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Abstract 
In this work empirical models describing sampling error (∆ ) are reported 
based upon analytical findings elicited from 3 common probability density 
functions (PDF): the Gaussian, representing any real-valued, randomly 
changing variable x of mean µ  and standard deviation σ ; the Poisson, 
representing counting data: i.e., any integral-valued entity’s count of x (cells, 
clumps of cells or colony forming units, molecules, mutations, etc.) per tested 
volume, area, length of time, etc. with population mean of µ  and σ µ= ; 
binomial data representing the number of successful occurrences of some-
thing ( x+ ) out of n observations or sub-samplings. These data were generat-
ed in such a way as to simulate what should be observed in practice but avoid 
other forms of experimental error. Based upon analyses of 104 ∆  measure-
ments, we show that the average ∆  ( ∆ ) is proportional to 12 nσ µ−−⋅ ⋅  

( 1
xσ µ−⋅ ; Gaussian) or 2 n µ− ⋅  (Poisson & binomial). The average propor-

tionality constants associated with these disparate populations were also 
nearly identical ( 0.783 0.0470A = ± ; ±s). However, since µ σ=  for any 

Poisson process, 12
xn µ σ µ−− ⋅ = ⋅ . In a similar vein, we have empirically 

demonstrated that binomial-associated ∆  were also proportional to 1
xσ µ−⋅ . 

Furthermore, we established that, when all ∆  were plotted against either 
2 n µ− ⋅  or 1

xσ µ−⋅ , there was only one relationship with a slope = A (0.767 
± 0.0990) and a near-zero intercept. This latter finding also argues that all ∆ , 
regardless of parent PDF, are proportional to 1

xσ µ−⋅  which is the coeffi-
cient of variation for a population of sample means ( [ ]VC x ). Lastly, we es-
tablish that the proportionality constant A is equivalent to the coefficient of 

variation associated with ∆  ( V jC  ∆  ) measurement and, therefore, 

[ ]V j VC C x ∆ = ∆ ⋅  . These results are noteworthy inasmuch as they provide 
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a straightforward empirical link between stochastic sampling error and the 
aforementioned sVC . Finally, we demonstrate that all attendant empirical 

measures of ∆  are reasonably small (e.g., 1 ~ 4%xs x −⋅ ) when an environ-
mental microbiome was well-sampled: n = 16 - 18 observations with ~ 3µ  
isolates per observation. These colony counting results were supported by the 
fact that the two major isolates’ relative abundance was reproducible in the 
four most probable composition observations from one common population. 
 

Keywords 
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1. Introduction 

There are various analytical procedures for enumerating organisms in environ-
mental samples which diverge in their experimental approach yet are mathe-
matically inter-related. Thus, if V represents the sample volume and eV  the 
volume occupied by a test entity of interest (e.g., colony forming units or CFUs), 
the probability that one particular eV  will not contain this entity at concentra-
tion δ  [1] is 

( )1e
e

e

V V V
V

V V
δ

δ
 − ⋅

= − ⋅ 
 

; 

i.e., eV V —maximum possible number of entities in V and V δ⋅ ~the actual 
number of objects present.  

Assuming that many eV  aliquots have been combined to generate V, the 
probability that no organism will be contained in V is [1] 

[ ]1 e

V
VeP V δ− = − ⋅  

therefore 

[ ]ln ln 1 e
e

VP V
V

δ−  = ⋅ − ⋅  . 
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For 0eV →  (e.g., E. coli [2] has a 3 13~ 0.6 m ~ 6 10 mLeV −µ × ), 
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ln ~P V δ−  − ⋅   

[ ] [ ]exp expP V δ µ− = − ⋅ = −  

therefore 

[ ] [ ]1 1 exp 1 expP P V δ µ+ −= − = − − ⋅ = − − .            (1) 

In certain circumstances it is only possible to determine an organism’s δ  by 
diluting the sample to such an extent that only a fraction of the n “technical” 
replicates tested are positive ( x+ ) for the presence of the entity, or microbe, in 
question [3] [4]. This technique is referred to as the “dilution method” [1] since 
it involves diluting a test sample’s content to extinction ( 0δ → ). This enumera-
tion protocol is also known as the most probable number (MPN) method and 
entails sampling from a liquid source, making serial dilutions from this, distri-
buting an aliquot of each of these dilutions into separate receptacles, incubating 
these under suitable growth conditions, and observing if any growth has oc-
curred based upon some organism-specific detection method [5] [6]. The MPN 
enumeration procedure is particularly useful when sampling from environmen-
tal sources, such as foods, since damaged cells frequently recover in liquid media 
[7]. 

For example, were one to obtain a food sample containing ~14 CFU of a par-
ticular organism per 50 g, the cells would typically be washed from the food ma-
trix, concentrated to a few mL (e.g., via centrifugation), and brought up to some 
appropriate volume (say 40 mL = Vsample) with media [5]. From this, eight 4 mL 
(V) samples could be randomly selected and distributed into 8 separate recep-
tacles (n = 8 with a dilution factor of 1; i.e., undiluted). Of the remaining 8 mL, 4 
could be further diluted with 36 mL (40 mL total) liquid media, mixed and dis-
tributed into another set of 8 containers. This set of dilutions has a dilution fac-
tor of 0.1 relative to the original. With the remaining 8 mL from the 0.1 dilution, 
4 mL could be diluted again with 36 mL media, mixed and distributed into yet 
another eight 4 mL replicates (dilution factor = 0.01). After incubation the most 
likely number (Equation (2), below) of positive occurrences (e.g., presence of a 
specific gene [5]) observed would be x+  = 6, 1, and 0 (out of n = 8 observations 
per dilution) for dilution factors of 1, 0.1, and 0.01, respectively, and the calcu-
lated MPN (±s) per 50 g sample would = 13.8 ± 5.56. Note the relatively large 
error term. For a 4-fold proportional (200 g, 160 mL Vsample) experiment with n = 
32, the calculated MPN is 13.8 ± 2.78 per 50 g sample.  

For MPN-based organism detection and subsequent enumeration, the number 
of positive occurrences of growth in any j th experiment out of n observations = 

1
n

j ijix θ+
=

= ∑  (θ = either 1 [presence] or 0 [absence]) can be estimated as 

[ ]( )~ 1 expx n P n V δ+ +⋅ = − − ⋅                  (2) 

whereupon x+  is integral (=ROUND( n P+⋅ , 0) in Excel). The probability of 
observing x+  successes out of n Bernoulli trials [8] each of volume V from a 
population of δ  entities per V is 
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which is also known as the binomial PDF. Since n P+⋅  = the population average 
(real) [9] number of positive responses out of n tests ( µ+ ), the above can be also 
written as 

( )
! 1

! !

n x x

b
nP

n nx n x
µ µ

+ +−+ +

+ +

   
= −   

−    
.              (3) 

The multiple dilution MPN calculation itself is determined by finding the val-
ue of δ  at the maximum in the product of the bP s  from all th

  dilutions 
( ,bP∏





) and is easily achieved by adding the scaled sum of all dilutions’ 

b bP Pδ∂ ÷  values to an initial guess for δ  (i.e.,  
{ }

( )( )( ){ }
1 , ,

exp 0.1 1 0.1

m m m b b m

m m m

P P

x n x V V

δδ δ λ

δ λ δ

+

+ +

= + × ∂ ÷

 = + × − + ÷ ⋅ ⋅ − ⋅ ⋅ 

∑

∑

 



 

 



 
for any particular  

ℓ th one-to-ten dilution and m iterations; λ is a monotonically changing, with m, 
scaling function) then solving for the MPN recursively [1] [4] [5] [10] which 
minimizes the summation. 

