 and Figure 8 show, as examples, the chemical structure of two main 
hemicelluloses present in hardwoods and in softwoods respectively. 

It is worth noting that the pendant hydroxyl groups of the polysaccharide 
backbone offer a number of possibilities for the chemical modification of hemi-
celluloses and for the preparation of materials with new profiles that can in-
crease the utility of these biopolymers. Several methods are applied to extract 
hemicelluloses from biomass (Table 6). 

Increasing attention has been concentrated on the development and applica-
tion of hemicellulosic products because of their numerous inherent advantages, 
including non-toxicity, biocompatibility, biodegradability, and anti-cancer effect 
[111] [112].  
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Figure 7. Main hemicellulose of hardwoods: O-acetyl-(4-0-methylgucorono)-xylan. 
 

 
Figure 8. Main hemicellulose of softwoods: O-acetyl-galactoglucomannan (AcGGM). 
 
Table 6. Principal methods developed to separate hemicelluloses from the other consti-
tuants of biomass. 

Raw  
material 

Extraction method Advantages/Disadvantages Reference 

Softwood 
Single- and two-stage  
diluted-sulfuric acid  

pretreatment 
Degraded dissolved sugars [106] 

Corn stalks 
Autohydrolysis and alkaline 

extraction processes 
Hemicellulose of high purity [107] 

Biomass 
Hot water treatment and  
water/acetone extraction 

Cleavage of hemicellulose  
acetate groups 

[108] 

Spruce 
Microwave oven or steam  

treatment 

Successful extracion of  
hemicellulosic  

oligosaccharides 
[109] 

Kraft pulp 
Extraction with ionic  

liquid/cosolvent systems 
Hemicellulose with high 

purity 
[110] 

 
Firstly, hemicelluloses have been used as fermentation feedstocks in produc-

tion of ethanol, butanol, and xylitol [111] [113] and as raw materials in the 
preparation of food packaging films [114] [115]. 

Secondly, due to their large content of hydroxyl groups, hemicelluloses can be 
modified by both chemical reactions and physical interactions. The main 
chemical reactions are etherification, esterification and chemical crosslinking 
which allow preparing many materials such as packing films, oxygen barrier 
[114] and water-resistant coatings [115] [116]. 

Nevertheless, most of the materials made with hemicelluloses are smart hy-
drogels. Many kinds of hemicelluloses from different of plants such as birch 
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wood, aspen wood, spruce, bamboo, straw etc., have been used for the prepara-
tion of such materials. However, these hydrogels display weak thermostability, 
brittle properties and weak mechanical properties which restrict their applica-
tion in material field. Nevertheless, this can be partially overcome through 
blending hemicelluloses with compatible products, as shown in Table 7. 

4. Chitin and Chitosan-Based Smart Materials 

Chitin is the most widespread aminopolysaccharide and is the second natural 
polysaccharide after cellulose that can be obtained as a cheap renewable bio-
polymer from marine sources. As shown in Figure 9, chitin is a 
poly-β-1,4-N-acetylglucosamine. It is found in arthropod exoskeletons, tendons, 
and the linings of their respiratory, excretory, and digestive systems and in the 
cell wall of fungi. 

Due to its intermolecular hydrogen bonds, chitin is insoluble in water and in 
organic solvents, which, despite its enormous availability, limits its use. Never-
theless, several attempts have been reported to solve this problem owing to 
chemical modifications which allowed giving rise to derivatives such as chitosan 
or carboxymethyl chitin. Indeed, most of those derivatives are soluble in aque-
ous media and can be used as fibers, hydrogels, beads, sponges, and membranes 
[133]. 

The main applications of chitin and chitosan materials have been thoroughly 
reviewed by some researchers [133] [134].  

Nevertheless, chitin-based smart materials or composites have also been cre-
ated. Among those materials, shape memory materials containing polyurethanes 
molecules, are gaining more attention. Indeed, polyurethanes present good 
shape memory effect at room temperature. But polyurethanes cannot bear re-
peated changes in the shape memory, and retention will decrease by increasing 
the number of cycles of shape memory. Consequently, chitin-based polyure-
thane shape memory materials have been developed to overcome those problems 
[135] [136].  

