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Abstract 
A transformation of the electron states—say those enclosed in a potential 
box—into the de Broglie waves done in the paper, enabled us to calculate the 
energy change between two quantum levels as a function of the specific heat 
and difference of the temperature between the states. In consequence, the 
energy difference and that of entropy between the levels could be examined in 
terms of the appropriate classical parameters. In the next step, the time inter-
val necessary for the electron transition between the levels could be associated 
with the classical electrodynamical parameters like the electric resistance and 
capacitance connected with the temporary formation of the electric cell in 
course of the transition. The parameters characterizing the mechanical inertia 
of the electron were next used as a check of the electrodynamical formulae 
referring to transition. 
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1. Introduction 

The spectacular results obtained by Planck (see e.g. [1]) at the very beginning of 
the quantum theory allowed him to couple the energy changes of the quantum 
oscillators with the temperature and entropy. The Planck’s results concerning 
the probabilistic aspects of the changes of quantum oscillators were next genera-
lized by Einstein [2]. Further development of the quantum theory led mainly to 
an accurate calculation of the stationary quantum states leaving the problem of 

How to cite this paper: Olszewski, S. (2019) 
The de Broglie Waves and Joule-Lenz Law 
Applied in Examining the Electron Transi-
tions in Small Quantum Systems. Journal 
of Modern Physics, 10, 176-194. 
https://doi.org/10.4236/jmp.2019.102014 
 
Received: January 12, 2019 
Accepted: February 24, 2019 
Published: February 27, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/jmp
https://doi.org/10.4236/jmp.2019.102014
http://www.scirp.org
https://doi.org/10.4236/jmp.2019.102014
http://creativecommons.org/licenses/by/4.0/


S. Olszewski 
 

 

DOI: 10.4236/jmp.2019.102014 177 Journal of Modern Physics 
 

the electron transitions, and their properties, approximately on the level pre-
sented by Einstein. A step forwards was here the wave functions of the stationary 
states applied in calculating the transition probabilities between different quan-
tum levels. 

Another feature of the probabilistic Einstein theory was the assumption that a 
large, though rather undefined, number of the quantum objects should enter a 
given transition. This difficulty seems to be not involved in the Planck’s ap-
proach where the number of the states which participate in transition can be de-
finited and not necessarily large. This property allows us to consider also transi-
tions in which the number of participating objects is relatively small. Moreover, 
when the Joule-Lenz classical approach [3] is applied on the quantum footing 
[4], the intensity of the energy emission can be estimated for a transition of a 
single particle without any reference to the probabilistic theory. 

In effect, the aim of the present paper became to examine a single electron 
transition in small quantum systems on both probabilistic and non-probabilistic 
footing. An analysis of the classical physical parameters of mechanics, thermo-
dynamics and electrodynamics which can be connected with the transition 
seems to be then of use. 

2. Notion of Temperature Applied for a Small Number of  
Quantum Systems 

Historically the quantum theory began as a statistics of photons emitted in 
course of the black-body radiation. Here the notion of temperature does accom-
pany systematically the presentation of the energy distribution among the quan-
tum levels. Somewhat later a concurrent quantum theory by Schrödinger banned 
essentially the notion of temperature and that of particle oscillations from the 
basic idea of the quantum states: the spectrum of levels has been replaced by a 
set of discrete entities being in general essentially different in their individual 
properties. The temperature is then assumed to be close to zero. 

Nevertheless, for less or more numerous ensembles of particles, a reference 
between the temperature and energy remained of importance. The point became 
especially sound for the case of very low temperatures. Here we have, on one 
side, the well-known Nernst law representing a reference between the vanishing 
temperature and similar behaviour of the specific heat, but on the other side, the 
Planck’s doubt does exist concerning the validity of the thermodynamical laws in 
general in case when the system absolute temperature T approaches zero [1]. 

The first step of the present paper is focused on a special problem of the elec-
tron specific heat. In general this heat is considered for large electron ensembles 
occupying a large number of the electron states. In consequence the problem is 
mainly reduced to the change of the Fermi level as an effect of the change of the 
temperature [5] [6] [7]. Such an approach seems to neglect details concerning 
the influence of the temperature on the individual levels. But the levels beha-
viour can be important also for small quantum systems, especially those having 
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low dimensionality. In such systems the number of considered quantum levels 
can be limited to only few states. Their examination as a function of the change 
of T becomes especially convenient when the dimensionality of the system is 
reduced together with the system size. An example can be a linear 
one-dimensional potential box represented by a very thin straight-linear tube. 
For, in this case, the system can be replaced by a set of the de Broglie waves. An 
advantage of such an approach is a transformation of the system into a frequen-
cy-and-temperature dependent ensemble similar to the photon system consi-
dered earlier by Planck.  

