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Abstract 
With the insight provided by a balance equation of electromagnetic momen-
tum, we compare the force on a dielectric slab inside a capacitor with the 
force on a magnetizable rod inside a solenoid. We conclude that these forces 
are not exactly analogous, as usually thought. We present a device that is a 
proper analogy of the case of a dielectric slab inside a capacitor. Our analysis 
shows the significance of the electrostatic and magnetostatic pressures to the 
understanding of these effects and shows the conceptual differences between 
both cases. 
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1. Introduction 

In the interaction of electromagnetic fields with matter, there appear forces that 
theory must explain in order to have some control on these forces. Perhaps the 
simplest of these are the forces that arise from the interaction of electrostatic and 
magnetostatic fields with polarizable and magnetizable matter. 

The electrostatic case may be illustrated with the force exerted on a dielectric 
slab partially introduced into a charged parallel plate capacitor. In the magne-
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tostatic case, the force that is exerted on a magnetizable bar inside a solenoid, is 
more familiar and has many applications. It is generally considered that this 
magnetic effect is analogous to the electrostatic case. We show in this paper that 
this is not the case, and present a magnetic device really analogous to the elec-
trostatic case. 

In the case of a dielectric slab inside a capacitor, the force is usually explained 
as the action of the non-uniform fringing electrostatic field on the electric di-
poles of the dielectric. We have shown elsewhere [1] that this force arises rather 
from the action of Maxwell’s electrostatic stresses at the dielectric-vacuum in-
terface. We have also shown that the above magnetic effect arises from the mag-
netostatic stresses, but from the tension part of the stress [2]. This interpretation 
is based on the original conception of Faraday and Maxwell that the electro-
magnetic forces are transmitted through stresses in matter and vacuum. This 
view is expressed clearly by Maxwell [3]: 

“If we further admit that every part of a dielectric medium through which 
electric induction is taking place there is a tension, like that of a rope, in the di-
rection of the lines of force, and a pressure in all directions at right angles to the 
lines of force, we may account for all the mechanical actions which take place 
between electrified bodies.” 

Indeed, we have shown elsewhere [1] [2] that in the electric case the force has 
its origin in the compression around the lines of force, while in the magnetic 
case the force has its origin in the tension. 

2. Theory 

In formal terms it is shown in texts [4] [5] [6] that Maxwell’s stress tensor can be 
decomposed in principal axes, with components given by a tension 

21
2

t єE=                           (1) 

along the lines of force, and an orthogonal compression 

21
2

K єE= −                          (2) 

around the lines of force where є  is the permittivity and E  is the electric 
field. In spite that these facts are discussed in well-known texts, some authors [7] 
[8] [9] [10] [11], express surprise at the fact that an electrostatic field can exert 
forces in a direction orthogonal to the lines of force. 

We propose to analyze these forces from the point of view of balance equa-
tions that can be derived from Maxwell’s equations and therefore are well 
founded. These balance equations have the structure 

t∇⋅ − ∂ =T g f


                       (3) 

where T


 is Maxwell’s stress tensor, g  is a momentum density related to 
Poynting’s vector, and f  is a force density. In static conditions this balance 
equation permits to obtain the force as a volume integration of the force density, 
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or as a surface integral of the stress tensor over a surface surrounding the vo-
lume of interest. We have done these calculations [1] [2], for the cases of the ca-
pacitor and solenoid and we find that they are not exactly analogous. In the first 
case the force arises from the compression around the electrostatic lines of force, 
while in the second case the force arises rather from the tension of the magne-
tostatic lines of force. 

In the case of the capacitor, the force accepted as correct is [12] [13], 

2
0 0

1 ˆ
2 eє E A .χ=F k                           (4) 

Here 0A  is the cross section of the dielectric slab, and E  is the uniform 
electric field inside the capacitor, taken as the potential difference divided by the 
separation of the plates. 

If we use the method of a balance equation in the calculation of this force, the 
force density adequate to solve the problem is 

( )1
2

.= − × ∇×f E P                         (5) 

In the case of the solenoid we have that the force on a magnetizable bar par-
tially introduced in it is [12] [13],  

2
0 0

1 ˆ
2 m H A .µ χ=F k                         (6) 

Here H  is taken as the uniform field inside the solenoid. No reference is 
made to the fringing field (We follow the convention proposed by Purcell and 
Morin [14] and Griffiths [11]) of considering B  as the magnetic field and H  
as an auxiliary field. 

