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Abstract

The Birkhoff orthogonal plays an important role in the geometric
study of Banach spaces. It has been confirmed that a Birkhoff or-
thogonality preserving linear operator between two normed linear
spaces must necessarily be a scalar multiple of a linear isometry. In
this paper, the author gives a new result that a Birkhoff orthogonal-
ity preserving additive operator between two-dimensional normed
linear spaces is necessarily a scalar multiple of a linear isometry.
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1. Introduction

There are several notions of orthogonality in normed linear space, such
as isosceles orthogonality, Birkhoff orthogonality, Euclidean orthogo-
nality and so on. It is obvious that all the above types of orthogonality
are equivalent to the usual (Euclidean) orthogonality arising from the
inner product of spaces. In fact, they are equivalent to each other if
and only if the considered space is an inner product space; cf. [ [1], [2],
(3.1), (3.4)].

Recall that an element z in real normed linear space X is said to
be a Birkhoff orthogonal to y in X, written as, z Lp y, if:

|z ||<|| « + ky ||, Vk € R.

The Birkhoff orthogonal plays an important role in the geometric
study of Banach spaces. It holds great significance for various geomet-
ric properties of the norm, such as strict convexity and smoothness.
One can find some details in [3-6].

We say that an operator T' between two normed linear spaces X
and Y preserves Birkhoff orthogonal(OP), if:

xlpy=T(z) L T(y).
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Alexander proved that operators from a real Banach space into itself
that preserve Birkhoff orthogonality are isometrically multiplied by
a constant [7]. Recently, Chmieliriski found that an orthogonality
preserving linear map between two inner product spaces is necessarily
a scalar multiple of a linear isometry [8]. This result was extended
by [9] to normed linear spaces in the sense of Birkhoff orthogonality
with a linear operator.

In this paper, we will show that a Birkhoff orthogonality preserving
additive map between two-dimensional normed linear spaces is neces-
sarily a scalar multiple of a linear isometry.

While finishing the editing of the paper, I was informed that Pawel
Wdjcik has also obtained the result in [10]. But the proof is essentially
constructive, and some of the techniques may be useful when studying
the property of the operator which preserves orthononality.

2. Preliminaries

At the beginning of this section, let us recall the notion of a linear
operator in linear space. An operator is linear if and only if it is
additive and homogeneous. We can find an example operator which
is additive but not linear, even in the one-dimensional linear space R.
For example, some solutions of Cauchy’s equation on R. A function
f R — R is additive if it satisfies Cauchy’s functional equation,

flx+y) = f@)+ f(y), (2.1)

for all z,y € R. By the axiom of choice, there are infinitely many
nonlinear functions that satisfy the equation. This was proved in 1905
by Georg Hamel using Hamel bases. Such functions are sometimes
called Hamel functions. There are some conditions under which the
solution to Cauchy’s equation is linear. The following results can be
found in [11].

Theorem 2.1. An additive function f : R — R is linear if one of the
following conditions holds:

{i} [ is continuous.

{ii} f is monotonic in any interval.

{iii} f is bounded in any interval.

{iv} f is Lebesgue measurable.

Theorem 2.2. Let f : R — R be an additive function and
f([0,400]) C [0, +00], then f is a linear.

Proof. Since f is additive, there exists o > 0 such that f(a) = «aa, for
any a € [0, +oo]NQ. Without loss of generality, we assume that oo = 1,
then f(a) = a, for any a € [0, +00] N Q. We claim that f(a) = a for
all a € [0, 400]. If not, there exists b € [0, +o00] \ Q such that f(b) # b;
without loss of generality, we assume that f(b) < b. While there exists
¢ € [0,400] N Q such that b — ¢ > 0 and f(c) — f(b) > 0, since Q is
dense in R. So f(¢ —b) > 0, which contradicts to ¢ — b < 0. Then,
f(a) = a for all @ € [0,+00]. Since f is additive and f(a) = a for all
a € [0, +0o0], it follows that f is linear. O

At the end of this section, we give an example to show that there
exists a Birkhoff orthogonal preserving operator that is homogeneous,
but is nonlinear.
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Example 2.3. Let e; = (1,0) € R%, and let T : R? — R? be defined
as

T(z) = (| < Hi—”,el > |+ 1)z, Vo € X. (2.2)
where < -,- > is the usual inner product of R?. Obviously, T(kz) =
kT (x) for all k € R, and T preserves the Birkhoff orthogonal, but it

is not additive.