3. The One-Dimensional Free-Electron System and Its  
Wave-Like Properties  

The Schrödinger-like approach to such system is well known [8]. If we have the 
free-electron particles enclosed in a one-dimensional potential box of length L, 
their wave-mechanical properties are represented by the eigenenergies (see e.g. 
[8])  

2 2

28n
n hE
mL

=                         (1) 

with the integer numbers  

1,2,3,4,n =                          (2) 

indicating the quantum energy levels in (1), and the electron wave functions are  
1 22 πsin ;n

n x
L L

ψ    =    
   

                    (3) 

x is a position coordinate extended along the box. Here any nψ  satisfies at the 
box boundaries the vanishing properties  

( ) ( )0 0.n nx x Lψ ψ= = = =                     (4) 

The wave-like character can be attributed to the free-electron particles by tak-
ing into account, first, their kinetic energy in any state n, viz.  

2

2
n

n
mv

E=                           (5) 

where nv  is the velocity of the particle in the box. This gives  
1 22

.
2

n
n

E nhv
m mL

 = = 
 

                    (6) 

The particle is moving in one or another of the box directions with the speed 
of (6). 

The de Broglie wave representing the particle in state n has the frequency  

2

1
2 4

n
n

n

v nh
L mL

ν
τ

= = =                     (7) 

so  
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2 .n
n

Lv
τ

=                             (8) 

In (7) the time period nτ  of the wave oscillation is characterized by assuming 
that the particle is passing twice the way of the length L. 

The next requirement is that the energy possessed by the electron in state n is 
conserved by remaining equal to (1) also in the case of the de Broglie wave:  

2 2 2 2

2 2 2 .
8 4 4n n
n h nh n hE nh nh
mL mL mL

α ν α α= = = =             (9) 

We find from (9) put equal to (1) that  

1 .
2

α =                          (10) 

Therefore the quantum  

2n nnh Eν =                        (11) 

represents a full (non-interacting) energy of the electron pair occupying—according 
to the Pauli principle—a single level n.  

4. Planck’s Oscillator System as a Substitution of the  
Electron System  

In effect of Sec. 3 we obtain the energy of the system of electron particles re-
placed by the energy of a system of the oscillators: each pair of particles situated 
on the level n is replaced by the oscillator having the energy nnhν . The energy 
of the total system is therefore  

2 ,n n
n n

E nhν=∑ ∑                       (12) 

where summation runs over the occupied states n. 
A similar system of oscillators and its dependence on the temperature T has 

been considered by Planck [1]. The probability that a single oscillator has at any 
time the energy  

0n nnhε ε ν= +                         (13) 

in the temperature bath of T is:  

( )e 1 e e .
n n

n

nh nh
h kTkT kT

nw
ν ν

ν
− −

−= − ≅                (14) 

The last step in (14) is due to the assumption of a very low T. 
In effect - by neglecting 0ε  which is the energy constant characteristic for all 

oscillator levels n - we have the energy  

( ) e .
nnh

kT
n n n nE T w nh nh

ν

ν ν
−

= =               (15) 

The dependence of ( )nE T  on T can be examined by taking different n. In 
general we can look for the contribution of the state n to the specific heat. This is  

( )d .
dV nc E T

T
=                     (16) 
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here the assumption of a constant volume V implies a constant box length L. We 
obtain  

( )2 2
2

d 1e e e
d

n nnh nh
unkT kT

V n n
nh

c nh nh k u
T kT kT

ν νν
ν ν

− −
− = − = = 

 
       (17) 

where  

;nnh
u

kT
ν

=                            (18) 

k is the Boltzmann constant.  