The analogy with the capacitor is apparent, with the correspondences 

0 0 , , ,m eє   H Eµ χ χ→ → →                     (7) 

It is worthwhile to note that in this case the correspondence of fields is 

→H E  

rather than 

,→B E  

as frequently proposed [12] [15]. 
If the analogy is further pursued, and as force density we propose the analogy 

to “Equation (5)” 

( )0
1 ,
2newM µ= − × ∇×f H M                   (8) 

we do not obtain the known result. In this case the adequate force density is ra-
ther [2] 

( )0
1
2newM µ= − ⋅∇f H M,                    (9) 

which is obtained from a magnetic energy density. 
It is important to note that this force density is part of a balance equation, and 
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is different from the familiar force density 

( )0
1 ,
2M µ= − ⋅∇f M H                   (10) 

which applies in the case of magnetic dipoles immersed in a non-uniform mag-
netic field. 

The force densities “Equations (5) and (9)” are different, but the forces to 
which they lead are similar. Then, which is the magnetic system analogous to the 
capacitor, such that the forces arise from similar force densities? One aim of the 
present paper is to propose such a magnetic system, another is to explain the 
origin and relation among different force densities. 

The action of stresses across the boundary between two dielectrics may be 
calculated with the Helmholtz force density [6], which also appears naturally in a 
balance equation derived from Maxwell’s equations [16]. However, the force that 
arises from the action of these stresses can also be calculated with the force den-
sity “Equation (5)”; indeed, this force density is equivalent to the Helmholtz 
force density as consequence of the discontinuity in the permittivity. The action 
of the stresses can also be seen in the sucking of a liquid dielectric by a laser that 
falls orthogonally to the surface of the liquid, since in this case we have an aver-
age electric field parallel to interface. 

3. Analogy between Capacitor with Dielectric Slab and  
Solenoid with Magnetizable Bar? 

Let us consider the space between the poles of a permanent horseshoe magnet. 
The field can be assumed almost uniform in middle space, while the fringing 
field is non-uniform. We define the x direction as that of the uniform field and a 
magnetizable bar of cross section 0A  and length L is partially introduced a dis-
tance l (in the z direction), in the region of the uniform field Figure 1. 
 

 
Figure 1. A magnetizable bar of cross section 0A  is partially introduced a distance l 
between the poles of a permanent magnet. In the region of length L′  the magnetic field 
is approximately uniform. 
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The magnetic energy is 

1 1d d ,
2 2Vol Vol

U V V BH= ⋅ =∫ ∫B H                   (11) 

since the magnetic field B  and the H  field are parallel (we are considering 
linear media). If the integration volume is 0A L′ , where L′  is the length over 
which B  and H  are approximately uniform, then the energy is 

( ) ( ) 0
1 ,
2 medium vacuumU BH BH A L′ = +                  (12) 

since B  and H  are uniform.  
The continuity conditions for the fields are 

0vacuum vacuumB Hµ=                         (13) 

and 

0 .medium r mediumB Hµ µ=                       (14) 

Then, with the constitutive relation, 

1 ,r mµ χ= +                           (15) 

we can write “Equation (12)” in the form 

( )2 2
0 0 0 0

1 ,
2 rU H A z H A L zµ µ µ ′= + −                (16) 

which can be rewritten as 

( )2
0 0

1 ,
2 mU H A z Lµ χ ′= +                   (17) 

leading to the force on the magnetizable bar 



2
0 0

1 .
2 m

U H A
l

µ χ∂
= − =

∂
F k                  (18) 

This has the same structure that the known force, and if the analogy expressed 
in “Equation (7)” is used, “Equation (18)” is transformed into the known force 
exerted on a dielectric slab inside a capacitor. 