3. Main Result

Throughout this paper, the unit sphere of normed space X will be
denoted as S(X), while the smooth points in S(X) are denoted as
sm(X). For a set A C X, the notation z L 5 A means x | g y for any
y € A. Let D(z) = {a* € S(X*)|z*(x) = ||z||}, then z is a smooth
point if and only if D(x) contains only one point. Next, in(A) is a
relative interior point of A. For z,y € X, let [z,y] = {Ax+(1-N)y|0 <
A <1}, span{z} = {z|z € az,a € R}.

Definition 3.1. Let X be a real normed space. For any x,y € S(X),
x # —y, we define the arc of x and y to be the set

The arc A(x,y) is non-trivial if © # y.

Lemma 3.2. Let X be a two-dimensional normed space, then x €
S(X) is not a smooth point if and only if there exists a non-trivial arc
A(y1,y2) such that ¢ Lp A(y1,y2).

Proof. Since x € S(X) is not a smooth point, there exist z7,z35 €
D(x), y1 € Ker(z7)NS(X) and yo € Ker(z5) NS(X). Without loss
z3(y1)

of generality, we assume that t = ) < 0. For any 0 < A < 1, let
1

n= %, then 0 < n < 1, nat + (1 — n)z € D(z) and

Ay1 + (1= Nye
[Ay1 + (1= Nyl

Soxz Lp A(y1,y2)- O

)=0

(1 + (1 —n)z3)(

It is obvious that for any z € S(X), the set {y|x Lp y,y € S(X)}is
closed. Then, z must be a Birkhoff orthogonal to an unique maximal
arc, denoted as A(z).

The following two lemmas are obvious from the definition of the
smooth point, so we have omitted the proof.

Lemma 3.3. Let X be a two-dimensional normed linear space, x,y €
sm(X). If there exists a non-zero element z € X, such that ¢ Lp =z
andy Lp z, then [z,y] C S(X) or [—z,y] C S(X).

Lemma 3.4. Let X be a normed linear space. Then, let x be a smooth
point in X. Then there exists an unique number a such that x Lp
ar +y.

Lemma 3.5. Let X be a two-dimensional normed linear space. Then,
let x Lpy and x be a convex point in S(X). If 2’ € X and 2’ Lp vy,
then there exists a number u € R such that ' = px.
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Proof. If ' € S(X) and 2’ Lp y, then we have [z,2'] C S(X) or
[—z,2'] C S(X) from Lemma 3.3. Since x is a convex point in S(X),
then x = 2’ or x = —2’. Similarly, if 2’ € X and 2/ Lp y, we can

easily find there must exist a number p € R such that 2’ = px. O

Lemma 3.6. Let X be a two-dimensional normed linear space, x,y &
sm(X). If in(A(x)) N A(y) # 0, then x and y must be linearly depen-
dent.

Proof. Since z,y € sm(X) and in(A(z)) Nin(A(y)) # 0, there exists
21,722 € A(x) N A(y). Because dim(X) = 2, by the monotonic subdif-
ferential of a convex function there exists z3,25 € D(x) N D(y) such
that 23 (2z1) = x5(22) = 0. Without loss of generality, let us assume
that || y [|=]| = ||. Hence, we obtain that

(1 =N+ Ay) =1, 23((1 — p)o + py) =1, VA, p € [0, 1].