5. Examination of Vc   

The function (17) gives  

( ) 2e .uVc
f u u

k
−= =                        (19) 

The first derivative of ( )f u  is  

( ) ( )2e 2uf u u u−′ = −                       (20) 

which gives  

( ) 0f u′ =                            (21) 

for  

1 0u u= =                           (21a) 

and  

2 2.u u= =                          (21b) 

The second derivative of (19) is  

( ) ( )2e 4 2uf u u n−′′ = − +                        (22) 

which for 1u  in (21a) becomes  

( )1 2 0f u′′ = >                         (22a) 

indicating a minimum of ( )f u  equal to  

( ) ( )1 0 0.f u f= =                         (23) 

For 2u  in (21b) we have  

( ) 2
2 2e 0f u −′′ = − <                        (22b) 

which indicates a maximum of ( )f u  equal to  

( ) ( ) 2
2 2 4e .f u f −= =                        (24) 

A characteristic point is that results (19)-(24) hold for any quantum number n. 
The result  

2 2 n

n

nh
u

kT
ν

= =                          (25) 

implies that nT T=  at the maxima of Vc  satisfy the equation  
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2 2

22 8
n

n
nh n hT

k mL k
ν

= =                        (26) 

with the size of each maximum  

( ) ( )max
2 2

42Vc kf u kf k
e

= = =                    (27) 

independent of n. A similar property of the independence on n holds for the mi-
nima of Vc  which are  

( ) ( )min
1 0 0Vc kf u kf= = =                     (28) 

for all states n. 
The formula (26) provides us with an important relation:  

2 2

2 .
8n n
n hkT E
mL

= =                       (26a) 

6. Heat Transfer Due to the Temperature Interval ΔT  
between Two Extrema of the Specific Heat  

The heat transfer of the amount ( )hE∆  due to the temperature interval T∆  
will be considered with the aid of a simplified formula  

( )h
VE c T∆ = ∆                       (29) 

where Vc  is, first, an average specific heat  
av

V Vc c=                          (30) 

in the interval T∆  between two extrema (maxima) of the specific heat. In the 
second case Vc  is put equal to a maximum of the specific heat, i.e.  

max ,V Vc c=                         (31) 

where max
Vc  is equal to the value obtained in formula (27). The both ( )hE∆ , 

obtained respectively according to (29), (30) and (29), (31), will be next com-
pared with the energy E∆  calculated from the energy difference between two 
quantum levels. 

The temperature difference between two maxima of Vc  can be derived from 
the formula (26):  

( )2 2
2

1 2

1
.

8n n

n n
T T T h

mL k+

+ −
∆ = − =                  (32) 

The average Vc  between these maxima is approximately equal to  

2 22 2
0 0

2 1e d e d
2 2 2

u uk u u k u u− −=
× ∫ ∫                 (33) 

where we assumed that the distance separating the maxima is roughly equal to a 
double distance between position of a minimum ( )0u =  and that of the nearest 
maximum ( )2u =  of Vc . In effect we obtain  

( ) ( )
2

2 2 2
0

0

1 1e d 1 e 2 1 0.65 0.33
2 2 2

u
av u u
V

u

kc k u u u u k k
=

− −

=

= = − + + = ≈∫     (34) 
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from which  

( ) ( )2 2
2

2

11 0.65 0.33 0.33 .
2 8

h
n

n n
E k T h E

mL
+ −

∆ = ∆ ≈ = ∆            (35) 

In the last step of (35) the energy difference between the electron states 1n +  
and n, viz.  

( )2 2
2

2

1
8n

n n
E h

mL
+ −

∆ =                       (36) 

obtained from (1), is taken into account. 
The case of max

V Vc c=  leads to result  

( ) ( )2 222
max 2

2 2

12 2 0.54 .
ee 8

h
V n n

n n
E kc T k h E E

mL k
+ −  ∆ = ∆ = = ∆ ≈ ∆ 

 
      (37) 

which is not very much different from that obtained in (35).  

7. Change of Entropy Referred to the Energy Change of a  
Quantum System  

A well-known fact is that many ideas of classical physics did penetrate gradually 
into the quantum theory after being “only” submitted to modifications of a spe-
cific kind. The main idea of the modern theory was just to point out that physi-
cal parameters are quantum parameters. In general this means that a suitable 
size of parameter should be important for the physics of many phenomena in 
which the quantum situation can be involved. 

The size limitations of the quantum theory did apply certainly to the energy 
and its changes. The aim of the present section and Secs. 8 and 10 is to examine 
from the quantum point of view the entropy parameter S systematically accom-
panying the changes of energy in thermodynamics according to the formula [1]  

d d d ;U p V T S+ =                     (38) 

here U is the internal energy of a system having the volume V, the external 
pressure p is exerted on V, and T is temperature. 

