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Abstract 
Alzheimer’s disease (AD) is a neurodegenerative disease distinguished by 
progressive cognitive deterioration along with declining activities of daily 
living and behavioral changes. It is the commonest type of pre-senile and se-
nile dementia. Many new therapeutic strategies have been developed in the 
last few years. We aimed at reviewing the evidence supporting these new the-
rapeutic targets, including anti-amyloid and anti-Tau strategies. This review 
is focused on important future direction in investigation of potential thera-
peutic targets for AD drug discovery. Medical advances have improved 
treatment of many diseases but still there is a need to establish new tools for 
early diagnosis of AD. A thorough comprehensive understanding of the un-
explored mechanism can ameliorate the diagnostic and therapeutic manage-
ment of AD. There have been several disease-modifying therapeutic strategies 
for AD in the last few years and are presently at various phases of investiga-
tion. Few of them have shown promising results, but their safety and efficacy 
need to be further explored. 
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1. Introduction 

Dementia is used to describe a broad range of symptoms that impact memory, 
thoughts, performance of everyday routine activities, and difficulty in learning 
and communication abilities. The most common type of dementia is Alzhei-
mer’s Disease (AD) which gets worse with time; irreversible dementia is becom-
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ing a major threat for the aging people [1]. AD is considered as the sixth leading 
cause of death in USA. It is the only disease in America in the top ten that can-
not be prevented, cured or slowed. It causes the degeneration of loss of neurons 
in the brain particularly in the cortex. Despite decades of research on the etiolo-
gy, the precise cause appears to be unclear. AD destructs the patients mind, 
makes significant burdens for their families and caregivers and outlays the 
United States billions of dollars every year. According to the Alzheimer’s Asso-
ciation today, more than 5 million Americans are living with Alzheimer’s dis-
ease. As per estimations Alzheimer’s and other dementias may cost the U.S. 
health care system for more than $259 billion during 2017, which will potentially 
increase approximately 4-fold to $1.1 trillion by 2050 [2]. The early stage of AD 
short-term memory loss appears [3], as it progresses through the different stages 
of dementia, cognitive impairment such as forgetfulness with daily activities, 
remembering names of familiar people or thing becomes increasingly noticeable 
and severe [4] [5]. 

Current approaches for drug development are basically therapeutic. Due to 
the complex etiology of AD, its pathogenesis has not been fully interpreted, and 
numerous pathogenesis hypotheses for AD have been explained, such as choli-
nergic hypothesis [6], amyloid cascade hypothesis [7] [8], oxidative stress hypo-
thesis [9], and metal dyshomeostasis hypothesis [10] [11]. Despite continuous 
efforts towards unraveling the brain complexities and recognizing the keystones 
of Alzheimer’s, the effective treatment foundation remains an unnerving chal-
lenge [12]. There is currently no cure to stop or reverse the advancement of AD. 
However, medications presently available treat the disease symptoms like mem-
ory loss, confusion and problems with thinking. Nevertheless, there are presently 
five FDA-approved medications Donepezil (Aricept), Galantamine (Reminyl), 
Rivastigmine (Exelon), Tacrine (Cognex) and Memantine (Namenda) which are 
available that temporarily improve symptoms, but the benefits are not so potent 
and none is capable to halt the progression of this disease (Figure 1) [13] [14]. 
This review summarizes the therapeutic agents discovered so far, which could 
lead to the development of an effective drug for AD. 

General structure of the review is: 
1) Etiology of Alzheimer’s Disease; 
2) Current strategy for Alzheimer’s Disease treatment; 
3) Strategies in drug discovery for Alzheimer’s Disease; 

 

 
Figure 1. Medications approved by FDA for AD treatment. 
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4) Conclusion. 

2. Etiology 

The initiation of pathogenic process is explained by the formation of amyloid 
plaques, which starts either because of mutations in the amyloid precursor pro-
tein (APP), or due to other mutations and environmental factors [7]. These 
changes lead to the formation of amyloidogenic peptides that first aggregate into 
oligomers, which can interfere with synaptic neurotransmission (e.g. cholinergic 
neurotransmission), and then into amyloid plaques, which are thought to 
cause intracellular metabolic alterations that lead to the hyperphosphorylation 
of tau proteins [15]. Thus hyperphosphorylated tau proteins aggregate to form 
neurofibrillary tangles that alter intracellular metabolism to a sufficient degree 
to cause neuronal death. Both β-amyloid plaques and neurofibrillary tangles 
are thought to cause an excessive release of glutamate in certain cortical and 
sub-cortical structures [16] [17] [18] that can lead to neuronal death through 
N-methyl-D-aspartate (NMDA) receptor mediated excitotoxicity [19]. 

3. Current Strategy 

Present research to treat AD is focused on either to impede or slow down disease 
progression by directing one or more of the brain changes instigated by AD. 
These targets of treatment are β-amyloid plaques that occur between the cells of 
the nerve, tangles of tau protein that damage and kill cells of the brain by dis-
abling the nerve transport system and a receptor that decreases a neurotrans-
mitter required for the brain to think and function normally. Potential medica-
tions also intend to decrease neuro-inflammation that is accompanied with Alz-
heimer’s and targets the immune system to empower it to fight the disease. 

Intensifying the central cholinergic movement and ameliorating acetylcholine 
level in the brain, for example, by prohibiting the activity of acetylcholinesterase 
(AChE) have been believed to be a powerful approach AD therapy [20] [21]. 
Presently, the first-line drugs for AD treatment are primarily AChE inhibitors 
such as donepezil, rivastigmine, galantamine, and huperzine A (Hup A, ap-
proved by CFDA [13] [22]. These drugs functions only to enhance the memory 
and cognitive capabilities of AD patients but do not serve as curative treatment 
[23] [24]. 

