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Abstract 
This article presents system identification of wood drying process based on 
ARMAX model. Temperature and equivalent moisture content are consid-
ered as inputs, and moisture content of the wood sample during drying is 
taken as output of the system. The comparative study of RLS and FF-RLS to 
identify the system parameters is presented. Simulation results are presented 
to validate the efficacy of the ARMAX model for wood drying process. 
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1. Introduction 

Wood drying process plays an important role in industry of wood product [1]. 
The quality of wood product mainly depends on the final moisture content of 
wood. Temperature and equilibrium moisture content (EMC) are the two main 
factors influencing the drying moisture content [2]. Hence, experimental data of 
temperature and EMC was often used to build the prediction model of wood 
drying moisture in the previous literature.  

Wood drying prediction models like [3] [4] [5] [6], simplified physical cha-
racteristics are used to simulate the coupled heat and mass transfer during wood 
drying. However, too many inputs, e.g., gravity, external pressure, capillarity, 
temperature gradient, water concentration, etc., used to build theoretical models 
has a deterioration in accuracy to solve the highly coupled equations. Mathe-
matical method such as artificial neural networks (ANN) and support vector 
machines (SVM) have been used to build drying model due to their ability to 
capture the trend of moisture content [7] [8] [9] [10]. ANN model can provide 
accurate prediction results, however over-training problem must to be taken 
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care of to develop the prediction model. SVM model depends on a subset of 
training data points. Though incomplete data can be used to develop a SVM 
model, it also requires a substantial number of computation times to solve 
large-size equations [11]. 

Prediction models based on Auto Regressive Moving Average model with ex-
ogenous input (ARMAX) analysis have been widely shown in literature [12] [13] 
[14] [15] because of the computational efficiency. To the best of authors’ know-
ledge, ARMAX model applied in the field of wood drying have rarely been seen 
in the previous research. In this paper, the method of ARMAX is presented to 
describe the time-varying system of wood drying. Recursive Least Squares (RLS) 
is introduced to identify the coefficients of the ARMAX model. To improve the 
identifying accuracy, an optimization algorithm is also discussed. Wood sample 
used in this study for the drying experiment was Northeast China ash. The dying 
kiln and its inside structure are show in Figure 1. The temperature, EMC, and 
moisture content used in the simulation model were the average value collected 
by temperature sensors, EMC sensors, and moisture content sensors.  

2. Mathematics Model Description 

The model takes temperature and EMC as inputs, moisture content as output. 
ARMAX model of wood drying process is described as 

1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )A z y t B z u t B z u t D z v t= + +               (1) 

The constant coefficient polynomials ( )A z , 1( )B z , 2 ( )B z  in the wood dry-
ing process model are  

1 2
0 1 2( )A z a a z a z− −= + +                       (2) 

1 2
1 10 1 2( )B z b b z b z− −= + +                      (3) 

1 2
2 20 3 4( )B z b b z b z− −= + +                      (4) 

1
0 1( )D z d d z−= +                         (5) 

When 0t ≤ , ( ) 0y t = , ( ) 0ju t = , ( ) 0v t = , 0 1a = , 10 0b = , 20 0b = , 

0 0d = . 
Substituting polynomials (2), (3), (4), (5) and the initial values into (1), gives  
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Figure 1. Wood drying kiln. (a) Wood drying kiln exterior; (b) Humidifying tube and 
heating tube; (c) Fans. 
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Introducing the unit backward shift operator z−1 into (6) yields to 

( ) ( ) ( ) ( )
( ) ( )

1 2 1 1 2 1

2 4 23 1

( ) 1 2 1 2

1 2 ( 1)

y t a y t a y t b u t b u

d v t

t

b u t b u t

= − − − − + − + −

+ − + + −−
         (7) 

Therefore, the output ( )y t  can be expressed as  

( ) ( ) ( )y t t v tϕ θΤ= +                          (8) 

where T
1 2 1 2 3 4 1: [ , , , , , , ]a a b b b b dθ = , ( )tϕ  = [−y(t − 1), −y(t − 2), u1(t − 1), u1(t − 

2), u2(t − 1), u2(t − 2),v(t − 1)]T. 

