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Abstract 

In this paper, we discuss the dynamics of n-expansive homeomorphisms with 
the shadowing property defined on compact metric spaces in continuous 
case. For every n∈ , we exhibit an n-expansive homeomorphism but not 
( )1n − -expansive. Furthermore, that flow has the shadowing property and 

admits an infinite number of chain-recurrent classes. 
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1. Introduction and Preliminaries 

The classical terms, expansive flows on a metric space are presented by Bowen 
and Walters [1] which generalized the similar notion by Anosov [2]. Besides, 
Walters [3] investigated continuous transformations of metric spaces with dis-
crete centralizers and unstable centralizers and proved that expansive homeo-
morphisms have unstable centralizers; other result was studied in [4]. In discrete 
case, this concept originally introduced for bijective maps by Utz [5] has been 
generalized to positively expansiveness in which positive orbits are considered 
instead [6]. Further generalizations are the pointwise expansiveness (with the 
above radius depending on the point [7]), the entropy-expansiveness [8], the 
continuum-wise expansiveness [9], the measure-expansiveness and their cor-
responding positive counterparts. However, as far as we know, no one has con-
sidered the generalization in which at most n companion orbits are allowed for a 
certain prefixed positive integer n. For simplicity we call these systems 
n-expansive (or positively n-expansive if positive orbits are considered instead). 
A generalization of the expansiveness property that has been given attention re-
cently is the n-expansive property (see [10] [11] [12] [13] [14]). 
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In this paper, we introduce a notion of n-expansivity for flows which is gene-
ralization of expansivity, and show that there is an n-expansive flow but not 
( )1n − -expansive flow. Moreover, that flow is shadowable and has infinite 
number of chain-recurrent classes. 

Let ( ),X d  be a metric space. A flow on X is a map : X Xφ × →  satisfy-
ing ( ),0x xφ =  and ( )( ) ( ), , ,x s t x s tφ φ φ= +  for x X∈  and ,t s∈ . For 
convenience, we will denote  

( ) ( ) ( ) ( ) ( ) ( ){ },, and : , .s ta bx s x x x t a bφ φ φ φ= = ∈  

The set ( )xφ  is called the orbit of φ  through x X∈  and will be denoted 
by ( )Orb xφ . We have the following several basis concepts (see [1] [15] [16]). 

Definition 1.1. Let φ  be a flow in a metric space ( ),X d . We say that φ  is 
n-expansive ( n∈ ) if there exists 0c >  such that for every x X∈  the set  

( ) ( ) ( )( ){ }, : ; , , ,t tx c y X d x y c tφ φΓ = ∈ ≤ ∀ ∈  

contains at most n different points of X. 
We say that φ  is finite expansive if there exists 0c >  such that for every 

x X∈  the set ( ),x cΓ  is finite.  
Definition 1.2. Let x X∈ . We say that x is a period point if there exists 

0T >  such that ( ) ( ) ,t T tx x tφ φ+ = ∀ ∈ . Denote that ( )xπ  is the period of x, 
which is the smallest non-negative number satisfying this equation.  

Definition 1.3. Give , 0Tδ ≥ . We say that a sequence of pairs 
( ),i i i
x t X

∈
⊂ ×   is a ( ),Tδ -pseudo orbit of φ  if it T≥  and  

( )( )1, ,
it i id x x iφ δ+ ≤ ∀ ∈ .  