4. Strategies in Drug Discovery for Alzheimer’s 
4.1. Biomarkers 

A biomarker is a measurable indicator of some biological or pathological state or 
condition that is objectively measured to evaluate normal biological or patho-
logical processes. They can be used for diagnosis as well as monitoring the suc-
cess of a therapy (Figure 2). Present diagnostic techniques for AD are quiet ex-
pensive-magnetic resonance imaging (MRI) or positron emission tomography 
(PET), invasive cerebrospinal fluid (CSF) biomarkers, genetic markers, serum  
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Figure 2. Various biomarkers used in diagnosis of AD. 
 

amyloid within significant specificity and reactivity [25]. However, neuropsy-
chological analysis is considered to be the “gold standard” for pre-mortem de-
tection of AD [26], but the screening is tedious, and may demand manifold as-
sessment. 

Most of the AD drug development relevant biomarkers presently used are 
brain imaging, plasma and cerebrospinal fluid (CSF) measures; microarray and 
spectroscopic examination of multiple genes, proteins, lipids, metabolites. Flor-
betapir-PET (an imaging agent which has high binding specificity for β amyloid) 
images demonstrates that amyloid-β load associates with the cognitive function 
[27]. Another biomarker Aβ amyloid can also be analyzed using commercially 
available imaging agent (AV-45), for further research to understand AD; but still 
there is no imaging agent commercially available for tau. However, Victor Ville-
magne’s research group is engaged in developing a tau imaging agent 18F-THK523 
in patients [27] with Alzheimer and Jeff Kuret is also working on biomarkers for 
tau imaging for early analysis, differential analysis, and monitoring response to 
various treatments but selectivity and the binding potential are the key chal-
lenges in the development of tau imaging agents. In the frontotemporal demen-
tia, enhanced sensitivity of a TDP-43 was observed during Cerebro Spinal Fluid 
(CSF) measurement [27]. Neuroimaging and CSF measures of β-amyloid and 
neuronal injury demonstrates the importance of the heterogeneity of the defini-
tion of neuronal injury, and has significant consequences for clinical trials ex-
ploiting biomarkers as substitute endpoint measures [28]. 

Other major biomarkers developed so far include blood lipids [29], saliva and 
metabolomics [30], amyloid blood biomarker [31] [32] [33] [34], retinal gan-
glion cell-inner plexiform layer (GCIPL) and nerve fiber layer (NFL) [35]. Plas-
ma biomarkers have also been found to be very helpful in the detection of AD 
[35]. These biomarkers are economic and scalability bonus over existing tech-
niques, facilitating broader clinical approach and productive population screen-
ing. Several proteins have been reported to play a significant role in the early de-
tection of AD. A18kDatranslocator protein (TSPO) is known to have a promi-
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nent role in neuroinflammation in dementia pathogenesis and can aid in moni-
toring disease succession [36]. Another major protein Splicing factor proline- 
and glutamine-rich (SFPQ) which aids in transcription, pre-mRNA splicing, and 
DNA damage repair, was found to be dysregulated and dislocated in the devel-
opment of AD and FTD [37]. Modifications in extracellular matrix proteins 
ameliorate hippocampal IL6 level and iron in the initial phases of AD and show 
inflammation-mediated iron dyshomeostasis in the initial phases of neurodege-
neration. Besides, the level of iron in the hippocampus was calculated by pre-
liminary coupled plasma-mass spectrometry as IL6 is cited in many studies to 
take part in iron homeostasis and inflammation and known to be elevated in 
5XFAD mice hippocampus [38]. Further, Flavonoids-breviscapine biomarkers 
were investigated and were found to enhance the learning and memory deficits 
of AD mice chiefly by regulating phospholipids metabolism, promoting level of 
serotonin and reducing cholesterols content in vivo [39]. Noncoding MicroRNA 
(miR)-34a acts as a promising biomarker for early detection and intervention 
which contribute to the pathological development of AD [40] [41]. 

4.2. Multi-Target-Directed Ligand (MTDL) Design Strategy 

Multi-target-directed-ligands (MTDLs) are found to be an innovative form of 
polypharmacology, which are compounds that influence two or more biological 
targets and processes [42]. This strategy has evolved vigorously over the past few 
years, mainly in the context of multifactorial diseases such as AD [43] [44] [45] 
[46]. A variety of promising multifunctional anti-AD molecules has been devel-
oped and synthesized by incorporating chemical fragments accountable for in-
teraction with desirable biological targets [47]-[52]. Further MTDL for AD has 
been developed with multifunctional roles such as antioxidant property, 
blood-brain barrier penetration, biometal chelation, Aβ aggregation modulation 
and neurotrophic and neuroprotective properties [53]. It also revealed hippo-
campal cell proliferation activity in living adult mice. The role of ASS234 was 
identified as multi-target directed compound for AD [54]. Presently, the most 
effective therapeutic strategy for drug designing for AD is aiming the cholinergic 
system. It has been proposed that the decline of acetylcholine (ACh) level causes 
the cognitive and memory deficits [55] [56] [57]. Hence, targeting cholinergic 
function by preventing cholinesterase’s (ChEs), which control the hydrolysis of 
ACh, is valuable for the treatment of AD [58] [59]. Two types of ChEs, exits 
namely, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Nor-
mally, AChE is a ruling factor for ACh metabolism (80%), thus, acetylcholines-
terase inhibitors (AChEIs) can proficiently stops the hydrolysis of ACh and of-
fers capable therapeutic effects [60]. The level of AChE decreases to 90% in AD 
patients, causing the loss of function of AChEIs [61]. Whereas BuChE continues 
the standard level or are upregulated for the metabolism of ACh. Suppression of 
BuChE forms a favorable target for drug discovery of progressed AD [62]. So, 
clinical use of inhibitors of both AChE and BuChE can be applied for a powerful 
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therapeutic strategy for AD. But, presently ChEs suppressors in clinical use, such 
as donepezil and rivastigmine, only allow a comforting treatment [63]. There-
fore, designing multi-target-directed ligands (MTDLs) that can instantaneous-
ly control multiple targets in the advancement of AD, has developed as a novel 
strategy [64] [65] [66], and several of MTDLs have shown favorable pharma-
cological impacts on AD [67] [68] [69] [70] [71]. A novel series of sixteen 
multifunctional N-benzyl-piperidine-aryl-acylhydrazones hybrid derivatives 
were assessed for multi-target activities associated with AD by Dias et al. [72]. 
Among them, one compounds showed excellent AChEI activity, also had an-
ti-inflammatory activity in vitro and in vivo, against amyloid beta oligomer 
(AβO) induced neuroinflammation. The target compound also exhibited the 
best in vitro and in vivo neuroprotective activity against AβO-induced neuro-
degeneration. Furthermore, the target compound also revealed a similar bind-
ing mode to donepezil in both acetylated and free forms of AChE enzyme in 
molecular docking studies and did not express toxic effects on in vitro and in 
vivo assays. Hence, all these consequences authenticated the target compound 
to be a potent and novel multi-target drug candidate for AD treatment. Fur-
thermore, novel TDMQ (TetraDentate MonoQuinolines) ligands based on an 
8-aminoquinolinewere designed [73]. Their affinity for Cu (II) has been reported, 
and their competency to suppress oxidative stress encouraged by copper-amyloids 
initiated by a reductant. These metal ligands can be assessed as potent anti-AD 
agents; can monitor the homeostasis of copper in brains. 