At the limit n → ∞, Equation (3) simplifies to what is known as the Poisson 
PDF 

[ ]exp
!

x

PP
x

µ µ−
= .                        (4) 

Under these circumstances, x is the observed and µ  is the population average 
number of counts in/on the tested volume, surface, chosen time period, etc. This 
PDF is applicable to all analytical systems involving, essentially, the counting of 
objects. However this PDF is applied, the most conspicuous aspect [11] [12] of 
any Poisson process is that the variance ( 2σ  or second moment) 

( )22

0
P

x
x Pσ µ µ

∞

=

= − =∑   

equals the population mean ( µ  or first moment) 

0
P

x
x Pµ

∞

=

= ⋅∑ . 

The last probability density function utilized in this stochastic sampling exer-
cise is also related to bP , Equation (3). This is the Gaussian PDF which we use 
to quantitatively examine the effects of n and σ  (fixed µ ) on the variability of 
sample means ( x ) which have been created by randomly sampling from a pop-
ulation of real-valued variables (x; e.g., doubling time [13]) which are normally 
distributed as 

2Area 1exp
22πG

xP µ
σσ

 − = −  
   

;                 (5) 

in this relationship the Area term (~ 1
K

kkx f
=

∆ ⋅∑ ; for large K) is the approximate 
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area under the fitting function f (frequently taken to be 1 since x∆  is often = 1 
and f∑  is always ~1). There are several derivations of PG but none are as 
persuasive as the fact that this PDF is simple and has been experimentally shown 
to be the most likely probability distribution associated with most experimental 
observations [9] [12]. 

The original purpose of our sampling-related investigations [7] was to esti-
mate a nominal value for n needed to achieve accurate most probable foodborne 
bacterial isolate enumeration, combined with 16S rDNA-based identification, 
for quantitative metagenomic purposes. The relationships were developed by 
examining the results of 6 × 6 colony counting (Poisson PDF) of highly diluted 
bacteria [14] [15] as a function of n and µ  as well as by generating counts (x) 
derived from PP  to simulate what occurred in the lab [15] [16] but which 
avoided other forms of experimentally based error [5]. We were able to establish 
that 3

min 1n nµ µ→= ÷  where 1nµ→  is the number of observations necessary to 
accurately enumerate a population average of 1 count per volume tested. Based 
mainly on colony counting experience we estimate 1nµ→  is somewhere in the 
range n ~ 20 - 30 observations. 

Herein we model stochastic sampling errors associated with all the aforemen-
tioned PDFs and empirically demonstrate that the resultant mathematical mod-
els are, in part, a consequence of the “central limit theorem” [17] (CLT). In gen-
eral, the CLT states that a distribution of sample means ( x ), regardless of parent 
PDF, approaches a normal distribution analytically equivalent to GP , Equation 
(5), with x x= , xµ µ= , and with the 2σ  term = 2

xσ  (= 2 nσ ÷ ) as the 
number of separate n-samplings increases. We also have elaborated on empirical 
findings developed previously [5] [15] [16] for predicting errors associated with 
the random sampling of microorganisms as well as comparing the internal vari-
ations associated with the three different sampling error data types derived from 
the Gaussian, binomial (MPN), and Poisson relationships. Thus, new results 
have been created using the aforementioned probability distributions, Equations 
(2), (4), and (5), and have been highly replicated since each “experiment”, com-
prising n (= 3, 6, 9, 12, or 24) observations, were repeated 100 times.  

2. Materials and Methods 
2.1. Poisson-Based Data: Equation (4), Figure 1 

All counting data were created by multiplying Equation (4) by 360 in order to 
produce a large number of integral-valued repeats (=ROUND ( 360 PP⋅ , 0)) for 
any particular count x: e.g., for 1µ =  particle per test volume, area, length of 
time, etc., there would be, most probably, 132 repeats of x = 0, 132 repeats of x = 
1, 66 repeats of x = 2, 22 repeats of x = 3, 6 repeats of x = 4 and 1 repeat of x = 5 
entities per test. From this pool of 360 counts for each μ, an n number of x val-
ues were randomly selected based upon random number tables created with 
Mathematica. 

{ } { }Table Random Integer, 1,360 , ,i i n =                 (6) 

https://doi.org/10.4236/apm.2019.93010


P. L. Irwin et al. 
 

 

DOI: 10.4236/apm.2019.93010 210 Advances in Pure Mathematics 
 

 
Figure 1. (A) relationship of average j∆  ( ∆ ) for Poisson-based data using Equation (7) (P-I: black symbols and curves) or Equ-

ation (8) (P-II: red symbols and curves) as a function of n (= 3, 6, 9, 12, 24) and various values for μ (= 1, 2, 4, 8, 16). 
Gauss-Newton least squares minimization-based curve-fitting [18] of data was performed [19] to fit to the equation a

n n∆ = ∆ ⋅  
(averages for a are provided ± s; averaged across 5× μ). (B) Non-linear relationship of individual n∆  values from (A) for P-I- and 

II-based data as a function of μ whereupon curve-fitting of data was also performed using the algebraic form a
n A µ∆ = ⋅  (values 

for A and a are provided ± ASE). (C) and (D) Present linearized forms ( 2X n−=  in (C) and 2X µ−=  in (D)) of data reported 
in Figure 1(A) and Figure 1(B) based upon all values of a = −1/2. Slopes of the lines in Figure 1(C) and Figure 1(D) are equiva-
lent to n∆  and A, respectively. 

 
which generates n random numbers between 1 and 360. Thus, 100 such random 
number sets were utilized for the twenty-five n (= 3, 6, 9, 12, 24) × μ (= 1, 2, 4, 8, 
16) combinations. Briefly, each procedure involved arranging the aforemen-
tioned 360 x values (one set for each μ) in one column of a spreadsheet followed 
by filling in n adjacent columns with formulae which refer to the calculated x 
values but where each row’s reference number was taken from the Mathemati-
ca-generated random number, Equation (6), next in sequence. MPN- and Gaus-
sian-based data arrays were treated in an identical fashion. The formula (P-I: 
normalized deviations of js  from σ µ= ) for calculating our empirical 
measure of Poisson stochastic sampling error (Δ) was 

j
j

sµ

µ

−
∆ =                           (7) 

whereupon the js  term is  the experimental  standard deviat ion 

( ( ) ( )21
11 n

ij jin x x−

=
− −∑  or “=STDEV.S ( -arrayijx )” in Excel) for each j th  

( 1,2, ,j J= 
; J = 100) experiment and i th ( 1, 2, ,i n=  ) x. The average across  

100× experiments, regardless of formulation, were symbolized as ∆  (= 
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1
1

J
jjJ −

=
⋅ ∆∑  or “=AVERAGE ( -arrayj∆ )”). A second form for the Pois-

son-based measure of Δ was also calculated (P-II: normalized deviations of jx  
from known μ) from these same data 

j
j

xµ

µ

−
∆ = .                          (8) 

Here the jx  is the observed arithmetic mean for each j th counting experi-
ment.  