Because of the presence of T and p the system is regularly considered as a 
many-particle ensemble submitted to the laws of a statistical theory. However, a 
difficulty connected with a many-particle approach can be circumvented by li-
miting the problem to that similar to a one-particle system. This is easy to dem-
onstrate on the example of a single particle enclosed in a potential box by consi-
dering the particle, say an electron, as a de Broglie wave of matter spread into a 
one-dimensional box volume of the length L. 

In order to meet a quantum situation we should assume that the de Broglie 
wave, corresponding to any quantum state n of the electron, has its special fre-
quency nν . When the number of free electrons in the box is reduced to a pair 
occupying the same quantum state n, it can be demonstrated that the kinetic 
energy of such pair, i.e. obtained by neglecting the electrostatic interaction 
energy, is equal to (see [8]):  
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2 2

22 .
4n n
n hnh E
mL

ν = =                     (38a) 

A characteristic point is that a superposition of n de Broglie waves of the same 
frequency nν  gives a conservation of the kinetic energy of the pair when this 
pair is transformed into the waves; 
here  

nhν                            (39) 

is the energy carried by a single wave of the frequency  

2 .
4n

nh
mL

ν =                        (40) 

The reciprocal value of nν , viz.  
21 4

n
n

mL
nh

τ
ν

= =                     (41) 

is the time period of the electron wave equal to the oscillation time necessary for 
the electron to travel twice—in two opposite directions—along the box length L.  

8. Entropy Change and the Specific Heat  

The formula (38) can be simplified by assuming that the volume increment dV  
is equal to zero, i.e. we can put  

0.V L∆ = ∆ =                        (42) 

In this case the entropy increment dS  in (38) is reduced to  
d d .U T S=                        (43) 

Our aim becomes first to calculate a suitable specific heat Vc . 
In Sec. 4 (see (14)) the problem—for the sake of simplicity—was reduced to a 

situation of a very low T by limiting the Planck’s probability expression for the 
temperature bath of T  

e 1 e
n nnh h

kT kT
nw

ν ν
− − 

= −  
 

                 (44) 

to the first component entering (14). In this case the formula (17) accompanied 
by (18) is obtained. 

In the present case we apply a full probability expression (44), therefore  
tot suppl ,V V Vc c c= +                     (45) 

so Vc  calculated in (17) is supplemented by the expression  

( ) ( )
( )

( )
11suppl

2

1e 1 e 1 .n
u nn h kT n

V n n
uc nh n h n uk
nkT

ν ν ν
− ++= − + = − +      (46) 

In result  

tot 2 1e 1 e 1 .u u n
Vc k u

n
− −  = − +    

                   (47) 

In the next step we examine the extremum position of tot
Vc  divided by k. To 
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this purpose we calculate  

( )

( )

( )( )

( )

( )

tot 2

2 2

2 2

2 2
2

2 2

d d 1e 1 e 1
d d

1 1 1e 2e 1 e 1 e e 1

1e 2 1 e e e

1e 2 1 1 e

1e 2 e e

u u n
V

u u u n u u n

u u n u u n

u u

u u

c k u
u u n

u u u
n n n

u u u
n

u uu u u
n n n

uu u u
n n

− −

− − − − −

− − − −

− −

− − −

  = − +    
      = − + − + + − +            

 ≅ − − + − 
 

   ≅ − − + + − +   
   

≅ − − ≅ ( )2 1 2 1 0.uu u
n

− − =

(48) 

In the end steps of calculations we assumed that n is large. 
The extremal positions are obtained from (48) either for  

1 0u u= =                          (49) 

or  

2 1u u= =                          (50) 

The next derivative with respect to u performed with the expression in (48) 
gives  

( ) ( ) ( )2 2 2d e 1 e 1 e 2 3 .
d

u u uu u u u u u
u

− − −− = − − + −           (51) 

Evidently for 1 0u u= =  the formula (51) gives again zero, but a similar 
substitution of 2u  into (51) indicates a negative result:  

( ) ( )2 1

1

d 1e 1 e 2 3 0;
d e

u

u

u u
u

− −

=

− = − = − <             (52) 

in effect the property of a maximum position can be attributed to 2u . 
By assuming the approximation  

1 1 1n+ ≅                             (53) 

we obtain for 2 1u u= =  the maximum value of the specific heat equal to  

tot 2
1

1

1 1e 1 e 1
e e

u
u n

V n
u

c k u k
−−

=

   = − = −       
                (54) 

9. De Broglie Waves for the Electron Particle in a Potential  
Box Referred to a Harmonic Oscillator  

Before the results for tot
Vc  are applied to calculations of the entropy let us 

demonstrate a harmonic-like behaviour of the de Broglie oscillating waves. This 
is based on an analysis of the oscillation constant together with the frequency 
and energy carried by the oscillator [9]. 