Chitosan is a linear polysaccharide composed by two kinds of randomly 
distributed β(1→4)-linked structural units: 2-amino-2-deoxy-d-glucopyranose 
(D-glucosamine) and 2-acetamid-2-deoxy-d-glucopyranose (N-acetyl-D- 
glucosamine). It is obtained by extensive deacetylation of chitin.  

Considering its low toxicity, biocompatibility, biodegradability and indirect 
abundance in nature, chitosan has attracted much research interest and has 
found potential applications in pharmaceutical, paper, textiles, cosmetic, and 
food industries, as well as in agriculture and medicine [137] [138]. 

Moreover, chitosan is known for its absorption of exudes, anti-fungal, 
anti-microbial, anti-viral and wound-healing properties and is useful as a wound 
management aid to reduce scar tissue.  

There is an increased interest in preparing chitosan and various macromole-
cules blends for mitigating undesirable properties and a rapidly growing list of  
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Table 7. Hemicellulose-based hydrogels: origine, properties and potential applications. 

Raw material Hemicellulose Hydrogel synthesis 
Hydrogel properties and  

potential applications 
Reference 

Bambo Xylan Grafting with AA + Crosslinking High swelling, sensitive to pH [117] 

Spruce pulp AcGGM Grafting with MA + Crosslinking Drug release [118] 

Crude spruce  
hydrolysate 

AcGGM 
Free radical graft copolymerization and 

cross-linking of  
poly(amidoamine)/AcGGM 

High absorption capacity  
for heavy metal ions 

[119] 

Dextran AcGGM 
In situ Michael-type addition  

using vinyl sulfone 
Thermosensitive  

injectable hydrogels 
[120] 

Birch wood Xylan 
Introduction of allyl groups + reaction 
with thioacetic acid, + free thiol-thiol 

oxidative coupling 

3D hydrogel scaffolds and  
cross-linked foams 

[121] 

Crude spruce  
hydrolysate 

AcGGM 

Direct incorporation of hemicellulose  
into a semi-IPN matrix obtained by  

crosslinking polymerization  
of MA-CMC with AA 

Appreciable mechanical  
performance and high  

swelling ratio 
[122] 

Crude spruce  
hydrolysate 

AcGGM 
Synthesis of Hemicellulose full IPN by 

free-radical polymerization  
and a thiol-ene click reaction 

Fast swelling rates and  
highly porous structure 

[123] 

Spruce TMP AcGGM 
Functionalization of carboxylated AcGGM 

with GMA and covalent immobilization  
of conductive AT onto GMA. 

Electrically conductive  
hydrogels with high and  

controllable swelling 
[124] 

Spruce TMP AcGGM 
Cross-linking of AcGGM in a One-pot 
reaction with E in the presence of AP 

Conductivity, swelling and  
mechanical properties for  
biomedical applications 

[125] 

Spruce TMP AcGGM 
In situ fabrication of microgels by  

chemical cross-linking during spray drying 

Conductivity, 
mechanical properties,  
biomedical applications 

[126] 

Eucalyptus 
(Acid acetic pulping) 

Xylan and  
glucomannan 

Grafting maleic MA to hemicellulose and 
UV photo-crosslinking with NIPAAm 

Temperature responsive [127] 

Birchwood 
Xylan with  

glucuronic acid  
functionalities 

Network formation by complexation  
between glucuronic acid of xylan and 

amino groups of chitosan 
Porous structure, sensitive to pH. [128] 

Bamboo 
Xylan with glucuronic 

acid functionalities 

Use of Freeze-thaw process to obtain  
reinforced hybrid hydrogel of  

Hemicelluloses/PVA/Chitin Nanowhiskers 

Improved mechanical and  
thermal properties (applications  

in tissue engineering) 

[129]  
[130] 

Beech Xylan 
Mixing of Xylan,  

kappa-carrageenan and oat spelt 

Improvement of gelling and  
melting temperatures of  

Kappa-Carrageenan hydrogels 
[131] 