4.3. Targeting β-Amyloid: Attractive Therapeutics for AD 

Deposits of insoluble proteins: β-amyloid (Aβ) and hyperphosphorylated tau are 
regarded as the primary cause of AD. Aβ is the product of enzymatic cleavage of 
amyloid precursor protein (APP) by β-secretase (BACE-1) and γ-secretase 
(Figure 3). Various forms of Aβ, primarily Aβ1–42 and Aβ1–40, have the ability 
to aggregate and create extracellular neurotoxic senile plaques [74]. Amyloid 
precursor protein (APP) undergoes sequential cleavages by β-secretase and 
γ-secretase and gives rise to the β-amyloid (Aβ) that is known to instigate so-
luble oligomers, insoluble fibrils, and assembled plagues. APP can be processed 
by 𝛼𝛼-secretase within the Aβ region and produce a longer C-terminal fragment-
ing the first cleavage. For controlling Aβ production, the three important en-
zymes processing in APP have been therapeutic targets in AD drug development. 
The strategy is the inhibition of β-/γ-secretase while stimulating the 𝛼𝛼-secretase 
activity. Beta-site APP-cleaving enzyme 1 (BACE1) is the protease in charge for 
the preliminary cleavage of APP, giving rise to neurotoxic suspect Aβ [75] [76] 
[77]. BACE1 knock-out mice marked a close correlation between the BACE1 in-
hibition and the Aβ decline [77] [78]. It is outlined that BACE1 inhibition en-
hanced memory deficits [79] and released Aβ-driven cholinergic dysfunction 
[80] in APP transgenic mice. Nuclear peroxisome proliferator activated receptor 
gamma (PPARγ) act as a transcription factor regulating gene expression [81],  
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Figure 3. β-amyloid pathology. 

 
regulating inflammation response, encouraging microglia-mediated Aβendocytosis, 
and decrease cytokine secretion [82]. It was noticed that thiazolidinediones sti-
mulated PPARγ to inhibit β-secretase and promoted ubiquitination to deteri-
orate amyloid load [83]. PPARγ agonists like thiazolidinediones derivatives ro-
siglitazone and pioglitazone lessen the peripheral insulin resistance [84], which 
provoked AD neuropathology, and this decline of insulin sensitivity aids in 
Aβproteolysis. The study of rosiglitazone has been enhanced to a large phase; 
still, it has been terminated due to cardiac risk concerns [85]. Pioglitazone has 
recently been developed into a phase 3 clinical trials after preventing an earlier 
reported bladder risk. Development of small nonpeptidic BACE1 inhibitors, com-
pared to older agents, have enhanced molecular weight, beneficial pharmacoki-
netic (PK) guidelines, and adequate lipophilicity to cross the blood-brain barrier 
(BBB) [86] [87]. Lately, orally bioavailable BACE1 inhibitors have been evolved 
that can cross the BBB and have shown strong cerebral Aβ reduction in preclin-
ical animal models [86]. Many of these compounds have been explored in clini-
cal trials [86] [87] [88] [89]. Anti-inflammatory properties of donepezil were 
studied and its neuroinflammatory effects were also explored [90] [91] [92] [93]. 
It was observed that donepezil notably reduced the release of inflammatory in-
termediaries (prostaglandin E2, tumor necrosis factor-a, interleukin-1 beta, and 
nitric oxide) from microglia. It was further established that donepezil inhibits 
activated microglia-mediated toxicity in primary hippocampal cells. In intra-
hippocampal Af30-injected mice, donepezil inhibited microgliosis and astrogli-
osis. Moreover, behavioral tests showed that donepezil remarkably improved 
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Aβ0-induced cognitive impairment. Thus, it was concluded that donepezil straight 
away prevents microglial activation induced by Aβ via obstructing MAPK and 
NF-KB signaling. This further, brings about the amelioration of neurodegenera-
tion and cognitive impairment. The dosage and duration of treatment of Me-
mogain, another drug, was screened on behavior and amyloid-β (Aβ) plaque 
deposition in the brain of AD patients [94]. Their experiments revealed that nas-
al administration of Memogain efficiently transported the drug to the brain with 
the possibility to inhibit deposition of plaque and enhance behavioral symptoms 
in AD. Another novel sequence of flavonoid based compound was designed and 
produced which showed AChEI activity along with advanced glycation end 
products (AGEs) inhibitory properties and antioxidant potential as well [95]. 
One compound 6-methyluracil derivative was found capable of passing through 
the blood-brain barrier, enhanced working memory in transgenic mice with 
amyloid precursor protein/PS1 and considerably decreased the Aβ plaques 
number and area in the brain [96]. Another compound, β-asarone notably en-
hanced the learning and memory of APP/PS1 transgenic mice by suppressing 
Beclin-1-dependent autophagy via the PI3K/Akt/mTOR pathway [97]. Besides, 
there was decline in AChE and Aβ42 levels, improved p-mTOR and p62 expres-
sion, reduced p-Akt, Beclin-1, and LC3B expression, reduced the number of au-
tophagosomes and decline in levels of APP mRNA and Beclin-1 mRNA after 
treatment with β-asarone. A natural extract from black sesame (Sesamum indi-
cum L.) known as black sesame pigment (BSP) shows strong inhibition of 
AChE-induced accumulation of β-amyloid Aβ1-40 and inhibition of self-induced 
Aβ1-42 aggregation and activity of BACE-1 [98]. 