For a particle enclosed in a potential box of the length L the amplitude a  of 
the de Broglie wave can be assumed to be close to L, i.e.  

,a L≈                              (55) 
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so a  approaches the length of path allowed for the particle motion in one di-
rection. This holds for any state n. The energy nW  of the oscillator in state n is 
coupled with a  and the oscillation constant nk  by the formula [9]  

2

.
2

n
n

k a
W =                          (56) 

In the next step nk  is coupled with the frequency nν  of the oscillator by the 
relation  

2π .n
n n

k
m

ω ν= =                       (57) 

Together with (55) and (56) this implies that the formula  
1 2

2 n

n

W
a L

k
 

= =  
 

                      (58) 

should be satisfied. Having  
,n nnh Wν =                         (56a) 

and the oscillator energy and particle energy formulae [see (7)] giving  

2 2

π2π 2π ,
24n

nh nh
mL mL

ν = =                 (59) 

we obtain [see (56a), (57) and (59)]:  
2 2 2 2

2 2 2 2 2 4

2 2 2 1 .
4 2

n n nk W nh n h n h
m a m L m mL L m m L

ν
= = = =            (60) 

On the other side from (57)  

2 24πn
n

k
m

ν=                         (61) 

which gives [see (59)]  
2 2 2 2 2

2
2 4 2 4

π4π
416

nk n h n h
m m L m L

= =                (62) 

valid for any n. Evidently the last formula in (62) differs only slightly from the 
result obtained in (60).  

10. Entropy Change Calculated with the Aid of the Specific  
Heat  

We calculate the entropy change by applying to it a maximal value of the specific 
heat. In this case [see (54)]:  

( )tot 2

1

1 1e 1 e 1 1
e e

u u n
V u

kc k u k
n n

− −

=

 = − ≅ − + = 
 

        (63) 

since 2 1u u= =  corresponds with a maximum value of tot
Vc . 

Moreover in this case [see (18)]  

1 ,n

n

nh
u

kT
ν

= =                     (64) 

so we obtain [see (40)]  
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2 2

2

1
4

n
n

nh n hT
k k mL
ν

= =                     (65) 

or  

.n nnh kTν =                         (64a) 

According to the formula (43) (see also [1]) we have  

tot .V
U TS c

T T
∆ ∆

∆ = =                     (66) 

Let us take the T∆  corresponding to the temperature difference between 
two neighbouring quantum states:  

( )1 1
11 .n n n nT T T n h nh
k

ν ν+ +∆ = − = + −                (67) 

Therefore a maximal change of entropy corresponding to the change of the 
quantum number n by one is  

( )
2 2 2

2tot 2
2 2 2 2 2 2

1 4 2 21
4 4V

h h mL k k n kS c n n
k nemL mL n h n en

 
∆ = + − ≅ = 

 
      (68) 

which implies  

2

1 .S
n

∆                           (69) 

Let us note that T∆  between the neighbouring states obtained in virtue of 
(65) is twice as large as T∆  calculated in (32) with the aid of (26).  

11. Classical Physical Parameters Associated with Electron  
Transitions in Small Quantum Systems  

In many cases the treatment of quantum systems is considered as fundamentally 
separated from the classical physics and its results. Sometimes this view is dic-
tated by the properties which are actually in our interest and are expected to be-
long mainly to a quantum domain. For example the statistics of the electron gas 
is usually a priori considered to be of a special character dictated by the Fer-
mion-like classification of the electron particles and consequently, such kind of 
behaviour is from the beginning taken into account in course of the calculations 
performed on a given system. Another example concerns small quantum objects 
in which a special kind of the observable, say the energy connected with an elec-
tron transition, is mainly of interest. In this case the energy change due to transi-
tion is usually examined independently of other parameters which can be asso-
ciated with the location of the electron particle and its change. In effect we ob-
tain an exact or almost exact quantum result concerning the energy, but simul-
taneously an insight into numerous parameters describing the physical back-
ground of the transition process can be lost. 