Pinewood,  
Switchgras and Coastal 

bermuda grass 

Various  
hemicelluloses 

Grafting with DTPA and  
cross-linking with chitosan 

Biosorbent for Water Desalination 
and Heavy Metal Removal 

[132] 

Abreviations: AA: Acrylic acid; MA: Maleic anhydride; AcGGM: O acetyl-galactoglucomannan; AP: Aniline pentamer; AT: Aniline tetramer; DTPA: Di-
ethylene triamime pentacetic acid; E: Epichlorohydrine; GMA: Glycidyl methacrylate; IPN: interpenetrating polymer network; MA-CMC: Methacrylated 
Carboxymethylcellulose; NIPAAm: N-isopropylacrylamide; TMP: Thermo-mechanical pulping. 

https://doi.org/10.4236/jbnb.2019.102004


S. Rebouillat, F. Pla 
 

 

DOI: 10.4236/jbnb.2019.102004 59 Journal of Biomaterials and Nanobiotechnology 
 

 
Figure 9. Chemical structure of chitin. 

 
biomaterial applications. Examples are chitosan blends with cellulose, cellulose 
acetate, xanthan, gelatin, silk, polyamide, poly (acrylic acid), poly (vinyl alcohol), 
polyamide, gellan, collagen, glycine, poly (N-vinyl pyrrolidone).  

On the other hand, chitosan structure can be modified through its amino 
group and the hydroxyl groups. These chemical modifications improve chitosan 
mechanical properties and solubility or bring new functional properties and 
promising applications. In this sense, a wide variety of chitosan thermosensitive 
materials has been generated, like nanostructures, scaffolds, membranes, cryo-
gels and paramagnetic beads, to cite some of them [139]. 

Moreover, because of the polyelectrolyte nature of chitosan, several chito-
san-based materials are also sensitive to changes of pH, ionic strength etc, and 
hence have an advanced interest due to specific technological potential applica-
tions as sensors, actuators, controllable membrane for separations and modula-
tors of drugs delivery for use in medicine, biotechnology and other fields. 

On the other hand, chitosan can also be induced to undergo reversible sol-gel 
transition forming hydrogels or films by changing chemical or pH gradients 
[140]. These materials offer a versatile platform and customizable functionality 
to interface and interact with labile biologics (biomolecules, proteins, enzymes, 
cells) in aqueous environment. They are widely used in composite film coating, 
tissue engineering and drug delivery for creating functional materials with de-
sired physical, chemical properties and even biological functionalities (Table 8). 

5. Alginate-Based Smart Materials 

Alginate is a natural polysaccharide that has two main sources: bacteria and 
seaweed (brown algae). It is composed of mannuronic acid residues (M-blocks), 
guluronic acid residues (G-blocks) and alternating M and G residues 
(MG-blocks). This chemical composition shows that alginate is a polymer with a 
polyelectrolyte nature.  

Alginate, exhibits excellent biocompatibility and biodegradability and has 
many different industrial applications linked to 1) its ability to absorb water 2) 
its gelling, viscosifying and stabilizing properties. Alginate is used in several in-
dustrial fields such as textiles, food, pharmaceuticals, cosmetics, waste water 
treatment and paper industry together with biomedical supplies. 

Alginate is readily processable for applicable three-dimensional scaffolding  
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Table 8. Chitosan-based stimuli-responsive hydrogels: functionalization, synthesis, properties and applications. 

Functionalization Synthesis Characteristic Application Reference 

Cross-linking 
With glutaraldehyde 

and sulfosuccinic acid 
Protonic conductivity Membrans for Fuel cells [141] 

Cross-linking With di- and tri-carboxylic acids nano-hydrogels Drug release [142] [143] 

Graft  
copolymerization 

Copolymerization of metacrylic 
acid with chitosan in the presence 

of APS 
Improved water solubility Antibacterial activity [144] 

Graft  
copolymerization 

Copolymerization of maleic acid 
with (CMCTS) and (HPCTS) 

Improved scavenging ability Antioxidant activity [145] 

