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Abstract 
A second order oscillator with nonlinear restoring force and nonlinear 
damping is considered: it is subject to both external and internal (parametric) 
excitations of Gaussian white noise type. The nonlinearities are chosen in 
such a way that the associated Fokker-Planck-Kolmogorov equation is solva-
ble in the steady state. Different choices of some system parameters give rise 
to different and interesting shapes of the joint probability density function of 
the response, which in some cases appears to be multimodal. The problem of 
the determination of the power spectral density of the response is also ad-
dressed by using the true statistical linearization method.  
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1. Introduction 

From the twentieth century in almost all fields of the sciences the deterministic 
visions have been abandoned for a probabilistic point of view. Thus, the study of 
the response of the dynamical system subjected to random excitations is of pa-
ramount importance. If the excitations are Gaussian white noise stochastic 
processes, the response of the system is a diffusive Markov vector process, whose 
transition probability density function (PDF) is governed by a partial differential 
equation that is named Fokker-Planck-Kolmogorov (FPK) equation [1]. 

Unfortunately, for second and higher order dynamical systems analytical so-
lutions of the FPK equation are known only in the final state of equilibrium or, 
in other words, in the stationary state of motion of the system. Moreover, if the 
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system exhibits nonlinear damping, and if the excitations appear in the coeffi-
cients of the unknown, the so-called internal or parametric excitation, the situa-
tion is much more cumbersome. Much work has been done in this direction: see 
Chapter 5 of [2] and Chapter 6 of [3] and the references therein. In general, 
when there are a nonlinear damping and internal excitations, an analytical solu-
tion is possible only if certain relations are satisfied among the system parame-
ters and the strengths of the exciting white noises. 

This paper is aimed at studying the statistical characteristics of the response of 
a class of second order nonlinear systems, and highlighting the shape of response 
PDF by varying some system coefficients. In order to avoid using approximate 
methods or numerical methods, the dynamic system is chosen in a class for 
which the associated FPK equation admits an analytical solution [4]. When in 
the motion equation the damping function and/or the restoring force are nonli-
near, changing some parameters may result in strange forms of the response 
probability function (PDF), what subtends a complicate regime of motion. To 
writer’s knowledge, systematic studies on this subject are lacking in literature. 
Thus, this paper wants to be an introductory study of this subject. This is why it 
has been chosen a dynamical system falling in a class for which the FPK equa-
tion is analytically solvable. 

The problem of the determination of the power spectral density (PSD) of the 
system displacement is also addressed. While the PSD of linear systems is im-
mediate, for nonlinear systems to writer’s knowledge only an exact solution ex-
ists [5]. Much work has been done in this field by using approximate methods 
[6]-[11]. Some authors assume the form of the PSD a priori, which in many in-
stances is the PSD of a second order linear oscillator [7] [9] [10] [11]. The non-
linearities are taken into account by considering the parameters of the PSD as 
random quantities that depend on the amplitude of oscillation or on the system 
energy. The unconditioned PSD is found by integrating with respect the PDF of 
the amplitude or the energy. 

Even in this paper the PSD of the displacement has the form of the PSD of a 
linear oscillator. Its parameters are found by means of the statistical lineariza-
tion. As the response PDF is known in this case, it is a “true” linearization [12], 
and the parameters are computed exactly. The concepts explained above are ap-
plied to some examples. 

The present study has been conducted at the Technical University of Milan 
(Politecnico Milano), Italy. 

2. Mathematical Formulation 
2.1. Determination of the Response PDF 

Consider the following nonlinear stochastic second order oscillator: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 3
0 1 2 3

1 1 2 2

X t g X g X X t g X X t g X X t

k W t k X t W t

+ + + +

= +

   

       (1) 
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where the dots mean derivative with respect to time. The functions 0 3, ,g g  
are deterministic ones and do not depend explicitly on time, while 1k  and 2k  
are real constants. W1 and W2 are stationary Gaussian white noises with auto-
correlation functions of the form ( ) ( ) ( ) ( )2 1,2j j jE W t W t w jτ δ τ + = =  ; 
without loss of generality they are assumed to be uncorrelated. 

The Fokker-Planck-Kolmogorov (FPK) equation associated with the dynamic 
system (1) is 

( ) ( ) ( ) ( ) ( ) ( ){
( ) ( ) ( )} ( ) ( )

( ) ( )

2
0 1 2

2
3 2 2 2

3 1 1 2 2 2

, ,

, ,
, ,

, ,

yp x y t g x g x y t g x y t
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p x y t
g x y t p x y t k w k x w

y
p x y t

y x
t

∂ ∂ − + + +   ∂ ∂

∂+ + + ∂

∂
= =

∂


        (2) 

where p(x, y, t) is the joint transition probability density function of the Markov 
vector { },X X . If the dynamic system is stable (to have stability, first it is suffi-
cient that the damping is globally positive), asymptotically it tends to the equili-
brium: the right-hand-side of Equation (2) becomes zero, and the reduced equa-
tion is satisfied by the equilibrium PDF. As no confusion is possible, it will 
equally denoted by p. 