The cellular mechanism of Bis (propyl)-cognitin (B3C) and bis (heptyl)-cognitin 
effect on the impairments of cognitive function, synapse formation, and synaptic 
plasticity induced by soluble amyloid-β protein (Aβ) oligomers in AD patients 
has been unraveled [99] [100]. AβO-induced synaptotoxicity was inhibited by 
Bis (heptyl)-cognitin in primary hippocampal neurons. Further, it was identified 
that bis (heptyl)-cognitin changed Aβ assembly via directly preventing AβO 
formation and decreasing the amount of preformed AβO’s. Previous research 
has proved B3C to be a capable therapeutic anti-AD drug. The effect of a com-
pound, named baicalein on synaptic function both in vitro and in vivo in AD 
model was found that baicalein prohibited Aβ-induced impairments in hippo-
campal LTP via initiation of serine threonine Kinase (Akt) phosphorylation. 
These findings fortified the flavonoid baicalein effect as potent bioactive therapeu-
tics that avoids memory deficit in AD patients [101]. This compound was also 
found to enhance scopolamine induced memory deficit in mice. An interesting fact 
about folic acid is that it prohibited the Aβ deposition due to folate deficiency in 
APP/PS1 mice. Folic acid decreased the accumulation of Aβ42 in APP/PS1 mice 
brain by reducing the mRNA and protein expressions of β-secretase BACE1 and 
γ-secretase complex catalytic component-presenilin 1 (PS1)-in APP/PS1 mice 
brain [102]. A compoundα7 nicotinic acetylcholine receptor (α7-nAChR) was 
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studied for its binding, Aβ deposition, and mitochondrial complex I (MC-I) ef-
fect in the aged monkeys (Macaca mulatta) brain [103]. The results showed sig-
nificant upregulation of α7-nAChR caused by neurodegeneration by Aβ accu-
mulation as well as disabled MC-I activity in brain. Later, Nakaizumi et al. un-
raveled the association between α7-nAChR presence in the specific cholinergic 
region and cognitive decline in the AD patients [104]. Relation among Aβ bur-
den and α7-nAChR decrease in the basal forebrain cholinergic system was un-
derlined in accordance to AD cognitive decline. Furthermore, a series of 15 
drug-like derivatives of 2-(benzylamino-2-hydroxyalkyl) isoindoline-1,3-diones 
were identified with β-secretase inhibitory activities [105]. Another compound, 
(2-(5-(benzyl amino)-4-hydroxypentyl) isoindoline-1, 3-dione), presented inhi-
bitory potency against eeAChE, hBACE-1, and Aβ-aggregation. Kallikre-
in-related peptidase 7 (KLK7) was explored as an astrocyte derived degrading 
enzyme [106]. There was reduced expression of KLK7 mRNA in the of AD pa-
tient’s brain. It was found that the FDA approved anti-dementia drug meman-
tine elevated the Klk7 expression and degradation of β amyloid precisely in the 
astrocytes. Thus, KLK7 is a significant target enzyme in the deposited β amyloid 
degradation and clearance in AD patients. Some spiropyrrolidine heterocyclic 
hybrids in 1-butyl-3-methylimidazoliumbromide ([bmim] Br) were identified 
and reported as promising agents for treating AD [107]. Pitt et al. speculated 
CNS factors in physiologically defending neurons from the deleterious effect of 
AβOs [108]. Neurons in the presence of astrocytes exhibited decreased AβO 
binding and synaptopathy. Insulin and insulin-like growth factor-1 (IGF1) were 
identified as the defensive factors released by astrocytes. The shielding mechan-
ism involved liberation of newly bound AβOs into the extracellular medium de-
pendent on trafficking that was delicate to exosome pathway inhibitors. Trans-
membrane Post-synaptic density (PSD) proteins were scrutinized heterologously 
for the capability to bind AβO-PrP(C) with Fyn [109]. Coexpression of the me-
tabotropic glutamate receptor, mGluR5, permitted PrP(C)-bound AβO to acti-
vate Fyn. PrP(C) and mGluR5 communicate physically, and cytoplasmic Fyn es-
tablishes a complex with mGluR5. AβO-PrP(C) multiplexes at the neuronal sur-
face activate mGluR5 to damage neuronal function. Further, Haas group re-
ported that the PrP(C) segment of amino acids 91 - 153 facilitates the interaction 
with mGluR5 [110]. mGluR5 agonists intensify the mGluR5-PrP(C) interaction, 
whilemGluR5 antagonists inhibit protein association. In brain homogenates with 
AβO, the interaction of PrP(C) and mGluR5 was reversed by mGluR5-directed 
competitor or antibodies administered against the PrP(C) segment of amino ac-
ids 91-153. It was seen that silent allosteric modulators of mGluR5 did not alter 
Glu or basal mGluR5 property; instead they disrupted the AβO-induced interac-
tion of mGluR5 with PrP(C). The findings described here has the prospective to 
detect novel compounds that prevent the interaction of PrP(C) and mGluR5, 
which is very crucial for AD pathogenesis. Stress-inducible phosphoprotein 1 
(STI1), an Hsp90 cochaperone released by astrocytes in AβO toxicity was stu-
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died [111]. The precise binding of AβOs and STI1 to the cellular Prion protein 
(PrP(C)) was validated and displayed that STI1 capably repressed AβO binding 
to PrP in vitro and reduced AβO binding to cultured mouse primary hippocam-
pal neurons. Significantly, TPR2A inhibited both AβO binding to PrP(C) and 
PrP(C)-dependent AβO toxicity, the PrP(C)-interacting domain of STI1. Fur-
thermore, PrP(C)-STI1 stimulated α7 nicotinic acetylcholine receptors, thereby 
contributing in neuroprotection against AβO-induced toxicity. Furthermore, 
Maciejewski et al. explored the molecular interactions between AβO and STIP1 
attachment to PrP(C) and their consequences on neuronal cell death [112]. They 
reported that residues situated in the short region of PrP (90 - 110) facilitate 
AβO binding. PrP binding was caused because of multiple binding sites on 
STIP1. The TPR2A (one of the binding site on STIP1) interface was found to be 
very vast and moderately overlayed with the Hsp90 binding site. Thus, there is a 
likelihood of a PrP, STIP1 and Hsp90 ternary complex, which may impact 
AβO-mediated cell death. 