2.2. MPN Experiments: Equation (1), Figure 2 

All MPN data were created by multiplying Equation (1) by 360 to produce the 
number (“=ROUND ( 360 P+⋅ , 0)”) of positive responses (θ = 1) for any partic-
ular level of V δ⋅  (=μ); e.g., for 0.1µ =  entity per volume tested there would 
be 34 repeats of θ = 1 and 326 repeats of θ = 0. From such a column of 360 θ 
values (one column for each μ), n were randomly selected based upon Mathema-
tica tables, Equation (6), and treated similar to the Poisson data above. Thus, for 
each combination of n (= 3, 6, 9, 12, or 24) × μ (= 0.1, 0.2, 0.4, 0.8, 1.6), 100  

 

 
Figure 2. (A) Relationship of average j∆  ( ∆ ) for MPN-based data using Equation (9) as a function of n (= 3, 6, 9, 12, or 24) and 

variable μ (= 0.1, 0.2, 0.4, 0.8, 1.6). Gauss-Newton least squares minimization-based curve-fitting [18] of data was performed [19] 
to fit the algebraic form a

n n∆ = ∆ ⋅  (averages for a are provided ± s; averaged across 5 × μ) to these results. (B) Relationship of 
individual n∆  values from (A) for MPN-based data as a function of μ where curve-fitting of data was performed also to the alge-

braic form a
n A µ∆ = ⋅  (values for A and a are provided ± ASE). (C) and (D) Represent linearized forms ( 2X n−=  in (C) and 

2X µ−=  in (D) of data reported in Figure 2(A) and Figure 2(B) based upon the assumption that a = −1/2. Slopes of the lines in 
Figure 2(C) and Figure 2(D) are equivalent to n∆  and A, respectively. 
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random n-selections were performed. The formula for calculating our empirical 
measure of MPN sampling error was 

1

n

ij
ji

j

n P x

n P

θ µ

µ

+
+ +

=
+ +

⋅ − −
∆ = =

⋅

∑
;                    (9) 

where θ = either a “1” (a positive occurrence) or a “0” (a negative occurrence). 
As before, the average j∆  across J = 100 experiments (each of n observations) 
= ∆ . The MPN value for ( )lnj jx n n x+ + = ÷ −   and provides the average MPN 
or CFU per sample; a rearrangement of Equation (2).  

2.3. Gaussian-Based Data: Equation (5), Figure 3 

All Gaussian PDF data were produced by multiplying Equation (5) ( 1x∆ = ) by 
360 producing an integral number of observations (“=ROUND ( 360 GP⋅ , 0)”) 
for each value of x as a function of μ (fixed at 20) and σ (= 1, 1.5, 2, 3, 4). For in-
stance, for σ = 1 there would be 2 repeats of x = 17, 19 repeats of x = 18, 87 re-
peats of x = 19, 144 repeats of x = 20, 87 repeats of x = 21, 19 repeats of x = 22, 
and 2 repeats of x = 23. From this column of 360 values of x, n (= 3, 6, 9, 12, or  

 

 
Figure 3. (A) Relationship of average j∆  ( ∆ ) for Gaussian-based data using Equation (10) as a function of n with variable σ 

(=1, 1.5, 2, 3, 4; μ = 20). Gauss-Newton least squares minimization-based curve-fitting [18] of data was performed [19] to fit the 
equation a

n n∆ = ∆ ⋅  (averages for a are provide ± s; averaged across 5× σ) to these results. (B) and (D) Relationship of individual 

n∆  values from (A) and (C) for Gaussian-based data as a function of μ-normalized standard deviations ( X σ µ= ÷ ). Linear re-

gression-based fitting of data was performed to the algebraic form A σ µ⋅ ÷ . Figure 3(C): linearized forms ( 2X n−= ) of data 
reported in Figure 3(A) based on a = −1/2. Slopes of the lines in Figure 3(C) are equivalent to n∆  and plotted in Figure 3(D). 
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24) were randomly selected based upon Equation (6) and treated identically to 
the Poisson and MPN data sets. Thus, for each combination of n × σ 100× 
n-based selections were performed. The formula for calculating our empirical 
measure of Gaussian sampling error, similar to Equation (7), was 

j
j

sσ

µ

−
∆ = .                          (10) 

As usual, the average j∆  across J = 100 such sets of experiments each of n 
observations = ∆ .  

2.4. Other Calculations 

All curve-fitting was based upon a modified Gauss-Newton algorithm by least 
squares [18] minimization performed on a Microsoft Excel spreadsheet: [19] 
some of these results were fit to the algebraic form [ ] constant af X X= ⋅ . How-
ever, certain MPN data ( x +  and x+ ) were also fit to a Gaussian (Equation (5): 

GP x +    or GP x+   ) with x∆  used as one of the parameters to be iteratively 
resolved (i.e., deconvolved). Where appropriate, confidence limits (CL) have 
been calculated using an approach applicable to any hypothetical fitting function 

;k k pf f X π =   : 1,2, ,k K=   rows of the observed X-Y data sets with up to P 
(typically ≤ 3) fitting parameters pπ  ( 1,2, ,p P= 

). In this procedure we use 
the propagation of error method [9] [20] for estimating the standard error asso-
ciated with each kf  (

kf
s ; illustrated below for P = 2 fitting parameters) data 

point  

1 1 2 2 1 2 1 2

2 22 2 2 2
kf k k k kt s t s f s f f fCL sπ π π π π π π π   ⋅ = ∂ + ∂ + ⋅ ⋅∂ ⋅∂   =   

where, for any particular fitting parameter ω , 
12 T

Ys sω ωω

−
 = ⋅  Z Z  = “asymp-

totic standard error” [19] (ASE; 2
Ys  = residual sum of squares ÷ [K − P]), and 

the 
p kfπ∂  terms symbolize k pf π∂ ∂ . The above equation simplifies to 

( )12 T T
0.01 0.01kf Y k ktCL s t s

−
 ⋅ =  = Z Z Z Z .  