A clarification is necessary: the stochastic differential Equation (1) may inter-
preted in different ways (strictly speaking infinite) according to the rule of inte-
gration that is adopted, but Itô’s interpretation and Stratonovich’s one are the 
most important and popular. The necessity of specifying the interpretation that 
one adopts arises when a parametric excitation is present. However, in the 
present case the parametric term affects the restoring force so that Itô and Stra-
tonovich coincide (in other words the Wong-Zakai-Stratonovich corrective 
terms are zero in this case [13] [14]). 

In general, Equation (2) does not admit an analytical solution even in state of 
equilibrium, that is with the right-hand-side null. Wang and Yasuda [4] showed 
that an analytical equilibrium PDF exists if the function gi have the following 
forms: 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 3 22 , 0,g x x c c G x g x g x c xφ φ= − = =          (3) 

where 1c  and 2c  are real constants; G(x) is a potential function, that is 
( ) ( )0 dG x g x x= ∫ , and ( ) 2 2 2

1 1 2 2x k w k x wφ = + . The above relationships impose 
strict conditions on the damping function, which too is made dependent on the 
strengths of the white noises. If the functions gi obey to the relations in (3), the 
equilibrium PDF is 

( ) ( ) ( )( ) ( )
4

21
0 1 2 2 2, exp 2

4 2
cyp x y C g x c c G x c c G x y

     = − + − + +         
  (4) 

where C is a normalization constant. 
If the parametric excitation is absent, say 2 0k = , the PDF simplifies into 
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( ) ( )2
1 22

1 1

1, expp x y C c c
k w

 
= − Λ + Λ 

 
                 (5) 

where ( )2 2y G xΛ = +  is the mechanical energy of the oscillator. It is noted 
that Equation (5) is also the PDF of the energy, if this is considered an indepen-
dent variable.  

2.2. Spectral Characteristics of the Response 

As advanced in the Introduction, approximately it is assumed that the response 
power spectral density (PSD) has the same form as that of a linear oscillator, that 
is 

( )
( )

2
1 1

22 2 2 2
XX

e e

k wS ω
ω ω β ω

=
− −

                    (6) 

In Equation (6) the parameters of the PSD ,e eω β  will be computed by 
means of the statistical linearization method [15]. As this method is not suitable 
when there is a parametric excitation, the case of only external excitation is con-
sidered, whose strength appears in the numerator of Equation (6). 

The nonlinear system (1) is replaced by the following linear system equivalent 
to (1) with 2 0k =  in some statistical sense: 

( ) ( ) ( ) ( )2
1 1e eX t X t X t k W tβ ω+ + =  .                (7) 

Using Equation (7) instead of (1) causes the following error: 

( ) ( )2 2 2
0 1 2 1 1 2 12 e eE g X k c w G X X k c w X X Xβ β ω= + + + − −         (8) 

where 2
1 1 1k c wβ = . Minimizing the error E in mean square, one obtains 

[ ]2
2 2

,e e

E zX E zX
E X E X

β β ω
  = + =
      





                 (9) 

where ( ) ( )2 2
0 1 2 1 0 1 2 12z g X k c w G X X k c w= + + . The question arises as the statis-

tical averages in (9) are to be evaluated. In [7] and [11] they are considered am-
plitude dependent and the dependence is eliminated by averaging Equation (6) 
with respect to the PDF of the amplitude. In the present case, the PDF of the re-
sponse is known exactly so that the averages are computed with respect to it (the 
computations are numerical, but even in the papers cited among the references 
the computations are so). When the linearization is done by using the exact 
PDF, it is called true linearization [12].  

3. Applications 
3.1. Dynamic Systems with Internal and External Excitations 

The function ( )0g X  represents the restoring force of the dynamic system: it 
has been chosen 

( ) ( ) ( )3 2 4
0

d 1 1,
d 2 4

G x
g x ax bx G x ax bx

x
= = + = +        (10) 
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The constant b must be positive, otherwise the system diverges, while a my be 
negative or positive. If it is positive, the potential function G has only a mini-
mum in the origin. When it is negative, G has an unstable maximum in the ori-
gin and two minima in a b±  (Figure 1 left), which causes complicated dy-
namics. In the analyses a assumes the values 1,0, 1− + .  

The function ( )( ) ( )2 2 2 2 2 2 3
1 1 2 2 1 2 2 1 1 2 22 ( )dF k w k w x c c G x x c k w k w x x= + + + +   is 

the damping function of the system. If 2 1c < − , there is an interval in which the 
damping is negative (Figure 1 right), that is energy is introduced in the system. 
In the analyses the values 2 2c = −  and 2 1c =  have been considered.  