It is known that proteolysis of APP is vital for β-amyloid peptides (Aβ) pro-
duction which deposits as disorientated plaques in brains of patients with AD. 
The BACE1 is the rate determining enzyme in the formation of Aβ from APP. 
Dai et al. used the inhibition of BACE1 strategy for the development of drug for 
AD [113]. Chitosan oligosaccharides (COS) has been known to hold numerous 
biological activities. The experimental data showed that COS reduced the cell 
apoptosis, and strongly suppressed the secretion of both Aβ40 and Aβ42. Fur-
thermore, COS treatment reduced the BACE1 mRNA and protein expression 
level, eIF2α phosphorylation as well as the enzymatic activity of BACE1. They 
concluded that COS contained properties that could ameliorate Aβ-associated 
neurodegeneration, thereby contributing to drops in BACE1 enzymatic activity 
and expression. 

Wang et al. conducted an AD mice vaccine development experiment where 
they immunized the mice with AOE1 vaccine comprising mimotope L2 induced 
antibodies that precisely identified Aβ42 oligomers and found that it decreased 
the levels of Aβ oligomers and activation of glial in the AD mouse brains [114]. 
Aβ-specific T cells were not activated in their brains and no microhemorrhages 
activation was detected in their brains after AOE1 vaccination. A different ap-
proach of disease modification was used by Giannoni et al. to combat AD [115]. 
They identified a potent 5-HT4 receptor agonist RS67333 which reduced Aβ 
production level which led to decline in hippocampal astrogliosis and microgli-
osis. Jung et al. revealed the neuroprotective effects of Cassiae obtusifolia semen 
which could be promising therapeutic anti-AD agents as it possessed the in-
hibitory activity against AChE, BChE and BACEl [116]. Earlier it has been re-
ported that the Cassiae obtusifolia seeds extracts, have memory ameliorating 
properties and anti-AD activity to enhance amyloid β-induced synaptic dysfunc-
tion [117] [118]. Xu et al. evaluated the function of SNX3 in Aβ production and 
processing of APP. Their findings suggested that overexpression of SNX3 in 
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HEK293T cells reduces the Aβ level and soluble N-terminal APP fragments 
(sAPPβ) [119]. SNX3 overexpression decreased APP internalization, and formed 
increased level of APP on the cell surface. Further, SNX3 overexpression ameli-
orated the level of APP. 

Esmaeili et al. concluded that obstruction of KATP channels with glibenclamide 
reduced depression- and anxiety-related behaviors by regulating HPA axis activ-
ity in Aβ25-35-treated rats [120]. Ge et al. reported that soluble islet amyloid 
polypeptide (IAPP) encouraged the accumulation of Aβ42 by binding-induced 
conformational modification of Aβ42 in its amyloidogenic core and hence de-
creased aggregation free energy barrier [121]. Hall group reported the M1/sigma-1 
activity and long-lasting disease-modifying properties of a compound AF710B, 
as a potent anti-AD agent [122]. The cognitive deficits related with progressive 
Alzheimer-like amyloid neuropathology were reverted in transgenic rats after 
long term treatment with AF710B. AF710B was reported as capable to induce 
the binding and efficacy of carbachol on M1 receptors and their downstream ef-
fects (phopho-ERK1/2, phospho-CREB) at low concentrations. In accord with 
its anti-amnesic effect, AF710B, via activation of M1 and a possible involvement 
of σ1 receptors, retrieved mushroom synapse loss in PS1-KI and APP-KI neu-
ronal cultures. There were decrease in amyloid pathology and markers of neu-
roinflammation and elevation in amyloid cerebrospinal fluid clearance and le-
vels of a synaptic marker. Wang et al. designed and created a series of new 
4-isochromanonecompounds having N-benzyl pyridinium moiety and biological 
assessment displayed that most of the target compounds revealed potent AChEI 
activities [123]. Fisher et al. reported AF710B, to be an effective and selective al-
losteric M1 muscarinic and σ1 receptor agonist [124]. In female transgenic AD 
mice AF710B reduced cognitive impairments, also reduced BACE1, GSK3β ac-
tivity, p25/CDK5, neuroinflammation, soluble and insoluble Aβ40, Aβ42, pla-
ques and tau pathologies. Clemens et al. validated the co-relation between in-
flammation, retinoic acid (RA) signaling, and Apolipoprotein E (ApoE) ho-
meostasis in origin and development of AD [125]. Microglia is an important 
source of ApoE, and is known to be pathologically stimulated in AD. RA signal-
ing is known to be inhibited by these microglia and proinflammatory stimula-
tion reduces synthesis of ApoE, due to an effect blocked by RA. Sans et al. dem-
onstrated the cellular model for evaluating apoE proteolysis, which showed that 
serine peptidase A1 (HtrA1) controlled apoE 25-kDa fragment production un-
der physiological conditions, and depicts a novel neurotrophic effect for the 
apoE fragment [126]. Studies on CSF have shown that levels of CSF of amylo-
id-beta 1-42 (Aβ42) are decreased and tau levels ameliorated earlier to the 
commencement of cognitive decline related to AD. Leon et al. noticed that the 
prognosis of cognitive decline was enhanced by taking into account both high 
and low levels of Aβ42 [127]. Their data proposed a preliminary preclinical 
stage, manifested by CSF increase in tau and escorted by elevations or diminu-
tion in Aβ42. Chen et al. designed and analyzed a series of tacrine-cinnamic acid 
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hybrids as novel ChEIs [128]. All target compounds are assessed for their in vi-
tro ChEI activities. Those compounds which revealed effective ChEI activity 
were further screened for the Aβ-protein self-accumulation inhibition and in 
vivo assays. Three compounds were found to be helpful in enhancing the scopo-
lamine-induced cognition impairment and preliminary safety in hepatotoxicity 
assessment and claimed as potential novel therapeutic anti-AD agents. 