In all the above relationships Z is the partial first derivative matrix of kf  
with respect to the parameters 1π  and 2π  (i.e., a 2-parameter fit) such that  

1 2

1 2

1 2

1 1

2 2

K K

f f

f f

f f

π π

π π

π π

∂ ∂ 
 
∂ ∂ =  
 
 ∂ ∂ 

Z
 

,  

TZ  is the transpose of Z, 
1 2k k kf fπ π = ∂ ∂ Z  (K row vectors), and 

12 T
Ys

−
 ⋅  Z Z  is the variance-covariance matrix [21]. CL were not used for all 

results since they might have muddled analytical aspects of the compositions.  

2.5. Microbiome Sampling Data 

For the food microbiome sampling experiment ~25 g of commercial, pre-thawed 
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(~15 min at room temperature), frozen vegetables were washed with a volume of 
phosphate buffered saline (PBS; 10 mM Na2HPO4 + 2 mM NaH2PO4 + 137 mM 
NaCl; pH 7.4 ± 0.2; Boston BioProducts, 159 Chestnut Street, Ashland, MA 
01721) equivalent to double the mass of the sample. In order to assist in the de-
tachment of plant tissue-bound cells, 0.075% [w/v] Tween-20 (Sigma-Aldrich, 
3050 Spruce St., St. Louis, MO 63103) was added to the PBS and filter sterilized. 
All washing was performed in sanitized plastic zip-lock bags wherein the for-
merly frozen vegetables and buffer wash were gently agitated at 80 rpm for ap-
proximately 20 min and immediately passed through a 40 μm nylon filter (BD 
Falcon; Becton Dickinson Biosciences, Bedford, MA) to remove large particles. 

Directly sampled washes (5 mL Control = Observation I [cultured at 30˚C] 
and III [cultured at 37˚C]) as well as hollow fiber microfilter-concentrated (each 
5 mL sample was diluted to ~100 mL PBS + Tween, concentrated, then washed 
with another 100 mL buffer, and eluted with ~5 mLs PBS + Tween = Observa-
tion II [cultured at 30˚C] and IV [cultured at 37˚C]) samples were collected and 
enumerated using the 6 × 6 drop plate method [14] but using 1:2 serial dilutions 
for colony selection on Brain Heart Infusion agar (BHI + 2% [w/v] agar). Briefly, 
this drop plate method involved loading 400 μL of each wash (either control or 
concentrated samples brought back to the control sample’s original volume = 5 
mL) filtrate into the first well (row A) of a 96-well microtiter plate. Two-fold 
serial dilutions were made by transferring 200 μL (multichannel pipette, Rainin, 
Emeryville, CA) from the first row (row A; dilution 0) into 200 μL of diluent 
(PBS) in the 2nd row (row B; dilution 1), mixing 10 times while continuously 
stirring, and repeating the process until five 1:2 dilutions were produced; pipette 
tips were changed between dilutions. Based on a previous analysis of 6 × 6 drop 
plate sampling error [15], we sampled n = 16 - 18 seven μL volumes from each of 
the 6 dilutions (dilutions 0 - 5; overall dilution factors of 0.50 = 1 to 0.55 = 
0.03125) and drop-plated these onto BHI agar media using a multichannel pi-
pette. After plating, the droplets were allowed to dry, inverted and then incu-
bated at two temperatures (either 30˚C or 37˚C; 3 plates for each temperature 
and treatment combination). Colonies were counted after 16 - 24 hours. Colony 
collection for our 16S rDNA bacterial identification protocol [7] involved se-
lecting all colonies from dilution 2 (0.52 = 0.25 dilution; x  = 2.79 ± 1.52 colo-
nies per drop; ± s; the fact that x  = 1.67 ~ s might argue for an appropriately 
sampled population). 

Each colony (n total) was carefully removed from the agar plate’s surface us-
ing a Rainin L20 tip, dispersed into 200 μL BHI in a 96-well plate and incubated 
at 30˚C for 16 - 24 hours. These cultures were restreaked onto solid media and 
incubated at 30˚C overnight. One colony from each of the original n plates was 
selected, suspended into 25 μL of Ultra PrepMan (Applied Biosystems, Foster 
City, CA) in a PCR tube and heated in a thermocycler at 99˚C for 15 min. Upon 
cooling, samples were centrifuged 10 min. to separate the DNA solution from 
the cell debris. A sample of supernatant was transferred to a new tube for the 
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DNA amplification step (end-point PCR). Once the 16S rRNA “gene” amplifica-
tion, sequencing reactions (EubA and EubB primers) and Sanger sequencing 
were performed, DNA sequences were edited, and contigs assembled using Se-
quencher software as explained in detail previously [7]. 

3. Results and Discussion  

Figure 1 shows results related to averages of 100 × j∆  values ( ∆ ) derived from 
Equations (7) (P-I, black data) or (8) (P-II, red data) as a function of n (Figure 
1(A)) and μ (Figure 1(B)). The least squares curve-fitting results show that the 
Figure 1(A) data follow the general form a

n n∆ = ∆ ⋅  whereupon a  (averaged 
across 5 n-based fits) = −0.556 ± 0.00986 (black data sets; ±s) or 

0.529 0.0387a = − ±  (red data). These findings suggest that ∆  changes as the 
inverse square root of n for all values of μ. Figure 1(C) displays these same re-
sults on a linearized scale (X-axis = 2 n− ) whereupon the slopes 

( )2 ~ nn− ∂∆ ∂ ∆  . Figure 1(B) illustrates that the n∆  values derived from 
Figure 1(A) non-linear regression change as the inverse square root of μ: i.e., 

a
n A µ∆ = ⋅  where a = −0.547 ± 0.0179 (black data) or −0.503 ± 0.0374 (red da-

ta); a ± ASE. Figure 1(D) shows Figure 1(B) results plotted on an appropriately 
linearized scale (X-axis = 2 µ− ) as indicated by the above analysis whereupon 
the slope ( )2 ~n Aµ− ∂∆ ∂   . Combining results from Figure 1(A) and Figure 
1(B) we see that 2~ A n µ−∆ ⋅ ⋅ . The average value for A was 0.804 ± 0.0460 (P-I 
& P-II curve-fitting results ±s).  

Figure 2 displays MPN-based enumeration data, Equation (9), manipulated in 
a similar fashion as that of the above Poisson-based results with a nearly identic-
al result. The least squares curve-fitting shows that the data in Figure 2(A) once 
again follow the general form a

n n∆ = ∆ ⋅  with a  = −0.554 ± 0.0499 (±s) 
which is the average a from 5× μ-based data sets. Figure 2(C) shows these same 
findings graphed on a linearized scale ( 2X n−= ) whereupon the slopes = n∆ . 
Figure 2(B) also shows that the n∆  values, derived from Figure 2(A) 
non-linear regression, change as the inverse square root of μ: a

n A µ∆ = ⋅  where 
a = −0.515 ± 0.0910 (±ASE). As previously observed, when these results are pre-
sented on a linearized scale ( 2X µ−= ; Figure 2(D)) the slope is equivalent to 
the parameter A. Combining fitting results from Figure 2(A) and Figure 2(B) 
we again note that 2~ A n µ−∆ ⋅ ⋅  (A = 0.807 ± 0.139; ± ASE). 