3. Parameter Identification 

Let t = 1, 2, ∙∙∙, Equation (8) leads to 

t t tY H Vθ= +                             (9) 

Using the Least Squares identification principle to define the quadratic crite-
rion function 

T T( ) : ( ) ( )t t t t t tJ V V Y H Y Hθ θ θ= = − −                   (10) 

Using recursive method, matrix 1( )P t−  is define as 

1 1 T 1 T
0

1
( ) (0) ( ) ( ) (0) , (0) 0

t

t t
j

P t P j j P H H P p Iϕ ϕ− − −

=

= + = + = >∑    (11) 

The RLS estimation of the parameter vector is 
T 1 T T T Tˆ ˆ ˆ( ) ( ) ( ) ( 1) ( ) ( )[ ( ) ( ) ( 1)]t t t t t tt H H H Y P t H Y t P t t y t t tθ θ ϕ ϕ θ−= = = − + − −  (12) 

The estimated residual is  

ˆˆˆ( ) ( ) ( ) ( )v t y t t tϕ θ= −                        (13) 

where ˆ ˆ( ) : [ ( ) , ( 1)]t t v tϕ φ Τ Τ= − . 

RLS estimation of parameter vector θ  is achieved 
Tˆ ˆ ˆˆ ˆ( )= ( 1) ( ) ( )[ ( ) ( ) ( 1)]t t P t t y t t tθ θ ϕ ϕ θ− + − −             (14) 

1 1 T
0ˆ ˆ( ) ( 1) ( ) ( ), (0) 0P t P t t t P p Iϕ ϕ− −= − + = >            (15) 

In experimental system, data accumulates with time, results in the failure of 
extracting new data information from the previous data. Especially to the 
time-varying parameter system, due to the characteristics of parameter, the algo-
rithm should track the time variation parameter. Hence, forgetting factor λ  is 
introduced into (15), an optimization algorithm to identify the parameters is 
obtained 

1 1 Tˆ ˆ( ) ( 1) ( ) ( )P t P t t tλ ϕ ϕ− −= − +                  (16) 

4. Simulation Results 
4.1. Computation of the Model Parameters Based on RLS 

Simulation results were based on the 1000 input-output experimental data ac-
quired during wood drying. RLS algorithm in Equations (14) and (15) is applied 
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to estimate the parameters in the ARMAX model built in Equation (1). Parame-
ters variation trend is shown in Figure 2. Comparison of actual values and pre-
dicted values are shown in Figure 3. Figure 4 is the absolute error between pre-
dicted value and actual value. Mean Square Error (MSE) and Root Mean Square 
Error (RMSE) of RLS algorithm is 0.2973 and 0.5387, respectively. 
 

 
Figure 2. Estimate parameters a1, a2, b1, b2, b3, b4, d1. 
 

 
Figure 3. Comparison of actual values and predicted values. 
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Figure 4. Absolute error. 

4.2. Computation of the Model Parameters Based on FF-RLS 

Parameters variation trend with λ = 0.95 is shown in Figure 5. It is obviously 
observed that the FF-RLS (Forgetting Factor Recursive Least Squares) algorithm 
has a faster convergence speed than RLS algorithm. From t = 200, curves of es-
timate parameters tend to be stable. The comparison of actual values and pre-
dicted values is shown in Figure 6. The absolute error between predicted value 
and actual values is shown in Figure 7. MSE is 0.3630, and RMSE is 0.7111. 
Convergence speed of FF-RLS algorithm is faster, however the absolute error is 
greater than RLS algorithm.  
 

 
Figure 5. Estimate parameters a1, a2, b1, b2, b3, b4, d1. 
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Figure 6. Comparison of actual values and predicted values. 

 

 
Figure 7. Absolute error. 

5. Conclusion 

In this paper, an ARMAX model based on the experimental data is derived to 
describe the wood drying model, which is adopted to predict wood moisture 
content during drying. RLS and FF-RLS algorithms are utilized to identify the 
system parameters. The proposed method is verified by simulation results. The 
parameters variation trend with the proposed prediction scheme is studied. Si-
mulation results demonstrate that the FF-RLS method leads to a faster and more 
stable convergence compared with RLS scheme. However, the accuracy of RLS 
estimate is higher than FF-RLS. 
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