4. The Force Density 

The magnetic energy density of linear magnetizable matter when introduced in-
to a magnetic field is [12] [13] [17] 

0
1 .
2

u µ = − ⋅ 
 

M H                       (19) 

Since the field of the permanent magnet can be considered constant, it is 
equivalent to a constant current system, and the force density can be calculated 
with the equation 

( ) .lu=f ∇                           (20) 

Then, 

0
1 ,
2
µ = − ⋅ 

 
f M H∇                      (21) 
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which by means of the vector identity 

( ) ( ) ( ) ( ) ( ) ,⋅ ⋅= + × × + ×+ ×⋅ aa b a b ab a b b∇ ∇ ∇ ∇ ∇         (22) 

is transformed into 

( ) ( ) ( ) ( )0
1 .
2
µ= − + + × × + × × ⋅ ⋅f H M M HM H MH∇ ∇ ∇ ∇   (23) 

Since there are not free currents, we have 

0.× =H∇                           (24) 

Now, the magnetic susceptibility is different from zero only in matter; there-
fore the constitutive relation is  

( ) ,m l zχ= Θ −M H                      (25) 

where mχ  is constant and Θ  is the Heaviside distribution. 
In this case the H  field is in the x direction, so we have 

( ) ( ) ˆ.m xz l z Hχ= Θ −M i                    (26) 

Therefore, 

( ) 0.⋅ =H M∇                       (27) 

Also, since the interface is in the region where H  is uniform, 

( ) 0.⋅ =M H∇                        (28) 

In this way “Equation (23)” reduces to 

( )0
1 ,
2new Mag µ= − × ×  f H M∇               (29) 

which is precisely the force density proposed by analogy, “Equation (8)”. 
In the next section we show that this force density also leads to the known re-

sult obtained by conventional methods, that is, from an energy density. 

5. Force on a Magnetizable Bar in the Field of a Permanent  
Magnet Calculated with the Proposed Force Density 

With the constitutive relation “Equation (26)” the proposed new force density 
“Equation (29)” results 

( )1 ˆ,
2new Mag x z xH M z= − ∂  f k                   (30) 

since the field H  is in the x direction. 
Now, the mathematical result 

( ) ( )z l z l zδ∂ Θ − = − −                      (31) 

permits to write “Equation (30)” in the form 

( )2
0

1 ˆ.
2new Mag m H l zµ χ δ= −f k                  (32) 

In order to obtain the force on the magnetizable rod it is necessary to integrate 
the force density over a volume L h′  around the interface, that is, 
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d d .new Mvol around interface
S z= ∫F f                   (33) 

If the cross section of the interface is 0L h A′ = , then with the force density 
“Equation (32)” the force results 

( )2
0

1 ˆd .
2 mvol around interface

H h l z zµ χ δ= −∫F k              (34) 

After integration we obtain the force 

2
0 0

1 ˆ,
2 m H Aµ χ=F k                      (35) 

which is the result previously obtained with the usual procedure using an energy 
density, “Equation (18)”. This proves the correctness of the proposed force den-
sity. 

6. Maxwellian Momentum Balance Equation and the  
Proposed Force Density 

We have shown that the force density “Equation (8)” leads to the same result 
than the method using the energy density “Equation (18)”. However, the force 
density “Equation (8)” was proposed by analogy with the case of a capacitor with 
dielectric. Then, it is necessary to give this force density a solid foundation. This 
can be done with a momentum balance equation derived directly from Max-
well’s equations. One such equation is [16] 

( ) ( )

( ) ( ) ( ) ( )

1
2

1 .
2

t

ρ

 ⋅ + − ⋅ + ⋅ − ∂ × 
 

= + × + ⋅ − ⋅ + ⋅ − ⋅  

DE BH I D E B H D B

E J B E D D E H B B H

∇

∇ ∇ ∇ ∇

    (36) 

Our aim is to show that this balance equation contains the proposed force 
density. Since we are dealing with a magnetostatic case there are not free cur-
rents, the balance equation “Equation (36)” reduces to 

( ) ( ) ( )1 1 .
2 2

 ⋅ − ⋅ = ⋅ − ⋅     
BH I B H H B B H∇ ∇ ∇           (37) 

We then have to show that the right-hand member of “Equation (37)” con-
tains the proposed force density. This can be done as follows. 