Completely homologous relationships to the Poisson and MPN findings were 
also noted with Gaussian-based data (Figure 3) whereupon the least squares 
curve-fitting in Figure 3(A) shows that these data obey, again, the general form 

a
n n∆ = ∆ ⋅  whereupon a  = −0.561 ± 0.0276 (±s; averaged across all σ since μ 

was fixed). Figure 3(C) has these same findings plotted on a linear scale 
( 2X µ−= ) where the slopes = n∆ . Figure 3(B) and Figure 3(D) also show that 
the n∆  values derived from Figure 3(A) and Figure 3(C) non-linear regression 
change linearly with σ µ÷ : i.e., n A σ µ∆ = ⋅ ÷  (A = 0.725 ± 0.0977; ± ASE). 
All Gaussian-based data fitting results combined indicate that 
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[ ]1 12
x VA n A A C xσ µ σ µ− −−∆ = ⋅ ⋅ ⋅ = ⋅ ⋅ = ⋅  whereupon [ ]VC x  is the coeffi-

cient of variation for a population of means associated with x.  

3.1. Equivalence of Sampling Errors Associated with Any PDF 

The counting results alluded to above (P-I, P-II, & MPN) are similar to those 
observed previously: [5] [15] [16] i.e., stochastic sampling errors associated with 
microbiological colony counting and MPN data are proportional to the inverse 
square root of n × μ. Also, the Poisson population-based results compare favora-
bly with those obtained from actual colony counting experiments [14]. Thus, for 
all Poisson-based data (Figure 1) 

[ ]1 11 x
VC

nn
x

n
µ σ σ

µµµ µ
⋅ =∆ = = =⋅∝

⋅
            (11) 

because σ µ= . We have simplified the expression by utilizing the term xσ  
[22] (= nσ ÷ ) which can be derived using the propagation of errors method 
[20]. Such nomenclature exemplifies the utilization of GP , as an approximation 
for PP , associated with a population of sample means ( x ) of mean xµ  and 
standard deviation xσ . However, for MPN results, does ~σ µ  as an ap-
proximation? This question is addressed in detail (Figures 4-6).  

 

 
Figure 4. (A) & (C) Frequency of observing each set of MPN-based calculated number of entities per sample tested 

( ( )lnx n n x+ + = ÷ −  ; μ = 0.8 for (A) & (B); μ = 0.4 for (C) & (D) fit to Equation (5) (i.e., GP x +    as a function of x + ). (B) 

and (D) shows that ~ ~fit fit xnσ µ σ÷  (i.e., for MPN, σ µ= ) for all modeled n-samplings. Error bars are = t0.05 × the expe-

rimental (overall) xs EMS n= ÷ . 
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Figure 5. (A) & (B) Frequency of observing each set of MPN-based 
number of positive counts x+  tested: μ = 0.8 and n = 3, 6, 9, 12, 
24; (A) data points [red] = frequency of observed x+ , (B) data 
points [blue] = calculated frequency of x+  using Mathematica 

( ) ( )
( ) { }e 1 e !

Table , ,0, 1
! !

n x x

b

n
P x N x n

n x x

µ µ
+ +−− −

+ +
+ +

  −    = +    −
    

 from bP , 

Equation (3), fit to a Gaussian probability distribution: e.g., 

GP x+   , Equation (5). (C) Demonstrates that fit fitσ µ+ +∝ . Linear 

fit showing slope (A) and intercept (I) ± ASE. The non-linear fits 

were ( )0.550 0.0463

fit fitAσ µ
±+ += ⋅ . Best fit curves shown ± P = 0.05 CL. 
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Figure 6. Demonstration that ( ) ( )2d d ~ ~ d dx A nσ µ µ−∆ ∆ ⋅ . All data are plotted ± P = 0.001 CL. (A) is related to P-I data (A = 

0.741 ± 0.0203; ± ASE). (B) is related to P-II data (A = 0.827 ± 0.0133). (C) is related to MPN data (A = 0.861 ± 0.0273). (D) is 
related to Gaussian data (A = 0.637 ± 0.0280). All data are merged in (E): slope of this relationship which involves all three PDFs is 
0.767 ± 0.0990. 

 
In Figure 4(A) and Figure 4(C), we have examined some of our MPN data 

(μ = 0.8 per sample in Figure 4(A) and μ = 0.4 per sample in Figure 4(C) at the 
various levels of n-sampling) by converting the total number of positive occur-
rences ( jx+ ) in n observations to the most probable number of entities in the 
hypothetical sampled aliquot ( ( )lnj jx n n x+ + = −  ) and curve-fit the frequency 
of occurrence of each jx +  to Gaussian PDFs (Equation (5); GP x +   ). From 
these curve fits we extracted the parameters fitσ  and fitµ . In Figure 4(B) and 
Figure 4(D) we show that the average ~fit fitnσ µ  (i.e., 

fit fit xnσ µ σ= ÷ = ) and, therefore, σ µ= . This finding indicates that 
Equation (11) can be applied to both Poisson and MPN results as a reasonable 
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approximation. We have confirmed the MPN results in Figure 2 and Figure 4 
by showing that the frequency distribution of x+  which we have observed in 
these experiments closely follows Equation (3) (compare Figure 5(A) with Fig-
ure 5(B)) whereupon we establish that fitσ + , the standard deviation associated 
with the distribution of x+  via the Gaussian approximation, was proportional 
to fitµ+  (Figure 5(C)) for both observed (red data) and calculated (blue data) 
x+  with a proportionality constant numerically similar to A (=0.735 ± 0.0543; 

±ASE) alluded to above. 
The equality in Equation (11) is also visually confirmed by the results shown 

in Figure 6 where one can see that all values of ∆  closely follow the linear ex-
pression A X∆ = ⋅  (for xX σ µ= ÷  or 2 n µ− ⋅ ; A = 0.781 ± 0.0107; ±ASE) 
showing that  

[ ]2 xn σ µµ−

∂∆ ∂∆
=
∂ ÷ ∂ ⋅ 

.  

Since the combined data in Figure 6 are linear with a near-zero intercept 
(−0.0168 ± 0.00443), then  

2
xn σ µµ−

∆ ∆
=

÷⋅
 

therefore cross-multiplying gives  

x nσ µ µ∆ ⋅ ÷ = ∆ ⋅ ⋅  

and dividing both sides by ∆  produces the equality  
2

x nσ µ µ−÷ = ⋅ .  

All sampling error-related findings are summarized in Figure 7.  