The aim of Sections 12 and 13 is to obtain some view on the classical second-
ary effects connected with the transition of an electron coupled mainly with the 
energy emission done in small quantum systems.  
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12. Transition Time between Quantum States and Its  
Reference to Parameters of the Classical  
Electrodynamics  

In quantum mechanics the transition time t∆  of an electron between two 
quantum energy levels is regularly difficult to assess. In fact the calculation of 

t∆  is replaced by a probabilistic treatment of the electron transitions started by 
Einstein [2] already in reference to the old quantum theory. A step due to the 
modern quantum theory was to associate the probabilities of the electron transi-
tions with the matrix elements of the electron transition operator calculated with 
the aid of the wave functions describing both the initial and final state of the 
examined transition; see e.g. [10] [11]. An evident advantage was the selection 
rules for transitions provided by the calculation of the mentioned matrix ele-
ments, as well as the dependence of these rules on the character of the applied 
operator. A drawback seemed to be the absence of a direct insight into the size of 
the interval t∆ . 

This difficulty could be at least partly removed by applying the classical 
Joule-Lenz law for the transition of energy between the quantum levels [4] [12]. 
If we have the energy difference E∆  defined by the formula  

1 ,n nE E E+∆ = −                        (70) 

so E∆  concerns a difference between two neighbouring quantum levels, the 
Joule-Lenz law states the relation [3] [4] [12]  

2 .E Ri
t

∆
=

∆
                         (71) 

here R can be considered as a resistance due to the voltage V connected with 
E∆  and intensity i of the electron current between the states 1n +  and n. 
In other words we assume i to be associated with a condenser having the vol-

tage  

EV
e
∆

=                             (72) 

and the current in the condenser is  

,ei
t

=                             (73) 

where t is the time of the current effectiveness. Together with the well-known 
formula  

VR
i

=                            (74) 

we have for (71) on the basis of (72)-(74) the result  
2E E t e E

t e e t t
∆ ∆ ∆ = ⋅ = ∆  

                   (75) 

which means that 
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.t t∆ =                            (76) 

The E∆  in (72) and (75) is a parameter usually easy to obtain, whereas (76) 
can be associated classically with the resistance R in (74) and the capacitance C 
of the condenser by the formula  

;t RC≈                           (77) 

see e.g. [13]. We expect (77) to be a constant term. In fact C in (77) is given by 
the formula  

2

,e eC
V E

= =
∆

                       (78) 

whereas R in virtue of (72) and (74) becomes  

2 .E t EtR
e e e
∆ ∆

= ⋅ =                       (79) 

In effect we obtain  

RC t=                             (80) 

which is a confirmation of the expression given in (77). 
This means that R and C should be known parameters in order to give the 

transition time (80). Beginning with R we have  

2

V E t E tR
i e e e

∆ ∆ ∆
= = ⋅ =                     (81) 

where in the last step the result of (76) is applied. We postulate that  

E t h∆ ∆ =                            (82) 

which implies that t present in (77) should be a very special interval of time. This 
makes on the basis of (81)  

2 ,hR
e

=                            (83) 

which is a result much independent of the examined quantum system; see [4]. 
The validity of the postulate in (82) is checked in Sec. 13 given below. 

A consequence of the formula (83) is that R becomes equal to a well-known 
resistance value characteristic for the integer quantum Hall effect; see e.g. [14]. 
With the formula (83) for R and (78) for C we obtain  

hRC
E

=
∆

                           (84) 

or  

.RC E h∆ =                            (85) 

13. The Time Interval Equal to RC Characteristic for the  
Electron Transition in Different Quantum Systems  

We demonstrate an invariance of RC in (84) for different quantum systems be-
ginning with a free electron particle in a one-dimensional potential box. In this 
case (see e.g. [8]) 
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( )2 2 2
2

1 2 2

1 1 ,
48n n

n n nhE E E h
mL mL+

+ −
∆ = − = ≈            (86) 

so from (84)  
24 .h mLRC

E nh
= ≅
∆

                     (87) 

It should be noted that RC in (87) is an interval equal to the time period cha-
racteristic for the free-electron oscillation in state n:  

22 2 42 .n
n

L L mLmL
v nh nh

τ = = =                  (88) 

This holds because for a free electron in state n the one-dimensional kinetic 
energy becomes  