Several findings have shown that monoamine oxidase (MAO) plays a vital role 
in the pathogenesis of AD because the elevation of MAO in the brain may pro-
duce a cascade of biochemical events resulting in neuronal dysfunction [129] 
[130]. MAOs are flavin adenine dinucleotide (FAD)-containing enzymes that are 
accountable for the oxidative deamination of endogenous and exogenous mo-
noamine substances. There are two functional isozymic forms of MAOs, mainly, 
MAO-A and MAO-B [131]. MAO-A inhibitors are applied in clinical antide-
pressants and antianxiety, while MAO-B inhibitors are used as a remedy for 
neurodegenerative disorders such as AD and Parkinson’s diseases (PD) [132] 
[133]. Based on previous research [134] [135], MAO-B action in the brain and 
blood platelets of AD patients were high, while increased expression levels of 
MAO-B could result in the enhanced level of free radicals that portrayed a sig-
nificant role in AD pathogenesis. MAO-B inhibitors can decrease the oxidative 
stress response and guard the nerve cells from oxidative damage and neurotoxic-
ity, hence, MAO-B could be a significant target for AD treatment [136] [137]. 
Selegiline, an irreversible and selective MAO-B inhibitor, has been described as a 
potent anti-AD agent because of its neuroprotective attribute in cellular and 
animal models of AD [138]. The elevated levels and dysregulation of biometal 
ions such as Cu2+, Zn2+ and Fe2+ were found to be closely involved in AD patho-
genesis [139] and was reported to promote Aβ aggregation, resulting in the 
production of toxic Aβ oligomers [140]. Redox-active Cu (I/ II) and Fe (II/III) 
are involved in the creation of reactive oxygen species (ROS) causing an increase 
in oxidative stress [141] [142] [143] [144]. Biometal chelators, particularlyCu2+ 
chelators, decrease the metal-induced Aβ aggregation and also minimize the 
ROS level generated by the redox metal and metal-Aβ complex [145] [146]. 
Hence, biometal chelators have been believed to be a potent therapeutic strategy 
for AD treatment. Moreover, neurotoxic ROS and oxidative damage of neuronal 
cells are also related to AD, so the compounds with antioxidant properties could 
be favorable for AD treatment [147] [148]. Vilella et al. screened altered 
zinc-levels in the AD brain via zinc loaded nanoparticles which can deliver zinc 
into the brain across the BBB for favorable effect on AD patients [149]. In vivo 
studies were conducted with wild type (WT) and APP23 mice to evaluate plaque 
load, inflammatory status and synapse damage. Besides, behavioral analyses 
were undertaken. A remarkable decrease in plaque size and impact on the 
pro-inflammatory cytokines 11-6 and IL-18 was seen after administering these 
nanoparticles for 14 days. In case of behavioral changes there was no negative re-
sult of increased brain zinc levels in APP23 mice and treatment with g7-NP-Zn 
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standardized the detected hyperlocomotion of APP23 mice. 
Mitochondria association has been revealed in the disease pathogenesis of AD 

[150]. The member of quinone family is key mitochondrial targets used as the 
curative against ROS-mediated impairment. To avoid oxidative injury in AD, 
Mitoquinone mesylate or MitoQ, a ubiquinone derivative has been applied 
[151]. Zhang et al. discovered novel Phosphodiesterase-9 (PDE9) inhibitors 
[152]. This PDE9is a promising target for AD treatment. AD is marked by con-
tinuous cognitive decline, progressively associated with neuronal dysfunction 
caused by amyloid-β oligomers (AβOs). Diniz et al. reported that AβOs inte-
ract with astrocytes, triggers astrocyte activation and causes abnormal produc-
tion of reactive oxygen species (ROS), which is accompanied by damage of as-
trocyte neuroprotective potential in vitro [153]. They demonstrated that as-
trocyte stops the synapse damage induced by AβOs, through formation of 
transforming growth factor-β1 (TGF-β1). AβOs also causes morphological and 
functional modifications in astrocytes, and weaken their neuroprotective po-
tential. These findings outline a new strategy unrevealed the toxicity of AβOs 
and specify a novel therapeutic target for AD, primarily focused on TGF-β1 
and astrocytes. 

Yu et al. earlier reported that the inhibition of histone deacetylase 3 (HDAC3) 
enhances spatial memory deficits and reduces the Aβ accumulation in the 
9-month-old APP/PS1 mice brain [154]. Recently, they opened new frontiers for 
AD drug development by proposing HDAC3 to be a promising target because of 
their effect of reducing spatial memory deficits and preventing oxidative stress in 
APP/PS1 mice. HDAC3 is mainly present in the neurons; its inhibition notably 
attenuates production of ROS and enhanced primary cortical neuron viability. 
Researchers determined a molecular association between aging and dementia 
via the identification of J147 a molecular target for the AD drug [155]. Mito-
chondrial a-F1-ATP synthase (ATP5A) was identified as a target fora potential 
drug candidate J147.It was found that J147 ameliorated intracellular calcium 
level which induced calcium/calmodulin-dependent protein kinase kinase b 
(CAMKK2)-dependent activation of the AMPK/mTOR pathway, an established 
longevity procedure. Hence, ATP synthase prove to be a potential target which 
could be further explored for AD drug development. Xu et al. synthesized new 
propargyl amine-modified pyrimidinylthiourea derivatives (1e3) for AD treat-
ment, and evaluated their potential through numerous biological experiments 
[156]. These derivatives showed good selective inhibitory activity against acetyl-
cholinesterase (AChE) and monoamine oxidase (MAO-B). Molecular studies 
displayed that the pyrimidinylthiourea moiety of 1b possibly bind to the catalytic 
active site (CAS) of AChE, and the propargylamine moiety cooperated directly 
with the flavin adenine dinucleotide (FAD) of MAO-B. Furthermore, 1b con-
firmed significant antioxidant capability, good copper chelating property, effec-
tive inhibitory activity against Cu2þ-induced Aβ1-42aggregation, moderate 
neuroprotection, little cytotoxicity, and suitable blood brain barrier permeability 
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in vitro and was found to be able of ameliorating scopolamine-induced cognitive 
impairment in mice. Their findings showed that 1b has the possible potential to 
act as a multifunctional candidate for the treatment of AD. Monoamine oxidase 
inhibitors (MAOIs) are potential drug candidates for the treatment of various 
neurological disorders like Parkinson’s disease, AD and depression. Kumar et al. 
evaluated MAO-A and MAO-B inhibitory activities of two series of 4-substituted 
phenylpiperazine and 1-benzhydrylpiperazine derivatives, and found them to be 
strong MAO inhibitors [157]. Birnbaum et al. reported that improved produc-
tion of ROS may have an integral role in the advancement of sporadic AD prior 
to the emergence of amyloid and tau pathology [158]. 