The identity 

( ) ( ) ( )v= × ×⋅ + ⋅v u u u v∇ ∇ ∇                   (38) 

and the constitutive relation 

( )0 ,µ= +B H M                        (39) 

permits to express the right-hand member of “Equation (37)” as 

( ) ( )

( ) ( ) ( ) ( )0

1
2

1 .
2
µ

⋅ − ⋅  

= × × + ⋅ − × × − ⋅  

H B B H

M H M H H M H M

∇ ∇

∇ ∇ ∇ ∇
     (40) 

https://doi.org/10.4236/jemaa.2019.113003


J.-L. Jiménez-Ramírez et al. 
 

 

DOI: 10.4236/jemaa.2019.113003 32 Journal of Electromagnetic Analysis and Applications 
 

In order to see that the force density “Equation (8)” is contained in the 
right-hand member of “Equation (40)” we must note that there are not free cur-
rents and the field H  is uniform at the interface, so that “Equations. (24), (27), 
and (28)” hold, and therefore “Equation (40)” reduces to 

( ) ( ) ( )1 1 ,
2 2

⋅ − ⋅ = − × ×  H B B H H M∇ ∇ ∇           (41) 

which is the result looked for. 
In this way, the balance equation for these particular conditions is 

( ) ( )1 1 .
2 2

 ⋅ − ⋅ = − × × 
 

BH I B H H M∇ ∇           (42) 

These arguments show that the proposed force density “Equation (8)” has a 
firm foundation on Maxwell’s equations. Additional support for the proposed 
force density can be obtained by a surface integration of the left-hand member of 
the balance equation “Equation (42)”, that is, of the magnetostatic stress tensor. 
This is done in the following section. 

7. Calculation of the Force by a Surface Integration of the  
Stress Tensor 

The force in terms of the magnetostatic stress tensor is given by 

d ,
σ

= ⋅∫F S T




                         (43) 

where 

( )1
2

 = − ⋅  
T BH I B H
 

                    (44) 

and σ  is a closed surface. The force is the total magnetic force exerted on the 
matter enclosed in the surface. In this case a convenient surface is one that sur-
rounds the interface. 

The constitutive relation 

0
ˆ

r Hµ µ=B i                          (45) 

permits to write the tensor T


 as 

2
0

1ˆ̂ .
2r Hµ µ  = −  

T ii I
 

                     (46) 

With this expression “Equation (43)” can be written in the form 

0
1ˆ̂d ,
2

2
r H

σ
µ µ  = ⋅ −  ∫F S ii I





                 (47) 

where surface σ  can be taken as a parallelepiped with the surfaces parallel to 
the interface defined by vectors ˆ±k , while the surfaces defined by vectors ˆ±i  
and ˆ± j  do not contribute since they give contributions that cancel each other. 
Then the surface integral becomes  

( ) 2 2
0 0

1 1ˆ ˆ̂ ˆ ˆ̂d d ,
2 2r medium vacuumS H S Hµ µ µ   = − ⋅ − − ⋅ −      ∫ ∫F k ii I k ii I
 

    (48) 
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and the force results 

( )2
0

1 ˆ1 d .
2 rH Sµ µ= − ∫F k                    (49) 

Now, since 

0
ˆ ˆd ,S A=∫ k k                          (50) 

the force can be expressed as 

( ) 2
0 0

1 ˆ1 ,
2 r H Aµ µ= −F k                    (51) 

which with the constitutive relation “Equation (15)” takes the form 

2
0 0

1 ˆ,
2 m H Aµ χ=F k                       (52) 

which is the expected result, “Equation (35)”,momentum balance equation give 
by “Equation (42)”. 

8. Force Densities for Static Fields and Their Equivalence 

Force densities like “Equations (5), (8) and (9)” are unfamiliar, but they are 
firmly founded on Maxwell’s equations, as we proceed to show. 

We begin with the momentum balance equation derived from Maxwell’s equ-
ations, “Equation (36)”. This equation is equivalent to Maxwell’s equations with 
linear media, from which it is obtained by means of vector and dyadic identities. 
For static conditions and in absence of free charge and current densities this 
balance equation can be separated into two independent equations, 

( ) ( ) ( )1 1 ,
2 2 Max elec media

 ⋅ − ⋅ = − ⋅ − ⋅ =     
DE I D E E D D E f∇ ∇ ∇    (53) 

( ) ( ) ( )1 1 ,
2 2 Max mag media

 ⋅ − ⋅ = − ⋅ − ⋅ =     
BH I B H H B B H f∇ ∇ ∇    (54) 

where subscripts in the right-hand members indicate the force densities for the 
electrostatic and magnetostatic cases. 