All the computations and the plots have been performed by using the software 
MAPLE ruled on a work-station. The computational charges have been low in 
every case: at the most few seconds. 

In Figure 2 there are the joint PDF of the case 21, 1a c= =  and its sections 
0x y= = , 0x =  (Equation (4)). The other parameters take the values: 

0.5b = , 1 1k = , 2 0.5k = , 1 2 1w w= = , 1 1c = . The joint PDF resembles a sand 
cone like a Gaussian bimodal PDF. Surely, the tails of this PDF are more pro-
nounced than in a Gaussian, but this type of plot cannot show this fact. Due to 
the regularity of the PDF, no other comments are necessary. 

Figure 3 reports the same graphs as in previous figure for the case a = 0 (the 
other parameters are unchanged). It is evident that the PDF is rather flat in 
x-direction, which is confirmed by the section 0x y= = , so that it does not re-
semble a Gaussian PDF. The kurtosis 4 4

XE X σ    confirms that this case is 
well far from the Gaussian one: its value is 2.066 against 3 of a Gaussian PDF (it 
is evaluated numerically). On the contrary, the section x = 0 is very regular and 
Gaussian like.  

Things are very different when the parameter a in Equation (10) becomes 
negative: a = −1 has been chosen (the other parameters are unchanged). The po-
tential function is now double-well (see Figure 1 left). If there is sufficient ener-
gy, the displacement continuously moves from a well to another. This fact is re-
flected by the shape of the PDF (Figure 4): it has two modes, and the sections  
 

   
Figure 1. Potential function: 0a < , left. Dissipation function with 2 2c = −  ( )y x=  , 

right. 
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Figure 2. Joint PDF of the system with external and internal excitation (Equation (4)), a = 
1. Top: three-dimensional plot. Bottom: section 0x y= =  (left), section 0x =  (right). 
 

 
 

 
Figure 3. Joint PDF of the system with external and internal excitation (Equation (4)), a = 
0. Top: three-dimensional plot. Bottom: section 0x y= =  (left), section 0x =  (right). 
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Figure 4. Joint PDF of the system with external and internal excitation, 1a = −  (Equa-
tion (4)). Top: three-dimensional plot. Bottom: section 0x y= =  (left), section 0x =  
(right).  
 
in x-direction are always bimodal, while the sections in orthogonal direction are 
always unimodal Gaussian like. It is not new that the PDF of the displacement is 
bimodal in the case of double-well potential: as there are many and many papers 
that report this fact, we renounce to cite them. However, it is emphasized that in 
the present case in x-direction the PDF is rather flat and the saddle is not deep: 
see Figure 4, bottom, left. 

As advanced at the beginning of this section, the damping function is negative 
over a certain interval when 2 1c < − : it has been chosen 2 2c = −  in the next 
two examples, while a may be −1 or +1 with the other parameters unchanged. 

The negative damping even in a short interval changes the things dramatical-
ly. The overall aspect of the PDF is crater-like, but a cone is inner as it is revealed 
by the section 0x = , which has three modes (Figure 5). To writer’s knowledge, 
the examples of crater-like PDF’s are not numerous in literature (see the exam-
ple on page 185 of [2] and [16] [17]), but probably a crater-like PDF with a 
maximum in its interior has not yet presented under stochastic excitations only. 
Three-modal PDF’s are very rare. In [16] the system is acted by a harmonic ex-
citation and by a Gaussian with noise having an intensity small with respect to 
the intensity of the harmonic excitation; moreover, the nonlinear term too is as-
sumed to be small. The sections constantx =  may exhibit two peaks as in right 
plot at the bottom of Figure 5 or only one peak (for brevity’s sake the section  
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Figure 5. Joint PDF of the system with external and internal excitation, 1a = − , 2 2c = −  
(Equation (4)). Top: three-dimensional plot. Bottom: section 0x y= =  (left), section 

0x =  (right). 
 

1x =  is not shown). Another characteristic that has not been plotted is that the 
level curves (p = constant) tend to be angular nearly rectangular. 

In next application of this section the parameters are 21, 2a c= = − . The 
three-dimensional plot of the PDF and its sections are in Figure 6. Still the PDF 
is crater-like but with a simpler and more regular aspect. In both the sections 

0x =  and 0x =  the saddles are rather deep. However, with a sharper exami-
nation of the three-dimensional plot it can be concluded that in both x and x  
there are unimodal sections. 