We define  
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and ( )0 it s ix t xφ −=  whenever 1i is t s +≤ < . 
Definition 1.4. We say that φ  is shadowing property if for each 0>  

there is 0δ >  such that for any ( ),1δ -pseudo orbit ( ),i i i
x t

∈ , there exists 
x X∈  and an orientation preserving homeomorphism :h →   such that 
( )0 0h =  and ( ) ( )( )0 , h td x t xφ ≤  .  
Denote by Rep the set of orientation preserving homeomorphism :h →   

such that ( )0 0h = . 
Definition 1.5. Give two points p and q in X. We say p and q are ( ),Tδ

-related if there are two ( ),Tδ -chains ( ) 0
, m

i i i
x t

=
 and ( ) 0

, n
i i i

y s
=

 such that 

0 np x y= =  and 0 mq y x= = . We say that p and q are related ( )p q  if they 
are ( ),Tδ -related for every , 0Tδ > . The chain-recurrent class of a point 
p X∈  is the set of all points q X∈  such that p q .  
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Theorem 1.1. For every n∈ , there is an n-expansive flow, define in a 
compact metric space, that is not ( )1n − -expansive, has the shadowing proper-
ty and admits an infinite number of chain-recurrent classes. 

2. Proof of the Main Theorem 

Consider a flow φ  defined in a compact metric space ( )0,M d , and φ  has 
1-expansive, and has the shadowing property. Further, suppose it has an infinite 
number of period points { }k k

p
∈

, which we can suppose belong to different or-
bits. Let E be an infinite set, such that there exists a bijection :r E→ . Let 

{ } { } ( ))1, , 1 0, ,k
k

Q n k pπ
∈

= − × × 



N
 

and note that there exists a bijection :s Q →  . Consider the bijection 
:q Q E→  defined by  

( ) ( ), , , , .q i k j r s i k j=   

Let X M E= 
. Thus, any point x E∈  has the form ( ), ,x q i k j=  for 

some ( ), ,i k j Q∈ . Define a function :d X X +× →   by 

( )

( )

( )( ) ( )

( )( ) ( )

( ) ( )

( ) ( )( ) ( ) ( )

0
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k
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k

d p p x q i k j y q l m r k m j r
k m

φ

φ

φ φ

=
 ∈


+ = ∈

=  + ∈ =
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

= = ≠



+ + = = ≠ ≠

 

Now we prove that function d is a metric in X. Indeed, we see that 
( ), 0d x y =  iff x y= , and that ( ) ( ), ,d x y d y x=  for any pair ( ),x y X X∈ × . 

We shall prove that the triangle inequality ( ) ( ) ( ), , ,d x z d x y d y z≤ +  for any 
triple ( ), ,x y z X X X∈ × × . When ( ), ,x y z M M M∈ × ×  we have that 

| 0M Md d× = , and 0d  is a metric in M. When ( ), ,x y z M M E∈ × ×  then 
( ), ,z q i k j=  and 

( ) ( )( ) ( ) ( )( ) ( ) ( )0 0 0
1 1, , , , , , .j k j kd x z d x p d x y d y p d x y d y z
k k

φ φ= + ≤ + + = +  

Therefore, when ( ), ,x y z E M M∈ × × , changing the role of x and z in the 
previous case, we obtain this result. When ( ), ,x y z M E M∈ × × , we have 

( ), ,y q i k j=  and  

( ) ( ) ( )( ) ( )( ) ( ) ( )0 0 0 0 0
2, , , , , , .j k j kd x z d x z d x p d z p d x y d y z
k

φ φ= ≤ + + = +  

When ( ), ,x y z M E E∈ × × , we have ( ), ,y q i k j=  and ( ), ,z l m r= . If 
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k m≠  or j r≠  then  

( ) ( )( )

( )( ) ( ) ( )( )
( ) ( )

0

0 0

1, ,

2 1 , ,

, , .

r m

j k j k r m

d x z d x p
m

d x p d p p
k m
d x y d y z

φ

φ φ φ

= +

< + + +

= +

 

If k m= , j r=  and i l≠  then  

( ) ( )( ) ( )( ) ( ) ( )0 0
1 1 1, , , , , .r m j kd x z d x p d x p d x y d y z
m k m

φ φ= + < + + = +  

So if ( ), ,x y z E E M∈ × × , change the role of x and z in previous case, and we 
get the result. If ( ), ,x y z E M E∈ × ×  then ( ), ,x q i k j=  and ( ), ,z q l m r= . 
Hence,  