Let zg = %m + %y, then we have xg € sm(X), which contradicts to
x7, x5 € D(zo) and x} # 5. O

Lemma 3.7. Let X and Y both be two-dimensional normed linear
spaces. Then, we can suppose thatT : X — Y is an additive operator
with OP. Then for any x € X, there exists a function f, : R —
R such that T(ax) = fy(a)T(x), for any a € R. Moreover, f, is
additive, and f,(a) = a for any a € Q.

Proof. We only need to prove that T'(ax) € span{T(x)}, for any « €
R. If not, there exists ag € R such that T(agx) ¢ span{T(x)}. Let
y € X such that z Lp y.

Since T'(y) € span{T'(x),T(cox)}, there exists p,q € Q such that

| PT(x) + aT(a0z) ~ T(y) < 1T (3.1)
Then
| T+ gaoe) | = | pT(@) + 4T (002) |
> | T0) |~ I pT() +aT(00) ~ () |
T
2
> || T(px + qaoz) — T(y) ||

which contradicts to (px + gapx) Lp y and T preserves the Birkhoff
orthogonal.
Moreover, since T is additive, for any a1, as € R, we have

T(a1z) + T(azz) = fa(a)T(2) + fa(a2)T(2)
=T((a1 + a2)x) = fr(a1 + a2)T(x) (3.2)

Thus f, is additive. It is obvious that f,(1) = 1, since f, is additive,
it follows that f,(a) = a, for any a € Q. O

Lemma 3.8. Let X and Y be both two-dimensional normed linear
spaces, and then suppose that T : X — Y is an additive operator
with OP. Then for any x € X, x is a smooth point in X if and only
if T(x) is a smooth point in'Y.
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Proof. Without loss of generality, we may assume that z € S(X) and
IT(2)]| = .

If z is not smooth point of X, from Lemma 3.2, there exists z1, 20 €
X such that z 1p z1, * Lp 29 and 21, 22 are linearly independent.
Since T preserves Birkhoff orthogonal, and from Lemma 3.6 we have
T(x) Lp T(z1); hence T'(x) Lp T(22) and T(z1),T(22) are linearly
independent. From Lemma 3.2, we obtain that T'(x) is not a smooth
point in Y.

If z is a smooth point in X, and T'(x) is not smooth point in Y,
there exists a non-trivial arc A(yi,y2) such that T'(x) Lp A(y1,y2)
via Lemma 3.2. We can choose z € X such that x Lp 2z and
T(z) € A(y1,y2). Then we can find 21 ¢ span{z} and 23 € X
such that 1 Lp z; and T(z1) € in(A(y1,y2)). We claim that z;
must be a smooth point in X, indeed, if not, then T'(x1) is not a s-
mooth point in Y by the above proof. Assume T(z1) Lp A(y],y5),
since in(A(y1,y2)) N Ay}, y5) # 0. From Lemma 3.7, we obtain that
T(x1) € span{T(z)} which contradicts to z1 ¢ span{z}. Similar-
ly, we can find s, x3, 22,23 € X, such that z,z1,z9,x3 are mul-
tiply linear independent, x; Lp z; and T(z;) € in(A(y1,y2)), for
i = 1,2,3. Since T'(z) Lp T(#1) and T(z1) Lp T(z1), from Lem-

ma 3.3, we obtain that [a HI;“((?RII ,T(z)] C So(Y). Similarly, we obtain

that [a%,T(m)] C Sa(Y) and [a%,T(x)] C S4(Y). Since
dim(Y) = 2, it follows that there exists 4, j € {1,2,3} such that

T(x:) T(x;)
a € o ,T'(2)].
TGl < T
So T'(z;) Lp T(z;) and T(z;) Lp T(z;), and from Lemma 3.7, we

obtain that T'(z;) € span{T(z)}, which contradicts to z; ¢ span{z}.
O

(3.3)

Lemma 3.9. (¢f. [9]) A Birkhoff orthogonality preserving linear map
between two normed linear spaces is necessarily a scalar multiple of
a linear isometry, where map T is said to be Birkhoff orthogonality
preserving if the property that x is orthogonal to y, in the sense of
Birkhoff-James, implies that T(x) is orthogonal to T(y), in the sense
of Birkhoff-James.