2 2 2

22 8
n

n
mv n hE

mL
= =                       (89) 

from which we obtain the electron velocity in n equal to:  
1 22 2

2 ;
24n

n h nhv
mLmL

 
= = 
 

                   (90) 

see also (6). The result obtained in (90) is applied in (88). 
A corresponding RC can be calculated also for the electron transition in the 

hydrogen atom. By the virial theorem, we have the kinetic electron energy equal 
to the absolute value of the total electron energy:  

22 2 4

2 2 .
2 2 2

n
n

mv m e meE
n n

 
= = = 

  

               (91) 

here  
2

n
ev
n

=


                         (92) 

is the electron velocity on the nth orbit; see [15]. The energy difference in the 
hydrogen atom is  

( )
( )

( )

4

1 2 2 2

2 24 4 4

2 2 2 4 2 32

1 1
2 1

1 2 1 ,
2 21

n n
m eE E E

n n

n nme me n me
n nn n

+

 
∆ = − = − 

+  

+ −
= ≅ =

+



  

           (93) 

where in the last step E∆  is simplified to the case of large n. The time period of 
the electron circulation along the orbit n becomes [15]  

2 2 3 3

2 2 4

2π 2π 2π ,n
n

n

r n n n
v me e me

τ = = =
  

                (94) 

if we note that the radius nr  of the nth circular orbit in the hydrogen atom is 
equal to [15]  
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2 2

2 .n
nr
me

=
                            (95) 

On the other hand from the formula (84) for RC and (93) for E∆  we obtain  
3 3

2 3
4 4

2π .h h nRC n
E me me

= = =
∆



                  (96) 

This means that RC becomes equal to the time period nτ  of the electron cir-
culation given in (94). 

The last small quantum system considered in the paper is the harmonic oscil-
lator. For the oscillator having the frequency ν  we have the time period of the 
oscillation equal to  

1 T
ν
=                            (97) 

and the energy difference between two neighbouring quantum levels is  

.hE h
T

ν∆ = =                         (98) 

This gives  

1 .hRC T
E ν

= = =
∆

                     (99) 

In effect the formula (84) is satisfied for all examined cases, i.e. the electron 
particle in a one-dimensional potential box, the electron in a hydrogen atom and 
the harmonic oscillator. In the last case the electron mass m and charge e do not 
enter into an explicit calculation of RC.  

14. Parameters of the Electron Mechanical Inertia Examined  
as a Check of the Formulae Applied for the  
Electron Transition  

Interesting results gives the examination of parameters connected with the elec-
tron inertia exhibited in course of the electron transitions, say those represented 
by the change  

1 .n n+ →                          (100) 

A similar reasoning was applied in considering the Tolman-Stewart effect 
characteristic for the slowing down of the motion of the electrons in metals; see 
e.g. [12] [13]. 

The energy difference  
E eV∆ =                          (101) 

can be represented by the product  
mal eV=                          (102) 

where m is the electron mass, a —electron acceleration attained in course of the 
transition between the quantum levels, and l —the way length connected with 
the time characteristic for the transition. By the conservation of momentum this 
l  should be not much different than a distance travelled by an electron with the 
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speed nv  characteristic for the electron level at the end of transition multiplied 
by the transition time which is  

;RC τ=  

see respectively (88), (96) and (99) in different physical objects. 
In effect we obtain  

2nl L=                          (103) 

for a free particle in a one-dimensional potential box,  
2πn nl r=                          (104) 

in the hydrogen atom, and for the harmonic oscillator nl  should approximate 
four times the amplitude of the classical oscillator equal to the product of the 
maximal velocity in state n and time τ :  

max .n nl v τ=                        (105) 

In all these cases the acceleration a in (102) can be represented by the ratio  

va
τ
∆

=                         (106) 

where v∆  is the velocity change of the electron particle given by the difference  

1 .n nv v v+∆ = −                     (107) 

In effect we obtain in place of (102) the equation  

2 2 ,n
V e Vml v eV RCeV eV e e R h
i V i

τ∆ = = = = = =         (108) 

because of the result (83) obtained for R. 
We check below that in fact equation (108) is well satisfied. 
For a free-electron particle in the box:  

2nl L=                           (109) 

is independent of n and  

( )1 1 ;
2 2n n

h hv v v n n
mL mL+∆ = − = + − =             (110) 

see (90). The above two formulae give  

2 .
2n

hml v m L h
mL

∆ = =                 (111) 