3.2. Demonstration That   j V jA s C∆= ∂ ∂∆ = ∆   

Lastly, all these assertions are substantiated by the observation (Figure 8) that 
the standard deviations associated with all our sampling error measurements 
(

j
s∆ ) change linearly as a function of the 4 (P-I, P-II, MPN, Gaussian) sets of ∆  

data with an average slope (i.e., average of the 4 
j

s∆∂ ∂∆  values = 0.716 ± 
0.0739) equivalent to the various values for A in Figures 1-3, Figure 5 and Fig-
ure 6. In fact, the slope in Figure 8 defines the coefficient of variation in ∆  
( V jC  ∆  ) and, if equal to A, then 

j
s

X
∆∂ ∂∆

=
∂∆ ∂

                          (12) 

where X = either 2 n µ− ⋅  or xσ µ÷ . Since 
j

s∆  in Figure 8 and ∆  in Figure 
6 are linear functions with a near zero intercept then, assuming Equation (12) is 
true, 

j
s

X
∆ ∆

=
∆

. 

Substituting ∆  with A X⋅  
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Figure 7. Summary of curve-fitting results associated with each PDF and method for 
calculating empirical stochastic sampling error ( ∆ ). Each constant of proportionality A is 
presented ± ASE. For binomial data (MPN) Vµ δ= ⋅  (the population average number 
of entities in V) and n P µ+ +⋅ =  (the population average number of positive responses 
out of n observations). 

 

j
s A X

A X X
∆ ⋅

=
⋅

 

2j
s

A
X
∆

=  

( )2
j

s A X A A X A∆ = ⋅ = ⋅ = ⋅∆   

and therefore 

j
V j A

s
C

∆
 ∆= =∆

 

The above equality establishes that the coefficient of variation associated with 
∆  ( V jC  ∆  ) is equivalent to the proportionality constant A seen in Figures 
1-3 and Figure 6. Thus sampling errors can be estimated from the relationship 

[ ]V j VC C x ∆ = ∆ ×   whereupon ~ 0.75V jC  ∆   for all PDFs we have tested.  

3.3. Minimized Errors Associated with a Well-Sampled Food  
Microbiome via Most Probable Composition [7]  

Based upon these results, the estimation of [ ]VC x  (i.e., xs x÷ ) should be 
germane in determining if data have been appropriately sampled. Figure 9 illu-
strates that all stochastic errors associated with native aerobic bacteria surviving  
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Figure 8. (A)-(D): Dependency of the standard deviation (plotted ± P = 0.05 confidence limits) derived from each experimental 

j∆  array (
j

Y s∆= ; 1,2, ,25j =  ) on their averages ( X = ∆ ): Figure 8(A) = P-I data (Spearman’s coefficient of rank correla-

tion: [22] 0.996Sρ = ; 310P −
 ); Figure 8(B) = P-II data ( 0.988Sρ = ; 310P −

 ); Figure 8(C) = MPN data ( 0.979Sρ = ; 
310P −

 ); Figure 8(D) = Gaussian data ( 0.994Sρ = ; 310P −
 ). The average slopes associated with these 4 relationship = 

0.716 ± 0.0739 (± s). All points (25× ∆  per set) from (A) through (D) are combined in the bottom-most figure 
( 0.661d d 0.0186

j
s∆ ±∆ = ; ± ASE). The value d d

j
s∆ ∆  is equivalent to an experimental coefficient of variation for 

V jC  ∆ = ∆  . 

 
on commercially available, frozen vegetables were sufficiently sampled using an 
n = 16 - 18 inasmuch as the [ ]VC x -values associated with the normalized colo-
ny counts (CFU g−1 averaged across all   dilutions = x



 ÷ 0.007 mL per drop ÷ 
0.5  dilution factor × 57.2 mL total original sample volume ÷ 28.6 g total frozen 
vegetable mass) were appropriately small (ranging between ca. 2% to 4%). In a  
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Figure 9. Estimation of the stochastic sampling errors ( 1x x −÷

 

~ 

calculated dilution factors; ~s x


; [ ]VC x  for all counts~4% 

across all dilutions ℓ) associated with a well-sampled [15] (n = 16 - 
18) Poisson population (native bacteria on frozen vegetables: 28.6 
grams rinsed with 57.2 mL PBS + Tween 20). All the colonies in 
ℓ = 2 (Control & grown at 30˚C = 55 colonies; Hollow Fiber 
Concentrated & grown at 30˚C = 49 colonies; Control & grown 
at 37˚C = 41 colonies; Hollow Fiber Concentrated & grown at 
37˚C = 41 colonies) were collected and identified using 16S 
rDNA Sanger sequencing (EubA and EubB primers) as described 
previously [7]. Bacterial compositions were nearly identical for 
all samplings and treatment combinations. 
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similar vein, it is pertinent that the observed (s) and calculated ( x


) standard 
deviations associated with the counts per drop were equivalent since the average 
deviation ( s x−



) from ideality varied only 15.7% ± 3.54% ( xs± ). Lastly it is 
also significant that the dilution factors calculated from the ratios of average 
plate counts ( 1x x −÷

 

) were very close to ½ (average 0.523 ± 0.0172) which also 
argues for a minimized ∆ .  

Across the 4 observational sets (I, II, III, and IV) depicted in Figure 9, the to-
tal number of collected colonies (from 2= ) was 55 (n = 16), 49 (n = 16), 42 (n = 
17), and 41 (n = 18), respectively. Bacteria identifications for each of these colo-
nies were based upon rDNA sequence matching 1200 - 1400 basepair contigs 
searching against NCBI’s GenBank database. The rRNA “gene” sequencing re-
sults for the 2 major isolates (making up 88.3% ± 3.28% of the total sampled co-
lonies) show that the 4 sets of observed bacterial compositions were nearly iden-
tical (43.6% ± 8.05% Luconostoc and 44.6% ± 13.3% Lactococcus; ±s) [23]. The 
remainder of the colonies was mainly Acinetobacter (3.74% ± 3.34%) and Strep-
tococcus (4.17% ± 2.75%) with small amounts of diverse isolates (e.g., Staphylo-
coccus, Arthrobacter, Sphingobacterium, Enterococcus, Kocuria, Raoultella, and 
Bacillus: averaging 1.49% ± 1.09% each). Such variability is expected for the rela-
tively rare isolates (≤4%) due to errors associated with random sampling. The 
two major species sampled were relatively repeatable because of their abun-
dance, adequate sampling, and very little treatment effect. The minor constitu-
ents would have to have been sampled 2.77 ± 0.647-fold more (n > 44) for an 
equivalent accuracy to the Luconostoc and Lactococcus fractions since the re-
quisite number of samplings for the low count fractions, above, is proportional 
to the inverse cube root [5] [16] of the number of counts per sampled volume (~

33
major minorx x÷ ).  