4.4. Targets and Small Molecules against Tauopathies 

Tau accumulation association with neurodegeneration in AD and associated 
tau-positive neurological disorders collectively known as tauopathies directs the 
involvement of tau aggregates to neurotoxicity (Figure 4). Delrieu et al. aimed at 
developing a new third phase 3 clinical trials for solanezumab, called expedition 
3, in patients with minor AD and sign of amyloid accumulation has been started. 
Previously designed drug solanezumab seems to be more successful when used 
in early stages of amyloid accumulation, showing the importance of detecting 
AD as early as possible and undergoing clinical trials at this stage [159]. Gibbons 
et al. identified novel tau monoclonal antibodies (mAbs) that allowed the selec-
tive recognition of AD tau pathology by selectively binding to an AD-specific tau 
conformation [160]. 

Lo et al. developed Azure C (AC), which is competent of regulating tau oli-
gomer accumulation pathways at minimal concentrations and releases tau oli-
gomers-induced toxicity in cell culture [161]. Remarkably, AC inhibited toxicity 
by transforming the oligomers into groups of aggregates with non-toxic conformation. 

 

 

Figure 4. Tau pathology. 
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Tiernan et al. revealed the spatiotemporal progression of oligomeric tau accu-
mulation within the highly vulnerable cholinergic neurons of the nucleus basalis 
of Meynert (nbM) in AD [162]. They concluded that toxic tau oligomers mul-
tiply in selectively susceptible nbM neurons through the progression of AD. 
Yang et al. designed the reagent for assessing plasma phosphorylated tau protein 
(p-tau181) with immunomagnetic reduction (IMR) and classified its analytic 
performances [163]. Their findings revealed that the level of plasma p-tau181 is 
associated more to AD severity than plasma T-tau. 

4.5. Other Strategies 

The anti-AD activities of different parts of Nelumbo nucifera (leaves, de-embryo 
seeds, embryos, rhizomes, and stamens) were explored to assess the selectivity 
and resourceful usage of its specific components [164]. It was noticed that the 
embryo extract act as a potent suppressor of BACEl and BChE and also has 
scavenging activity against ONOO−. Further evaluation showed that dichloro-
methane (CH2Cl2), ethyl acetate (EtOAc), and n-butanol (n-BuOH) fractions 
showed promising ChEI and BACEl inhibitory activities. Similar activities 
were shown by compounds obtained from Corni Fructus: loganin, morroniside, 
and 7-0-galloyl-o-sedoheptulose [165], these compounds had triple inhibitor ac-
tivity for AChE, BChE, and BACE1 suggesting it to be a potent therapeutic class 
of agents for AD treatment. Further, the anti-AD activities of ginsenosides (Rbt, 
Rb2, Re, Re, Rg1, and Rg3) conferring to ONOO− scavenging activity and sup-
pressor activity of ONOO-mediated nitrotyrosine formation was reported [166]. 
Various in vitro enzyme assays established that ginsenosides possess substantial 
inhibitory activity against AChE, BChE, and BACE1 as well as ONOO− and ni-
trotyrosine formation. Inula japonica, a member of the Asteraceae plant family 
and its flowers has been used as a healthy tea and a traditional Chinese medicine. 
Liu et al. reported two new sesquiterpenes and ten known terpenes from the 
flowers of I. japonica [167]. Their findings revealed the flowers of I. japonica to 
be a healthy tea and potentially helpful for AD and related neuroinflammatory 
diseases. Baicalin is known to possess anti-inflammatory and neuroprotective 
properties. Chen et al. studied the neuroprotective influence of baicalin and 
found that baicalin enhanced Aβ (1-42) protein-related pathology and cognitive 
dysfunction through its anti-neuroinflammatory property [168]. 

Astrocytes have shown to play a vital role in CNS homeostasis and neuronal 
function maintenance. Tg astrocytes presented many prominent effects such as 
basal inflammatory status, with heightened reactivity and improved expression 
of the inflammatory cytokine interleukin-1 beta (IL-1β), the hexose monophos-
phate shunt was stimulated, also the initiation of hypoxia inducible factor-1 al-
pha (HIF-1α), which aids in insulation against Aβ toxicity [169]. Furthermore, 
Pantethine, the vitamin B5 precursor, has a neuroprotective and anti-inflammatory 
effect, improved the pathological pattern in Tg astrocytes as well as WT astro-
cytes treated with Aβ. Their findings showed the dual defensive role of astrocytes 

https://doi.org/10.4236/ojmc.2019.91001


S. E. Tanwir, A. Kumar 
 

 

DOI: 10.4236/ojmc.2019.91001 16 Open Journal of Medicinal Chemistry 
 

in AD and the shielding effect of pantethine. The dietary vitamin D addition in 
female AD-like mice decreased cognitive decline only when applied in the 
symptomatic phase [170]. It was proposed that transcranial ultrasound can se-
curely and efficiently modify the brain interstitium and enhance the diffusion of 
large therapeutic drug carriers, which has a promising potential to develop the 
therapeutic uses of MRgFUS [171]. Neurons with hyperphosphorylated tau in 
AD has the profile of metabolically active cells including amplified exportin-5 
and importin-β mRNA and proteins which signifies that immunohistochemistry 
evaluation of these proteins may assist in the early diagnosis of AD [172]. 