Graft  
copolymerization 

Copolymerization of  
aniline with chitosan 

Protonic conductivity Conductive films and fibers [146] 

Carboxymethylation Monochloroaetic acid Solubility depends on pH 
Antimicrobial activity,  
affinity with metal ions,  

Controlled release of drugs 
[147] 

Phosphorylation 

Heating chitosan with  
orthophosphoric acid in DMF or 
with phosphorous pentoxide in  

methanesulphonic acid 

Solubility in water under 
neutral conditions 

Bactericidal, biocompatible, 
bioabsorbable, osteoinductive 
and metal chelating properties 

[148] 

Esterification 
Reaction of acyl chlorides with 
chitosan (synthesis of N,O-Acyl 

chitosan derivatives) 

Reaction mainly occurred  
on the OH group and  
not on the NH2 group 

Highly improved  
antifungal activity 

[149] 

Etherification 
Synthesis of N-phthaloyl  
chitosan. (MPEG) iodide 

Soluble in water and aqueous 
solutions of wide pH range 

Extremely low reduced  
viscosity 

[150] 

Self-rearrangement of 
polymer networks 

chitosan/chondroitin sulfate 
formed by polyelectrolyte  

complexation 

Crystallinity, higher thermal 
stability, porosity, and water 

uptake capacity 

pH sensitive material which can 
be tailored to several specific 

applications 
[151] [152] 

BC/Ch composite  
preparation 

Immersing wet BC pellicle in 
chitosan solution followed by 

freeze-drying 

porous network structure 
and large aspect surface 

Wound dressing or  
tissue-engineering scaffolds 

[153] 

Reversible blending Mixing of chitosan/PHEMA Swollen structure Electrically sensitive behavior [154] 

Electrospun  
chitosan fibers 

Electro-wet-spinning 
(submicron scale) 

Fast and reversible  
electroactuation 

Application in artificial  
muscles 

[155] 

Blending of chitosan 
and Cellulose 

Preparation of  
chitosan/cellulose blend beads 

Blend beads with rough and 
folded surface morphology 

Odor treatment and metal ions 
adsorption 

[156] 

 
Casting of a TFA solution of 

chitosan and cellulose 
Large bending displacement 

under low voltage 
Blended dry and  
durable actuator 

[157] 

Blending of chitosan 
with PCL 

Chitosan and PCL  
homogeneously dissolved in 

acetic acid/water and processed 
into uniform membranes 

Blends with chemical bonds 
biological and anti-bacterial 

properties 
[158] 

Preparation of 
poly(AA-co 

AM)/(O-CMC)  
interpenetrating  
polymer network 

Synthesis of a semi-IPN by AA 
and AM copolymerization of in 

the presence of O-CMCthen 
synthesis of a full-IPN  
through cross-linking 

Superporous hydrogel 
Mucosal drug delivery system, 

especially for peroral delivery of 
peptide and protein drugs 

[159] 

Abreviations: APS: Ammonium persulfate; BC: Bacterial cellulose; Ch: Chitosan; CMCTS: chitosan-carboxymethyl chitosan; DMF: N,N-dimethylformamide; 
HPCTS: hydroxypropyl chitosan; IPN: Interpenetrated Network; MPEG: Poly (ethylene glycol) monomethyl ether; NMMO: N-Methylmorpholine-N-oxide; 
PCL: poly (ε-caprolactone); PHEMA: poly (hydroxyethyl methacrylate); TFA: Trifluoroacetic acid; AA: Acrylic acid; AM: Acrylamid; OCMC: O-carboxymethyl 
chitosan. 
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materials such as hydrogels, microspheres, microcapsules, sponges, foams and 
fibers that provide responses to internal/external stimuli. 

Alginate-based biomaterials can be utilized as drug delivery systems and cell 
carriers for tissue engineering, control release, matrix for living cells, immobili-
zation of microorganisms [160]. Recently, there is a growing research interest in 
the applications and development of novel sustainable hydrogel materials for 
waste water treatment [161], and as an alternative to smart electrolytic gels for 
rapid electroencephalography monitoring and easy cleaning procedures [162]. 