We want now relate the balance “Equations (53) and (54)” with the electric 
and magnetic Helmholtz force densities, electric and magnetic, 

2 21 1
2 2Helm elect m

m

єE є E ρ
ρ

 ∂
= −  ∂ 

f ∇ ∇+             (55a) 

2 21 1 .
2 2Helm mag m

m

H H µµ ρ
ρ

 ∂
= −  ∂ 

f ∇ ∇+            (55b) 

It can be shown that these force densities are contained in “Equations (53) and 
(54)”, but for the present analysis it is enough to consider only the first terms on 
the right, since the dependence of the permittivity and permeability on mass 
density is for our purposes irrelevant. Then, using the constitutive relation 

r0є є=D E                            (56) 

the right-hand side of “Equation (53)” results 
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( ) ( ) 21 1 .
2 2

E є⋅ − ⋅ =  E D D E ∇∇ ∇                (57) 

Analogously, for the magnetic case, with the constitutive relation 

0 rµ µ=B H                           (58) 

we obtain 

( ) ( ) 21 1 .
2 2

H µ⋅ − ⋅ =  H B B H∇ ∇ ∇               (59) 

The force densities “Equations (57) and (59)” look very different from the 
force densities “Equations (5), (8) and (9)”, but now it is evident their relation to 
Helmholtz’s force densities. Let us see how they are related. 

The force density “Equation (5)”, which has been used to calculate the force 
on a dielectric slab inside a charged capacitor, is convenient to establish the 
equivalence among different force densities. 

If the slab is in the z direction and has been introduced a distance l, the con-
stitutive relation 

0 ,eє χ=P E                          (60) 

can be written as 

( ) ( )0
ˆ,ez є l z Eχ= Θ −P i                    (61) 

where Θ  is Heaviside’s distribution, while î  is a unit vector in the 
x-direction, which is the direction of the electrostatic field. Then the force den-
sity “Equation (5)” becomes 

( )( )1 ˆ,
2 z xE P z= − ∂f k                    (62) 

where k̂  is a unit vector in the z direction. With “Equation (60)” written as 
( ) ( )0 e xP z є z Eχ=  we can express “Equation (62)” in the form 

( )( )2
0

1 ˆ.
2 z eє E zχ= − ∂f k                   (63) 

If we consider the relation between the relative permittivity and the suscepti-
bility, 

1 ,r eє χ= +                        (64) 

we can see that the right-hand member of “Equation (57)” equals “Equation 
(62)”. This validates firmly “Equation (5)”. 

In the case of a magnetizable bar inside a solenoid, we can proceed analo-
gously to establish that “Equation (8)” is equivalent to the right-hand member of 
“Equation (59)”. 

If the axis of the solenoid is in the z direction, then “Equation (9)” turns into. 

( )( )0
1 .
2new mag zH zµ= − ∂f M                   (65) 

Since the constitutive relation is 

( ) ,m l zχ= Θ −M H                      (66) 
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“Equation (65)” becomes 

( )( )2
0

1 ˆ.
2new mag z mH zµ χ= − ∂f k                (67) 

Now, the relative permeability can be expressed as 

1 ,r mµ χ= +                         (68) 

so that “Equation (67)” and the right-hand member of “Equation (59)” are 
equal, what establishes the validity of “Equation (8)”, which seems unfamiliar, 
but is equivalent to “Equation (59)”, a part of the Helmholtz force density. 

When we calculate force densities from the gradient of energy densities, the 
vector identity “Equation (22)” leads in a natural way to force densities like 
“Equations (5), (8) and (9)”. What we have shown is that these force densities 
are contained in a momentum balance equation derived from Maxwell’s equa-
tions. The Faraday-Maxwell conception of a tension along the lines of force, and 
compressions around these lines, permits to interpret these forces as follows. 