Compounds comprising a benzofuran ring have been defined to have a vital 
role in reducing Aβ-induced toxicity, though, till date only synthetic benzofu-
rans have been inspected. González et al. explored in vitro neuroprotective 
properties of fomannoxin (Fx), a natural benzofuran isolated from the An-
dean-Patagonian fungi Aleurodiscus vitellinus cultures, and noted its neuropro-
tective effect against Aβ peptide toxicity [173]. Paley et al. previously proposed 
that tryptophan metabolites lead to neurotoxicity and neurodegeneration in AD 
patients [174]. Tryptophan is known to be a product of Shikimate pathway (SP). 
There is no SP in human cells, instead human gut bacteria use SP to yield aro-
matic amino acids (AAA). Recently, gene-targeted investigation of human gut 
microbiota in AD fecal samples was carried out by this group of scientists. The 
remarkable variance in the gut microbial genotypes between the AD and control 
human populations was a significant achievement. Research was carried out on 
the function and role of pro-opio melanocortin (POMC)-derived neuropeptides 
and melanocortin 4 receptor (MC4R) in hippocampus-dependent synaptic plas-
ticity, whose damage leads to cognitive deficits in AD [175]. It was seen that 
proinflammatory peripheral blood mononuclear cell (PBMC)-derived cytokines 
level was ameliorated in AD patients as compared with healthy controls and do-
nepezil treatment minimized proinflammatory cytokines [176]. Atorvastatin 
treatment notably enhanced cognitive deficits of rats, diminished microglia and 
activation of astrocyte, prevented apoptosis, and down-regulated the expression 
of TLR4, TRAF6, and NF-κB, at the mRNA and protein levels as well [177]. 
TLR4 signaling pathway is therefore vigorously involved in Aβ-induced neu-
roinflammation and treatment with atorvastatin can exert therapeutic effects for 
AD. A nonselective β-adrenergic receptor blocker, Carvedilol, applied in the 
treatment for heart failure and hypertension, and has exhibited neuroprotective 
property due to its antioxidant attribute. Liu and Wang reported that Carvedilol 
restrained apoptosis signals by decreasing cytochrome C release and cleaved 
caspase-3 level [178]. Thus, favourable use of Carvedilol in AD treatment can be 
further explored. Simvastatin is known to be a cholesterol-lowering statin drug 
that has been employed to control blood cholesterol level, mainly in cases of 
hypercholesterolemia. Hu et al. proposed that Simvastatin may be helpful in en-
hancing the clinical consequences of AD patients [179]. Batista et al. identified 
means of neuroprotection by liraglutide, and suggested that glucagon-like pep-
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tide-1 (GLP-1) receptor activation may be utilized to defend receptors of brain 
insulin and synapses in AD [180]. 

The role of erythropoietin-producing hepatocellular A4 (EphA4) in mediating 
hippocampal synaptic dysfunctions in AD was explored and it was seen that 
synaptic impairment is altered by the blockade of the ligand-binding domain of 
EphA4 in AD mouse models [181]. Their studies disclosed an anonymous role 
of EphA4 in facilitating AD-associated synaptic dysfunctions, indicating it to be 
a novel therapeutic target for treatment of AD. 

5. Conclusions 

AD attributes a vigorous progression of β-amyloid accumulation, neurodegene-
ration, and cognitive impairment. It is the most widespread age-related neuro-
degenerative disturbance influencing millions of people worldwide. Thus, dis-
covery of an effective intervention and therapies is extremely important. Medi-
cations are immediately needed for the treatment of AD and unfortunately 
nearly entire clinical trials of AD drug candidates in the past have failed or have 
been obsolete to date. A number of available tools such as mathematical, com-
putational or statistical tools can be employed for the clinical trial simulators 
development for the advancement of trial design and thus aid in the success of 
possible novel therapies. Drugs aimed at more than one target could reduce an 
excessive impact in the intricate nerve network, this combination procedure 
known as multi target-directed ligands (MTDLs) might lead to the discovery of 
novel therapeutics for AD [182] [183]. Previously designed multitarget com-
pounds include, dual binding AChE and BACE1 inhibitors [184], AChE inhibi-
tors and antioxidants [185]. Presently, multiple-pharmacology natural products 
can be employed in the drugs designing of AD treatment [186], Herbal formulae 
like Kai-Xin-San (consisting of Ginseng Radix, Poria, Polygalae Radix, and Acori 
Tatarinowii Rhizoma) also found to be effective in the treatment of AD [187] 
[188]. Novel strategies, such as quantitative systems pharmacology [189], che-
mogenomics knowledgebase [190], metabolomics [191]-[196] and chinmedom-
ics [197]-[202] can be further explored for the finding of new generation drugs 
for AD. Several reviews on different strategies employed for potential target have 
been reported [1] [203] [204] [205] [206]. The impact of understanding Alzhei-
mer pathogenesis can aid in developing novel therapeutic strategies with the ob-
jective of moving from treatment to prevention. 

AD, the commonest dementia, is a rising worldwide health concern in today’s 
world with immense implications for patients and societies as well. In this re-
view, we have demarcated the current knowledge of the epidemiology, genetics, 
pathology and pathogenesis of AD, which is a prerequisite for the successful de-
velopment of an effective therapy for the treatment of AD. Because the deposi-
tion of β-amyloid protein is a consistent pathological hallmark of brains affected 
by AD, the inhibition of Amyloid-β generation, prevention of Amyloid-β fibril 
formation, destabilization of pre-formed Amyloid-β would be an attractive the-
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rapeutic strategy for the treatment of AD. Finally, the review discusses the vari-
ous strategies which can be applied for an effective treatment for AD. Given the 
diverse strategies employed to develop potent therapeutic approach, there is 
hope that a viable drug targeting key components will be developed in our fight 
against AD in the not too distant future. 
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