4. Summary  

We have performed analyses associated with empirical stochastic sampling er-
rors linked to data generated from 3 common probability density functions. We 
have used these to describe the limiting behavior of ∆  by generating models 
which suggest a generalized, and facile, mathematical solution. Based upon all 
our experiments, the common algebraic solution, regardless of parent distribu-
tion, is that experimental sampling errors are proportional to xσ µ÷ . This ge-
neralized relationship is intuitively reasonable inasmuch as this is the VC  for 
any population of sample means ( [ ]VC x ) and describes how closely x  values 
approach μ as n increases. The proportionality constant for all these findings was 
found to be mathematically related to [ ]V jC ∆  or 

j
s∆∂ ∂∆ , which is the coef-

ficient of variation associated with the error measurement itself. Lastly, using es-
timates of these sampling-associated errors ( [ ] ~V xC x s x÷ ), we show that when 
a test microbiome was sufficiently sampled, several measures of stochastic sam-
pling error were reasonably small for both counting and DNA sequence-based re-
sults. 

https://doi.org/10.4236/apm.2019.93010


P. L. Irwin et al. 
 

 

DOI: 10.4236/apm.2019.93010 224 Advances in Pure Mathematics 
 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Halvorson, H.O. and Ziegler, N.R. (1933) Application of Statistics to Problems in 

Bacteriology. I. A Means of Determining Bacterial Population by the Dilution Me-
thod. Journal of Bacteriology, 25, 101-121. 

[2] Kubitschek, H.E. (1990) Cell Volume Increase in Escherichia coli after Shifts to 
Richer Media. Journal of Bacteriology, 172, 94-101.  
https://doi.org/10.1128/jb.172.1.94-101.1990 

[3] Barkworth, H. and Irwin, J.O. (1938) Distribution of Coliform Organisms in Milk 
and the Accuracy of the Presumptive Coliform Test. Journal of Hygiene, 38, 
446-457. https://doi.org/10.1017/S0022172400011311 

[4] Best, D.J. (1990) Optimal Determination of Most Probable Numbers. International 
Journal of Food Microbiology, 11, 159-166.  
https://doi.org/10.1016/0168-1605(90)90051-6 

[5] Irwin, P., Reed, S., Nguyen, L., Brewster, J. and He, Y. (2013) Non-Stochastic Sam-
pling Error in Quantal Analyses for Campylobacter Species on Poultry Products. 
Analytical and Bioanalytical Chemistry, 405, 2353-2369.  
https://doi.org/10.1007/s00216-012-6659-2 

[6] Irwin, P., Gehring, A., Tu, S.-I., Brewster, J., Fanelli, J. and Ehrenfeld, E. (2000) 
Minimum Detectable Level of Salmonellae Using a Binomial-Based Ice Nucleation 
Detection Assay. Journal of AOAC International, 83, 1087-1095. 

[7] Irwin, P.L., Nguyen, L.-H.T., Chen, C.-Y. and Paoli, G. (2008) Binding of Nontarget 
Microorganisms from Food Washes to Anti-Salmonella and anti-E. coli O157 Im-
munomagnetic Beads: Most Probable Composition of Background Eubacteria. 
Analytical and Bioanalytical Chemistry, 391, 525-536.  
https://doi.org/10.1007/s00216-008-1959-2 

[8] de St. Groth, S.F. (1982) The Evaluation of Limiting Dilution Assays. Journal of 
Immunological Methods, 49, R11-R23.  
https://doi.org/10.1016/0022-1759(82)90269-1 

[9] Bevington, P.R. and Robinson, D.K. (1992) Data Reduction and Error Analysis for 
the Physical Sciences. McGraw-Hill, Boston, 17-23 and 41-43. 

[10] Irwin, P., Fortis, L. and Tu, S.-I. (2001) A Simple Maximum Probability Resolution 
Algorithm for Most Probable Number Analysis Using Microsoft Excel. Journal of 
Rapid Methods and Automation in Microbiology, 9, 33-51.  
https://doi.org/10.1111/j.1745-4581.2001.tb00226.x 

[11] Gosset, W.S. (1907) “Student” on the Error of Counting with a Haemocytometer. 
Biometrika, 5, 351-360. https://doi.org/10.1093/biomet/5.3.351 

[12] Fisher, R.A. (1922) On the Mathematical Foundations of Theoretical Statistics. Phi-
losophical Transactions of the Royal Society, London, Series A, 222, 309-368.  
https://doi.org/10.1098/rsta.1922.0009 

[13] Irwin, P.L., Nguyen, L.-H.T., Paoli, G.C. and Chen, C.-Y. (2010) Evidence for a Bi-
modal Distribution of Escherichia coli Doubling Times below a Threshold Initial 
Cell Concentration. BMC Microbiology, 10, 207. 

[14] Chen, C.-Y., Nace, G.W. and Irwin, P.L. (2003) A 6×6 Drop Plate Method for Si-

https://doi.org/10.4236/apm.2019.93010
https://doi.org/10.1128/jb.172.1.94-101.1990
https://doi.org/10.1017/S0022172400011311
https://doi.org/10.1016/0168-1605(90)90051-6
https://doi.org/10.1007/s00216-012-6659-2
https://doi.org/10.1007/s00216-008-1959-2
https://doi.org/10.1016/0022-1759(82)90269-1
https://doi.org/10.1111/j.1745-4581.2001.tb00226.x
https://doi.org/10.1093/biomet/5.3.351
https://doi.org/10.1098/rsta.1922.0009


P. L. Irwin et al. 
 

 

DOI: 10.4236/apm.2019.93010 225 Advances in Pure Mathematics 
 

multaneous Colony Counting and MPN Enumeration of Campylobacter jejuni, 
Listeria monocytogenes, and Escherichia coli. Journal of Microbiological Methods, 
55, 475-479. https://doi.org/10.1016/S0167-7012(03)00194-5 

[15] Irwin, P.L., Nguyen, L.-H.T. and Chen, C.-Y. (2008) Binding of Nontarget Micro-
organisms from Food Washes to Anti-Salmonella and Anti-E. coli O157 Immuno-
magnetic Beads: Minimizing the Errors of Random Sampling  in Extreme Dilute 
Systems. Analytical and Bioanalytical Chemistry, 391, 515-524.  
https://doi.org/10.1007/s00216-008-1961-8 

[16] Irwin, P.L., Nguyen, L.-H.T. and Chen, C.-Y. (2010) The Relationship between 
Purely Stochastic Sampling Error and the Number of Technical Replicates Used to 
Estimate Concentration at an Extreme Dilution. Analytical and Bioanalytical Che-
mistry, 398, 895-903. https://doi.org/10.1007/s00216-010-3967-2 

[17] Trotter, H.F. (1959) An Elementary Proof of the Central Limit Theorem. Archiv der 
Mathematik, 10, 226-234. https://doi.org/10.1007/BF01240790 

[18] Hartley, H.O. (1961) The Modified Gauss-Newton Method for Fitting of 
Non-Linear Regression Functions by Least Squares. Technometrics, 3, 269-280.  
https://doi.org/10.1080/00401706.1961.10489945 

[19] Irwin, P.L., Damert, W.C. and Doner, L.W. (1994) Curve Fitting in Nuclear Mag-
netic Resonance Spectroscopy: Illustrative Examples Using a Spreadsheet and Mi-
crocomputer. Concepts in Magnetic Resonance, 6, 57-67.  
https://doi.org/10.1002/cmr.1820060105 

[20] Beers, Y. (1957) Introduction to the Theory of Error. Addison-Wesley Publishing 
Company, Inc., Reading, 29-30. 