In the case of a dielectric slab inside a capacitor, the force arises from the dif-
ference of compressions at the interface. In the case of a magnetizable bar inside 
a solenoid, it is the difference in tensions at the interface, while in the device 
here proposed as a proper analogy of the slab inside a capacitor it is again the 
difference in compressions what produces the force. 

9. Relation with Force Densities Derived as Gradients of  
Energy Densities 

In order to establish the equivalence of force densities obtained as gradients of 
energy densities and the force densities obtained from momentum balance equ-
ations we use the dyadic identity  

( ) ( ) ( ) .⋅ = ⋅ + ⋅a b a b b a∇ ∇ ∇                    (69) 

Then the force density “Equation (53)” can be written as 

( ) ( )1 .
2Max elec media = ⋅ − ⋅f E D E D∇ ∇                (70) 

Therefore, we have 

( ) ( ) ( ) ( )1 1 .
2 2

⋅ − ⋅ = ⋅ − ⋅  E D D E E D E D∇ ∇ ∇ ∇          (71) 

Since the force on a dielectric slab inside a capacitor is given in terms of the 
polarization P , we can use “Equations (56) and (64)”, obtaining  

( ) ( ) ( ) ( )1 1 .
2 2

⋅ − ⋅ = ⋅ − ⋅  E P P E E P E P∇ ∇ ∇ ∇            (72) 

We have, on the other hand, the dyadic identity 

( ) ( ) ( ) .× × = ⋅ − ⋅u v v u u v∇ ∇ ∇                  (73) 

If we set =v E  and =u P , this identity becomes 

( ) ( ) ( ) ;× × = ⋅ − ⋅P E E P P E∇ ∇ ∇                (74) 
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but ( ) 0× =E∇ , so that 

( ) ( ) .⋅ = ⋅E P P E∇ ∇                         (75) 

Then, since the polarization ( )zP  is in the x direction and the electric field 
is uniform, 

( ) 0,xP
x

∂
⋅ = =

∂
EP E∇                        (76) 

concluding that in the case of the capacitor we have 

( ) 0,⋅ =E P∇                            (77) 

so that “Equation (72)” reduces to 

( ) ( ) ( )1 1 .
2 2

⋅ − ⋅ = − ⋅  E P P E E P∇ ∇ ∇                (78) 

We have then that for the electric case the force density expressed in the 
right-hand member of “Equation (53)”, the Helmholtz force density, the force 
density given as the gradient of an energy density, “Equation (78)”, and the un-
familiar force density “Equation (5)” are all equivalent. 

In the case of the solenoid, we proceed analogously applying identity “Equa-
tion (69)” to the right-hand member of “Equation (54)”, obtaining 

( ) ( ) ( ) ( )1 1 .
2 2

⋅ − ⋅ = ⋅ − ⋅  H B B H H B H B∇ ∇ ∇ ∇           (79) 

In order to put this result in terms of the magnetization M  it is convenient 
to use the constitutive relation “Equation (39)” in “Equation (79)”, obtaining 

( ) ( ) ( ) ( )0 0 0
1 1 .
2 2
µ µ µ⋅ − ⋅ = ⋅ − ⋅  H M M H H B H B∇ ∇ ∇ ∇       (80) 

However, the force expressed in “Equation (18)” is obtained assuming, for 
paramagnetic and diamagnetic media, that the field H  is nearly constant [12] 
so that 

( )0 0.µ ⋅ =H M∇                        (81) 

The results here obtained give support to this procedure, showing that an 
elementary problem may have interesting aspects. 

Then “Equation (80)” is transformed into 

( ) ( ) ( )0 0
1 1 ,
2 2Max mag media µ µ= ⋅ − ⋅ = ⋅  f H M M H H M∇ ∇ ∇    (82) 

which is valid for the magnetic tension. 