( ) ( ) ( )( ) ( )( )0 0
1 1, , , ,j k r md x y d y z d y p d y p
k m

φ φ+ = + + +  

and 

( )
( ) ( )( )0

1 1 , if or ,
,

1 if , and .

j k r md p p k m j r
k md x z

k m j r i l
k

φ φ + + ≠ ≠= 
 = = ≠


 

Thus, we always get the result ( ) ( ) ( ), , ,d x z d x y d y z< +  for both of 2 cases. 
When ( ), ,x y z E E E∈ × × , we let  

( ) ( ) ( )1 1 1 2 2 2 3 3 3, , , , , , , ,x q i k j y q i k j z q i k j= = = . 

Case 1. If 1 3k k=  and 1 3j j=  we have ( )
1

1,d x z
k

= , and  

( ) ( )

( ) ( )( ) ( ) ( )( )1 2 2 3

1 2 3 1 2 3
1

0 1 2 0 2 3 1 3 2 1 3 2
1 2

, ,

2 , and ,

2 2 , , , or .j j j j

d x y d y z

k k k j j j
k

d k k d k k k k k j j j
k k

φ φ φ φ

+

 = = = == 
 + + + = ≠ = ≠


 

It means that ( ) ( ) ( ), , ,d x z d x y d y z< +  for both of 2 cases. 
Case 2. If 1 3k k≠  or 1 3j j≠ , we have  

( ) ( ) ( )( )1 30 1 3
1 3

1 1, , ,j jd x z d k k
k k

φ φ= + +  

and 

( ) ( )

( ) ( )( )
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( ) ( )( ) ( ) ( )( )

2 3

1 2

1 2 2 3

0 2 3 1 2 1 2
1 3

0 1 2 2 3 2 3
1 3

0 1 2 0 2 3 1 2 3 1 2 3
1 2 3

, ,

2 1 , , and ,

1 2 , , and ,

1 2 1 , , , or .

j j

j j

j j j j

d x y d y z

d k k k k j j
k k

d k k k k j j
k k

d k k d k k k k k j j j
k k k

φ φ

φ φ

φ φ φ φ

+


+ + = =
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Hence, ( ) ( ) ( ), , ,d x z d x y d y z< + . 
It implies d is a metric in X. 
Next, we prove that ( ),X d  is a compact metric space. Let any sequences 

( )n n
x X

∈
∈

. We prove that this sequence has a convergent subsequence. If 
( )n n
x

∈
 has infinite elements in M, then the compactness of M and the fact 

| 0M Md d× = , so ( )n n
x

∈
 has a convergent subsequence. We consider ( )n n

x
∈

 
has finite elements in M; therefore, it has infinite elements in E. We can assume 
that ( )n n

x E
∈

⊂
 then ( ), ,n n n nx q i k j= .  If there is N ∈  such that 

,nk N n< ∀ ∈  then the set { };nx n∈  is finite, so at least one point of 
( )n n
x

∈
 appears infinite times, forming a convergent subsequence. Now sup-

pose ( )n n
k

∈
 is unbounded, therefore, lim nn

k
→∞

= ∞ . We choose ( )n nn j ky pφ= ,  

so ( )n n
y M

∈
⊂  and ( ) 1, ,n n

n

d x y n
k

= ∀ ∈ . Since ( )n n
y

∈  is a subset of  

compact set M, ( )n n
y

∈
 has a subsequence ( )ln l

y
∈

 converging to y M∈ . 
Thus, we have  

( ) ( ) ( ) ( )1, , , , 0 when .
l l l l l

l

n n n n n
n

d x y d x y d y y d y y l
k

< + = + → →∞  

It implies that ( )n n
x

∈
 has a subsequence ( )ln l

x
∈

 which converges to y. 
Thus, ( ),X d  is a compact metric space. 