[21] Salter, C. (2000) Error Analysis Using the Variance-Covariance Matrix. Journal of 
Chemical Education, 77, 1239-1243. https://doi.org/10.1021/ed077p1239 

[22] Steel, R.G.D. and Torrie, J.H.D. (1960) Principles and Procedures of Statistics. 
McGraw-Hill, New York, 409. 

[23] Irwin, P., Capobianco, J., Nguyen, L., He, Y., Gehring, M., Gehring, A. and Chen, 
C.-Y. (2019) Bacterial Cell Recovery after Hollow Fiber Microfiltration Sample 
Concentration and Washing: Most Probable Bacterial Composition in Frozen Veg-
etables. 

https://doi.org/10.4236/apm.2019.93010
https://doi.org/10.1016/S0167-7012(03)00194-5
https://doi.org/10.1007/s00216-008-1961-8
https://doi.org/10.1007/s00216-010-3967-2
https://doi.org/10.1007/BF01240790
https://doi.org/10.1080/00401706.1961.10489945
https://doi.org/10.1002/cmr.1820060105
https://doi.org/10.1021/ed077p1239


P. L. Irwin et al. 
 

 

DOI: 10.4236/apm.2019.93010 226 Advances in Pure Mathematics 
 

Definitions  

Indices = i ( 1,2, , n=  ) observations per experiment; j ( 1,2, , 100J= = ) expe-
riments with n observations each; k ( 1,2, , K=  ) rows of X-Y values;   
( 1,2, , L=  ) dilutions; m ( 1,2, , M=  ) iterations; p ( 1,2, , P=  ) parameters  

j∆  = j th experimental measure of sampling error out of J = 100 experiments: 
Equations (7)-(10).  

∆  = average sampling error in J = 100 observations of j∆
 

A = proportionality constant associated with ∆  curve-fitting to n, μ (or σ) 

j
s∆  = standard deviation associated with j∆  measurement; for this work 

there are 25 ( n µ×  or n σ×  for the Gaussian populations) such 
j

s∆  for each 
PDF type (2 types of Poisson, MPN or binomial, Gaussian) 

µ  = for either Poisson PDF or MPN assays ( Vµ δ= ⋅ ), the population aver-
age number of biological entities, or other analytes, per test; for Gaussian PDF, 
the population’s average of any real-valued, randomly changing variable 

V = the sample volume to be tested 

eV  = volume of the biological entity, or other analyte, being tested  
δ  = concentration of the biological entity (count ÷ V) or other analyte 
µ+  = population average number of positive growth responses (MPN) out of 

n observations; n Pµ+ += ⋅  
σ +  = the standard deviation associated with the probability density of x+ ; 

the Gaussian approximations for σ +  are plotted in Figure 5(C) as a function 
of Gaussian best fits for µ+

 
P−  = probability that eV  will NOT contain the biological entity, or other 

analyte, being tested 
P+  = probability that eV  will contain the biological entity, or other analyte, 

being tested; 1P P+ −= − ; Equation (1) 

[ ]X f X∂  = [ ]f X X∂ ∂
 

ijx  = for Poisson populations, the i th observation’s number of counts per 
tested volume, surface area, etc. for each j th experiment; for Gaussian popula-
tions, any real-valued, randomly changing variable 

jx  = 1

1 n
iji x

n =
⋅∑  

jx+  = j th experiment’s number of positive growth responses out of n obser-
vations; 1

n
j ijix θ+

=
= ∑  where θ = 1 (positive) or 0 (negative) 

jx +  = j th experiment’s number of positive counts in V volume;  

( )lnj jx n n x+ + = ÷ −  ; the x-bar symbol is used here because this relations con-
tains a parameter, jx+ , which is the result of a summation across all ijθ ; it just 
isn’t normalized to n 

n = number of technical replicates in each j th experiment; for MPN, number 
of observations each of volume V; for Poisson populations we have found [15] 
that the minimal number of replicates per assay was 3

1calcn nµ µ−
→= ⋅  where 

1nµ→  is the number of replicates necessary to enumerate a population with μ = 1 
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σ  = population standard deviation associated with μ 
xσ  = standard deviation of a population of sample means ( x ); the formula 

for the xσ  statistic can be derived from the propagation of errors method [20] 
without covariance 

1 2

2 2 2
2 2 2

1 2

2

2

nx x x x
n

x x x
x x x

n
n n

σ σ σ σ

σ σ

∂ ∂ ∂     = + + +     ∂ ∂ ∂     

= =



 

since 

1 2

1

n

x x x
x x x n
∂ ∂ ∂

= = = =
∂ ∂ ∂

   

and 

1 2

2 2 2 2
nx x xσ σ σ σ= = = = .  

js  = any j th experiment’s estimation of population standard deviation  

xs  = estimation of xσ  from a limited number of jx ; x js s n= ÷
 [ ]VC x  = coefficient of variation for a population of means;  

[ ]V x x xC x σ µ σ µ= ÷ = ÷  estimated as xs x÷
 

[ ]VC x  = coefficient of variation for any set of observations x; [ ]VC x σ
µ

=  

estimated as s
x  

V jC  ∆   = ~
j j

s s∆ ∆∂ ∂∆ ÷∆  if the 
j

s∆  vs. ∆  intercept ~ 0 
CLT = central limit theorem: the mean ( xµ ) of a population of observed 

means ( x ) will be approximately equal to the mean of the sampled population 
(μ) and the standard deviation of this population of means will be approximately 
equal to xσ ; Equation (5) with x x= , xµ µ µ= = , and xσ σ=   

PDF = probability density function or probability distribution function 

bP  = binomial PDF: Equation (3) 

PP  = Poisson PDF: Equation (4) 

GP  = Gaussian PDF: Equation (5) 
CL = confidence limit = t-statistic × 

kf
s  = 

kf
t s⋅   

ASE = asymptotic standard error [19]; for any fitting parameter ω ,  
12 T

YASE s sω ωω

−
 = = ⋅  Z Z ; 2

Ys  = residual sum of squares ÷ (K − M) where M =  

the number of fitting parameters pπ  ( 1,2, ,p P= 
)  

kf
s  = k th row standard error of fitting function fk; ( )12 T T

kf Y k ks s
−

 =  Z Z Z Z   

Z  = partial first derivative matrix of kf  with respect to associated fitting 
parameters 1 2, , , Pπ π π   

TZ  = transposition of Z  
kZ  = 

1 2k kf fπ π ∂ ∂   for ;k k pf f X π =    
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