For the hydrogen atomic orbit we have  
2 2

22π 2πn n
nl r
me

= =
                     (112) 

and the absolute value of v∆  is  

( )
2 2 2

1 2 .
1n n

e e ev v v
n n n+∆ = − = − ≅

+  

            (113) 

In this case the product entering the numerator of (102) becomes:  
2 2 2

2 22π 2π .n
n eml v m h
me n

∆ = = =






                (114) 
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The above reasonings confirm the value (83) obtained for the resistance R. 
The case of the harmonic oscillator is slightly more complicated [9]. The 

maximal electron velocity in state n is given by the formula  

( ) 2
max1 2 mv nhν=                        (115) 

from which the distance l  obtained by the electron inertia in course of the time 
period of the electron oscillation T is  

( )1 2

max max 1 2 1 2

21 .
nh

l v T v
mν ν

= = =                   (116) 

On the other hand the work performed by the electron on the distance l is  

maxv
mla ml eV

τ
∆

= =                       (117) 

where  

Tτ =                              (118) 

is the time period connected with the electron current:  

.ei
τ

=                             (119) 

The maxv∆  in (117) is a difference of the maximal velocities associated re-
spectively with the quantum state 1n +  and n:  

( )
( )

1 2 1 2 1 2
1 2max 1 2

1 2 1 21 2

2 2 1 2 11 .
21

h h n n hv n n
m m m nn n
ν ν ν+ −      ∆ = + − = ≅           + +

(120) 

In effect we obtain for (117):  

( )1 2 1 2
max

1 2 1 2 1 2

2 2 1
2

nh hml v m h
mm n
ν

ν
 ∆ = = 
 

            (121) 

which is the expected result.  

15. Summary 

In the first step, by assuming the conservation of energy, the electron states en-
closed in a one-dimensional potential box are transformed into the de Broglie 
waves having definite frequencies in time. The dependence of these waves on 
temperature can be studied according to the well-known Planck’s formalism ap-
plied to the black-body radiation. When the specific heats due to the electron 
waves are examined, they show an extremal (maximal) behaviour at some tem-
perature different from the absolute zero. In a further treatment, the difference 
of temperature characteristic for two extremal positions of the specific heat ob-
tained for two quantum levels can be multiplied by a maximal specific heat due 
to these levels. This product estimates the amount of the heat transfer of energy 
associated with the electron transition. The amount occurs to be close to the 
change of the electron energy due to the quantum-mechanical transition. 

The next step of the paper concerns the calculation of the changes of the en-
tropy of a free-electron particle enclosed in a potential box. Usually the temper-
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ature and entropy refer to a large ensemble of particles whose statistics and 
energy are known. However, at the early stage of the quantum theory, the par-
ticle ensembles were considered as sets of the oscillators having definite frequen-
cies and remaining in equilibrium with respect to some external temperature. 
According to the de Broglie idea, it is easy to transform the behaviour of par-
ticles enclosed in a potential box into that of a system of the oscillating waves. In 
effect, the thermodynamical properties of the oscillators, like the specific heat, 
can be examined with the aid of the probabilistic formalism given by Planck. 
Because of the relation existent between the specific heat and entropy, the 
changes of entropy which accompany the energy transfer become easy to calcu-
late with the aid of the temperature intervals defining the separations between 
the quantum levels. 

In the last step, the aim of the paper was to point out that the time of the 
emission of energy between two neighbouring quantum states is associated—on 
a classical level—with production of the electric current due to a transport of a 
single electron particle. The current corresponds to a temporary formation of 
the electric cell in a quantum system and exhibits the properties of intensity and 
resistance known from the classical electrodynamics. 

Having a known energy emission E∆ , the current parameters provide us—on 
the basis of the Joule-Lenz law—with the time t∆  necessary for the dissipation of 
energy E∆ . But the same interval t∆  can be obtained as a product of the cur-
rent resistance R and capacitance C of the condenser represented by a temporary  

presence of the potential difference E
e
∆  between two quantum levels. 

The calculations are limited to three quantum objects considered as examples: 
the electron in a one-dimensional potential box, electron in a hydrogen atom 
and the electron representing a harmonic oscillator. 

Classical parameters obtained for the examined objects in effect of the emis-
sion process are checked by considering the properties of the electron mechani-
cal inertia exhibited in the same objects in course of the emission of the energy 

E∆ . 
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