For all t∈ , we define a map tψ  by  

( ) ( )
( ) ( )( ) ( )

if ,
, , mod if , , .

t
t

k

x x M
x

q i k j t p x q i k j
φ

ψ
π

∈=  + =
 

We can see that j, t, j t+  cannot be in  , but we can define a real number: 
( )mod :kt p rπ = , when  

( ) ( ), , 0 .k kt m p r m r pπ π= + ∈ ≤ <  

By definition of flow, it's easy to see that ψ  is a flow of X. Indeed, we can 
prove that , ,t s t s t sψ ψ ψ+ = ∀ ∈  . If x M∈ , we get  

( ) ( ) ( ) ( ) , , .t s t s t s t sx x x x t sψ φ φ φ ψ ψ+ += = = ∀ ∈    

If ( ), ,x q i k j= , we have  

( ) ( ) ( )( ) ( ), , mod .t s k t sx q i k j t s p xψ π ψ ψ+ = + + =   

Therefore, ψ  is the flow with the previous properties. 
In order to prove that ψ  is n-expansive, first we see that φ  is 1-expansive; 

so there is 0a >  such that if ( ) ( )( ), ,t td x y a tφ φ ≤ ∀ ∈ , then x y= . Sup-
pose that { }1 1, , nx x +  are 1n +  different points of X satisfying  

( ) ( )( ) ( ) { } { }, , , , 1, , 1 1, , 1 .t i t jd x x a t i j n nψ ψ ≤ ∀ ∈ ∀ ∈ + × +   

Hence, at most one of these points belong to M. Consequently, at least n of 
them belong to E. Without loss of generality, we get  

( ) { }, , , 1, ,m m m mx q i k j m n= ∈  . Because { }1, , 1mi n∈ −  and we have n 
number mi ; thus, by Pigeonhole principle, at least two of these points are of the 
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form ( ), ,q i k j  and ( ), ,q i m r . We prove that k m≠ . Indeed, if k m= , we 
have 2 points are ( ), ,q i k j  and ( ), ,q i k r  with j r≠  (because all of 1n +  
points are different). For each s∈  we have  

( )( )( ) ( )( )( )
( ) ( )( )( )( )
( )( ) ( )( )( )

,

2, , , , ,

, , , , , .

s j k s r k

s s

s s

d p d p

d q i k j q i k r
k

d q i k j q i k r a

φ φ φ φ

ψ ψ

ψ ψ

= −

< <

 

This implies that ( ) ( )j k r kp pφ φ=  (by the Proposition of 1-expansive of φ ), 
which implies that j r=  and we obtain a contradiction. Therefore, k m≠ . 

Now we implies that: for every s∈  we have:  

( )( )( ) ( )( )( )
( )( ) ( )( )( )
( )( ) ( )( )( )

,

1 1, , , , ,

, , , , , .

s j k s r m

s s

s s

d p d p

d q i k j q i m r
k m

d q i k j q i m r a

φ φ φ φ

ψ ψ

ψ ψ

= − −

< <

 

So similarly, we have ( ) ( )j k r mp pφ φ= ; hence, m kp p= , which is contradic-
tion with the fact that k m≠ . Thus, we cannot choose 1n +  points satisfy this 
proposition; it means ψ  is n-expansive in X. 

Next, we prove that ψ  is not ( )1n − -expansive. For any 0a > , we choose 
k ∈  such that 1 a

k
< , so we have  

( ) ( )( ) { }1, , , , , 1, , 1j kd p q i k j a j i n
k

φ = < ∀ ∈ ∀ ∈ − 
. So ( ),kp aΓ  contain at  

least n points ( ) ( ){ }, 1, ,0 , , 1, ,0kp q k q n k−  and that ψ  is not ( )1n −
-expansive, because there is not 0a >  satisfies this define about ( )1n −
-expansive. 