As cellulose, hemicelluloses and chitosan, alginate can be easily modified via 
chemical reactions and physical interactions, to obtain derivatives with various 
structures, properties, functions and applications. Various techniques such as 1) 
oxidation, sulfation, copolymerization and coupling of cyclodextrin units, 2) es-
terification, use of Ugi reaction and amidation, are employed for chemical modi-
fication of the hydroxyl groups and carboxyl groups of alginate, respectively 
[163]. 

Moreover, owing to its structure and properties, alginate can be achieved 
through 1) combination with other biomaterials, 2) immobilization of specific 
ligands such as peptide and sugar molecules, and 3) physical or chemical 
crosslinking (Table 9). 

6. Conclusion and Perspectives 

This paper reviews the recent progress developed to produce and characterize 
smart materials using the most abundant products of the biomass, i.e. polysac-
charides which include cellulose, hemicelluloses, chitin, chitosan, and alginates 
and their by-products. Owing to their low density, thermal stability, chemical 
resistance, high mechanical strength, biocompatibility, biodegradability, func-
tionality, durability and uniformity, those products are materials of choice for 
the preparation of smart products that can be used in the very promising areas 
of nanotechnology, foods, cosmetics and medicine (mainly controlled drug re-
lease and regenerative medicine) and so, opening up major commercial markets 
in the context of green chemistry. 

The resulting smart materials are generally prepared through direct utilization 
and/or after chemical or physical modifications of the polysaccharides.  

Cellulose and its different physical structures (particularly cellulose nanofibers 
and nanoparticles, i.e. nanocelluloses) can be transformed into high value-added 
smart blends and composites with applications in important industrial areas 
such as those of flexible circuits, solar panels, implant materials, cartilage tissue 
engineering, drug delivery, etc.  

Moreover, owing to its unique cristalline structure and its piezoelectric be-
haviour, cellulose has also the characteristics of an electroactive polymer, with 
potential applications in biomimetic sensors/actuators and electromechanical 
biosystems.  

Together with hemicelluloses, chitosans and alginates, cellulose can give rise  
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Table 9. Main smart alginate derivatives obtained by functionalization processes. 

Functionalization Experimental strategy Material characteristics Application Reference 

Oxidation 
Controlled reactions on-OH 

groups of C-2 and 
C-3 with sodium periodate 

Cleavage of carbon-carbon 
bond of cis-diol groups and 
formation of acetal groups 

Powerful material for 
tissue engineering, 
Drug-controlled  
delivery systems 

[164] [165] 

Sulfation 
Reaction of sodium alginate 

with a sulfating agent 
(N (SO3Na)3) 

Sodium alginate sulfate  
with DS of 1.87 

Anticoagulant activity [166] 

 
Reaction with ClSO3H in  

formamide 
Alginate sulfate and its  
quaterized derivatives 

Anticoagulant activity and 
potential application as 

anti-HIV 
[167] 

Reductive-amination of 
oxidized alginate 

Synthesis of APSs with a linear 
alkyl group (C8, C12, C16) 

Low interfacial tension value 
Surfactant activity and 

adsorption of heavy metal 
[168] 

 
Syntheseis of (HM-alginate) 

via reaction of sodium alginate 
with dodecyl glycidyl ether 

Zeta-potential of HM-alginate 
higher than that of sodium 
alginate. Very low viscosity 

Ecology-safe material to 
encapsulate lipophilic 

substances 
[169] 

Copolymerization 
Synthesis of a copolymer  

of sodium acrylate  
with sodium alginate 

Water absorbency of the  
hydrogel ≥ 85 times  

its own mass 

Superabsorbent resistant 
to salinesolution 

[170] 

 
Microwave-initiated 

synthesis of 
SA-g-PAM 

MW and Intrinsic viscosity 
greater than that of SAG. 