10. Summary of Results 

In order to appreciate better the results obtained with our approach, and facili-
tate the comparison of electrostatic and magnetosatic effects, we present here a 
summary. These results are implications of Maxwell’s equations and the as-
sumed constitutive relations applied to the electrostatic and magnetostaic condi-
tions. 
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10.1. Magnetic Force Densities 

( ) ( ) ( )1 1 ,
2 2 Max mag media

 ⋅ − ⋅ = − ⋅ − ⋅ =     
BH I B H H B B H f∇ ∇ ∇   (Am) 

If the permeability does not depend of mass density, then 

21
2H mag H µ= −f ∇                         (Bm) 

Solenoid 
, ,H B M  in direction z, M  jumps in interface (z) 

0× =H∇                            (C1) 

0× =M∇                            (D1) 

( ) 0⋅ ≠H M∇                           (E1) 

( ) 0⋅ =M H∇                           (F1) 

( )0
1 ,
2new M µ= − ⋅f H M∇                    (G1) 

2
0 0

1 ˆ.
2 m H Aµ χ=F k                        (H1) 

( )2 2
0

1 1 1
2 2 2Helm mag mH Hµ µ χ= − = − = − ⋅f H M∇ ∇ ∇         (K1) 

The force arises from the tension part of the stress tensor. 

10.2. Horseshoe Permanent Magnet 

, ,H B M  in direction x, M  jumps in interface (x) 

0× =H∇                          (C2) 

0× ≠M∇                          (D2) 

( ) 0⋅ =H M∇                         (E2) 

( ) 0⋅ =M H∇                         (F2) 

( )0
1 ,
2new mag µ= − × ×f H M∇                   (G2) 

2
0 0

1 ˆ,
2 m H Aµ χ=F k                      (H2) 

The force arises from the compression part of the stress tensor, equivalent to a 
difference of pressures at the interface. 

( )2 2
0 0

1 1 1 ,
2 2 2Helm mag mH Hµ µ χ µ= − = − = − × ×f H M∇ ∇ ∇     (K2) 

Both previous cases 

0× =H∇  

( ) 0⋅ =M H∇  
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10.2.1. Electric Force Density 

( ) ( ) ( )1 1 ,
2 2 Max elec media

 ⋅ − ⋅ = − ⋅ − ⋅ =     
DE I D E E D D E f∇ ∇ ∇   (Ae) 

If the permittivity does not depend of mass density, 

21
2Helm elect E є= −f ∇                      (Be) 

10.2.2. Capacitor 
, ,E D P  in direction z, P  jumps in interface (z) 

0× =E∇                         (C3) 

0× ≠P∇                         (D3) 

( ) 0⋅ =E P∇                       (E3) 

( ) 0⋅ =P E∇                       (F3) 

( )1 ,
2

= − × ×f E P∇                   (G3) 

2
0 0

1 ˆ,
2 eє E Aχ=F k                    (H3) 

( )2 2
0

1 1 1
2 2 2Helm elect eE є E є χ= − = − = − × ×f E P∇ ∇ ∇     (K3) 

The force arises from the compression part of the stress tensor, equivalent to a 
difference of pressures at the interface. 

It is important to have in mind that 
Solenoid: ( ) 0.⋅ ≠H M∇  
Horseshoe: 0.× ≠M∇  
Capacitor: ( ) 0.⋅ ≠E P∇  

11. Conclusions 

We have shown elsewhere [16] [18] that the macroscopic Maxwell equations can 
be transformed, by means of vector and dyadic identities, into electromagnetic 
momentum balance equations. These balance equations involve different mo-
mentum flux tensors and force densities. 

In the present work we use a particular balance equation to show the similari-
ties and differences between the action of electrostatic and magnetostatic fields 
on linearly polarizable and magnetizable matter. 

As a first point we can conclude that, based on the insights provided by this 
balance equation, the force exerted on a dielectric slab partially introduced into a 
charged capacitor is not exactly analogous to the force exerted on a magnetizable 
rod partially introduced into a solenoid. In the first case the force arises from the 
orthogonal compressions around the lines of force, equivalent to a difference of 
pressures at the interface, that is, the force is orthogonal to the electric field E , 
while in the second case, the force arises from the action of the tension along the 
lines of force, that is, the force is parallel to the magnetic field B . 
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As a second point, we have proposed a device that represents an exact analogy 
with the case of a dielectric slab inside a capacitor, in the sense that the force also 
arises from the compression around the magnetic lines of force, implying a dif-
ference of magnetic pressures at the interface. In this case the force is orthogonal 
to the magnetic field B . In both cases the fringing fields are irrelevant, though 
in the electric case it is argued that the fringing field is the cause of the force, 
while in the magnetic case it is explicitly neglected [12]. 
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