Now we prove that ψ  has the shadowing property. Since φ  has the sha-
dowing property, for each 0> , we can consider 0φδ > , so for any ( ),1φδ
-pseudo-orbit in M we have the 

2
 -shadowing. Now consider ( ),n n n

x t
∈  has  

the ( ),1δ -pseudo-orbit by ψ  in X. We assume that 
3 3
φδδ < <


. So we have  

( )( )1,
nt n nd x xψ δ+ < . Let N is a smallest integer number such that 1

N
δ< , and 

we consider ( )1,n nx x +  in 3 cases.  
Case 1. If ( )1,n nx x E M+ ∈ × , we have ( ), ,nx q i k j=  and  

( )( ) ( )( )1 0 1
1, ,

n nt n n n j t kd x x d x p
k

ψ φ+ + += + , so 1
k

δ< ; hence, k N≥ . 

Case 2. If ( )1,n nx x M E+ ∈ × , we obtain ( )1 , ,nx q i k j+ =  and  

( )( ) ( ) ( )( )1 0
1, ,

nt n n j k j nd x x d p x
k

ψ φ φ+ = + , so 1
k

δ< ; hence, k N≥ . 

Case 3. If ( )1,n nx x E E+ ∈ × , we have ( ), ,nx q i k j=  and ( )1 , ,nx q l m r+ = . 
So ( ) ( ), ,

nt n nx q i k j tψ = + . Thus, if we want ( )( )1,
nt n nd x xψ δ+ < , we have ei-

ther if k N≥ , so m N≥  (by similarly) or if k N< , we have ( )1 nn t nx xψ+ = , 
such that ( )1 , ,n nx q i k j t+ = + . When ( ),n n n

x t
∈

 is one of orbit ( ){ }, , n n
q l k j

∈
, 

https://doi.org/10.4236/jamp.2019.72031


L. H. Tien, L. D. Nhien 
 

 

DOI: 10.4236/jamp.2019.72031 416 Journal of Applied Mathematics and Physics 
 

and 1 ,n n nj j t n+ = + ∀ ∈ . So one obtain 0n ns j j= − , thus,  

( ) ( )( ) ( ) ( )( )0 0 1, , , , , , 0, .
nt s n t n n n nd x x d q l k t s j q l k t j s t sψ ψ− += − + + = ≤ <  

Therefore, the shadowing property is proved. 
When ( ), ,ix q l k j= , then k N> . Define a sequence ( ),n n n

y t M
∈

⊂  by  

( ) ( )
if ,
if , , .

n n
n

j k n

x x M
y

p x q l k jφ
∈=  =

 

Then ( ),n n n
y t

∈
 is φδ -pseudo-orbit in M since  

( )( ) ( )( )
( ) ( )( ) ( )( ) ( )

1 1

1 1 1

, ,

, , ,

1 1 .

n n

n n n

t n n t n n

t n t n t n n n n

d y y d y y

d y x d x x d x y

N N φ

φ ψ

ψ ψ ψ

δ δ

+ +

+ + +

=

≤ + +

< + + <

 

Hence, there exists y M∈  and a function h Rep∈  such that  

( ) ( ) ( )( ) 1, , .
2nt s n n nh td y y s t sφ φ− +< ∀ ≤ <
  

So  

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ), , ,

1 .
2

n n n nt s n t s n t s n t s nh t h td x y d x y d y y

N

φ φ φ φ φ φ− − − −< +

< + <



 

Therefore, ( ),n n n
x t

∈  is  -shadowing. Hence, ψ  has the shadowing 
property. 

Finally, we have ψ  admits an infinite number of chain-recurrent classes. In-
deed, if we have ( ), ,q i k l E∈  then  

( )( ) ( ){ }1, , , , \ , , .d q i k j x x X q i k j
k

≥ ∀ ∈  

So if 10
k

< <  then the orbit of ( ), ,q i k j  cannot be connected by 
-pseudo orbits with any other point of X. This proves that the chain-recurrent 
classes of ( ), ,q i k j  contains only its orbit. Therefore different periodic orbits 
in E belong to different chain-recurrent classes and we conclude the proof. 
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