Polymeric flocculant [171] 

 
Graft copolymerization of VSA 

onto alginate in the presence 
of (PDP)/thiourea 

Thermally more stable than 
alginate 

Metal ion sorption,  
Flocculant, Resistant to 

biodegradability 
[172] 

Esterification 

Synthesis of derivatives of 
sodium alginate, by chemical 
binding of long alkyl chains 
onto alginate backbone via 

ester functions 

Increasing of the hydrophobic 
nature of native alginate 

Protein carrier with  
High encapsulation yields 

and important release 
properties 

[173] 

 
Esterification of alginate by 

butanol 

Very stable material with  
gelling and non-toxic  

properties 

Encapsulation of both 
hydrophilic and  

hydrophobic molecules 
[174] 

Ugi reaction 

Sodium alginate dissolved in 
water + formaldehyde,  

octylamine and  
cyclohexyl isocyanide 

Self-aggregated micelles with 
high thermal stability and 

good amphiphilic functionality 

High potential in  
pharmacology and  
tissue engineering 

[175] 

Crosslinking 
Preparation of poly (AA-co 
AM)/(SA) interpenetrating 

polymer network 

1) Synthesis of a semi-IPN by 
copolymerization 

2) Crosslinking with Bis 

IPN with a superporous  
structure, good mechanical 
properties, pH sensitivity 

Potential candidate  
in the field of 

Drug delivery system 
[176] 

Preparation of poly 
(AA)/(SA) interpenetrating 

polymer network 

1) Synthesis of SA beads 
2) Synthesis of hydrogels  

hybrids by polymerization of 
AA and crosslinking 

Strong and elastic superporous 
hydrogel, high network  

density, good mechanical 
properties 

Various pharmaceutical, 
biomedical and industrial 

applications 
[177] 

Abreviations: Bis: N,N’-methylenebisacrylamide; DS: degree of substitution; APSs: alginate-derived polymeric surfactants; HM-alginate: hydrophobic 
modified alginate; MW: Weight average molecular weigth; SA: sodium alginate; SA-g-PAM: sodium alginate grafted polyacrylamide; VSA: vinyl sulfonic 
acid; PDP: potassium peroxydiphosphate. 
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to several types of stimuli-responsive hydrogels (e.g. temperature responsive, 
pH-sensitive, protonic conductor, etc.) able to be used in numerous applications 
such as tissue engineering, absorption of heavy metal ions, odor treatments, liq-
uid and gas absorbtion, polymeric floculation, energy storage etc. 

All those investigations clearly show the great potential of polysaccharides for 
the production of cheap, disposable and environmentally friendly devices. 
However, as shown in different sections of the present review, still more com-
prehensive studies are required to broaden the fundamental understanding of 
molecular level interactions that confer smartness to polysaccharides. This 
would allow manufacturing new materials with new applications, able to bring 
more technological impacts to markets. 

Regarding innovation and bigger data: in a nutshell, the parallel between in-
novation and art has been progressively brought to the attention of the reader 
from a fairy tale landscape making innovative use of natural resources keeping 
“monuments in place”. Followed by the foreseeing, “4C”, dimension of the col-
laborative skills developed back in 1998 by Rebouillat [2], now extended to the 
Jazz science to education breadth [6] and its self-learning integration value, as-
sociated with a high degree of intrinsic improvision serving innovation, the loop 
on the innovation subject matter, in the present work, is closed with the bigger da-
ta and artificial intelligence, and, its emotional intelligence limitations and poten-
tial for misleadingness that may deserve a longer propos in a review to come. 

Finally, Smart Materials are along with Innovation attributes and Artificial 
Intelligence among the most used “buzz” words in all media. Central to their 
practical occurrence, many talents are to be gathered within new contextual data 
influxes. Has this, in the last 20 years, changed some of the essential fundamen-
tal dimensions and the required skills of the actors such as providers, users, in-
siders, etc.? This is a preliminary focus and prelude of this review which shall 
not be ignored. 

The era of smart materials may deserve an artistic warning-illustration to 
complete the picture of its tremendous potential with some level of disruptive 
improvisation in Figure 10. 
 

 
Figure 10. “The hand-footed, to travel a New Un-
iverse.” Private art to illustrate smart technologies 
approaches on smart gloves and augmented natural 
abilities, © Letibarlou, 2018. 
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