Lemma 3.10. Let X and Y be both two-dimensional normed linear
spaces, and X is smooth. Suppose that T : X — Y is an additive
operator with OP. Then we have f, = fy, for any x,y € X, where f,
and f, as Lemma 3.7.

Proof. For any z,y € X and o € R, let z € X such that z Lp
x+y. Soz Lp alx+y). Since T is additive and preserves Birkhoff
orthogonality, we obtain that

T(z) L T(z) + T(y). (3.4)
And

T(z) Lp fa(a)T(2) + fy(a)T(y). (3-5)

Since X is smooth, and from Lemma 3.8 we obtain that T'(z) is
smooth and

fa(a)T(x) + f ()T (y) = T(a(x +y)) € span{T(z) + T(y)}, (3.6)
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there thus exists an 8 € R such that

fo(@)T(z) + fy ()T (y) = BT () + T(y)). (3.7)
However, T(z) ¢ spanT'(y), so fz(a) = fy(c). O

Theorem 3.11. Let X and Y be both two-dimensional normed linear
spaces, and X is smooth. Suppose that T : X — Y is an additive
operator with OP. Then T is linear.

Proof. For any z € X and a € R, there exists z € X such that
z 1l ar+ z. So we have A\x Lp Aax + Az for all A # 0. Since
T preserves Birkhoff orthogonality, and from Lemma 3.10, we obtain
that

FNT () Lp f(Aa)T(x) + fF(A)T(2)- (3-8)
That is
f(Xa)
T(x) Lp Ty T(x) +T(2). (3.9

From Lemma 3.7, T(z),T(z) are both smooth points. Since
T(x) Lp f(a)T(x) + T(z), we get f(Aa) = f(N)f(a), which means
f is an identity map. Thus, T is linear. O

Theorem 3.12. Let X andY be both two-dimensional normed linear
spaces, and X is not smooth. Suppose thatT : X — Y is an additive
operator with OP. Then T is linear.

Proof. Suppose x is not a smooth point in X. Then for any z € X,
there exists [A, B] C R(A # B) such that z Lp ax + z for any a €
[A, B]. From Lemma 3.7, T'(x) is not a smooth point in Y. Thus, there
exists a set [A’, B'] C R(A’ # B’) such that T'(z) Lp bT(x) + T(2)
for any b € [A, B], which means f,(a) € [A’, B'] for any a € [A, B].
From Theorem 2.1 and Theorem 2.2, we obtain that f, is an identity
map.

Next, we will discuss two cases where x is a smooth point in X. In
case one, if there exists z ¢ sm(X), such that x Lg ax + z, where
a € R and a # 0, then Ax L Aazx + Az for all A # 0 and

fs(WNT () Lp fo(Aa)T () + f2(N)T(2). (3.10)
That is
fe(Aa) A
T(x) Lp O T(x) + fz(A)T(Z)' (3.11)

We also have T(z) Lp fz(a)T(z) + T(z), so we obtain f,(Aa) =
Mfz(a). Note that f,.(a) = « for all @« € Q. Thus, we obtain that f,
is an identity map.

In case two, if x Lp z for any z ¢ sm(X). Since x is a smooth
point in X, it follows that y € sm(X) for any y ¢ span{z}. So we can
choose y1,y2 € sm(X) such that y; = z + kz and y; Lp y2, where
k # 0. Then we obtain that

T(y1) L T(x) + kT(2). (3.12)
Since y; Lp Ays for any A € R, then we obtain that

T(y1) Lp fo(NT () + EAT(2). (3.13)
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Thus, we get f;(A) = A, which means f, is an identity map.
Since f, is an identity map for all z € X, it is evident that T is
linear.
O

According to Lemma 3.9, Theorem 3.11 and Theorem 3.12, we ob-
tain the main results.

Corollary 3.13. Let X andY be both two-dimensional normed linear
spaces. Suppose that T : X — Y is an additive operator with OP.
Then T is a scalar multiple of a linear isometry.
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