3.2. Dynamic Systems with Internal Excitation Only 

In the case of external excitation only the constant 2k  is zero: for clarity’s sake 
we report the motion equation of the system, which is 

( ) ( ) ( ) ( ) ( ) ( )32 2
0 1 1 1 2 1 1 2 1 12  X t g X k w c c G X X t k w c X t k W t+ + + + =        (11) 

The joint PDF of X and X  is given by Equation (5). The response PSD is 
computed by using the method of Section 2.2. In the analyses a is worth −1, 
while 2c  takes the values 1, −2. The other parameters are: 0.5b = , 1 1c = , 

1 1k = , 1 1w = . 
In Figure 7 there are the results of the case 1a = − , 2 1c = . The joint PDF is 

bimodal in x-direction as the potential is double-well, while in the direction of 
the velocity is unimodal. It is recalled that the power spectral density of the  
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Figure 6. Joint PDF of the system with external and internal excitation, 1a = , 2 2c = −  
(Equation (4)). Top: three-dimensional plot. Bottom: section 0x y= =  (left), section 

0x =  (right). 
 

 
Figure 7. Joint PDF (Equation (5)) of the system with internal excitation of Equation 
(11), 1a = − , 2 1c =  (left). Power spectral density of the system according to the true 
linearization method (right). 
 
displacement X(t) is defined as 

( ) ( )1 e d
2π

i
XX XXS R

ω ωτ
ω

ω τ τ
+ −

−
= ∫                  (12) 

where ( )XXR τ  is the autocorrelation function of X(t), and 1i = −  (using the 
method of Sec. 2.2, it is not necessary to know ( )XXR τ . Thus, ( )XXS τ  extends 
on the whole real axis, and it is symmetric with respect to the vertical axis in the 
origin. It is expressed by Equation (6), in which the parameters are computed by 
means of the formulae in Equation (9): 0.9442, 3.6674e eω β= = . Being the li-
nearized frequency eω  less than one, the PSD has a maximum only, which is in 
the origin. 

Figure 8 reports the results of the case 1a = − , 2 1c = . For this value of 2c  
there is an interval in which the damping is negative, that causes a crater-like  
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Figure 8. Joint PDF (Equation (5)) of the system with internal excitation of Equation 
(11), 1a = − , 2 2c = −  (left). Power spectral density of the system according to the true 
linearization method (right). 
 
PDF as in Figure 5 and Figure 6. The power spectral density has two symmetric 
peaks that are apart from the origin. On the other hand the value of the PSD in 
the origin is not negligible so that the displacement has energy in a long interval 
of frequency. It might be contested that the power spectral densities of nonlinear 
systems have more peaks. The method adopted herein may be viewed as a first 
order method so that it is not capable of detecting secondary. However, if sec-
ondary peaks are detected [10] [11], these are not important. In this case, the li-
nearization parameters are: 5.2682, 3.8453e eω β= = . 

4. Concluding Remarks 

In this paper, the statistical characteristics of strongly nonlinear second order 
oscillators are studied by examining the joint probability density function of the 
response ,X X . It has been chosen a class of oscillators for which the Fokk-
er-Planck equation is exactly solvable in the equilibrium regime. In the general 
case, the excitation is formed by an external stationary Gaussian white noise and 
by an internal (parametric) Gaussian white noise proportional to the displace-
ment. But, in order to compute the power spectral density function of the dis-
placement the internal excitation is absent as the method of analysis, statistical 
linearization, is defective in the presence of internal excitations. 

Both the damping function and the restoring force are of polynomial form, 
being the polynomials defined by some real constants. For the Fokker-Planck 
equation having an analytical solution, strict relationships must be satisfied, 
which link the strengths of the white noises with the system parameters. This 
fact was already known [2] [3], and constitutes a serious limitation in using the 
Fokker-Planck equation method as in real systems the necessary relationships 
are rarely met1. The rationale of choosing such a type of system is to avoid using 
approximate methods or numerical ones. In fact, the paper is aimed to study as 

 

 

1It is recalled that the nonlinear system method allows replacing a dynamic system for which the 
FPK equation is no solvable by means of one for which the FPK is analytically solvable. However, the 
computations are generally cumbersome.  
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the response probability density function varies when the system parameters are 
varied. The applications show that the response statistics vary substantially by 
varying the constants that define the damping function and the restoring force 
of the system. Crater-like multimodal PDFs are detected that ceil complicated 
dynamics. To writer’s knowledge, such a type of studies are lacking in literature. 
Other systematic analyses are surely necessary. 

The dynamic characteristics of a system are difficult to be estimated, and in 
practice they are adapted to a linear model, whose response might be very far 
from the actual response, if in reality the oscillator is nonlinear. The lesson that 
can be drawn is that one must be very cautious in choosing a linear model. 

The determination of the power spectral density of a nonlinear system is still 
an open problem, for which the studies are not numerous [5]-[11]. In most cases 
the form of the spectral density is chosen a priori as that of a linear oscillator, 
but with random parameters. This is done in this paper too. As the FPK equa-
tion is exactly solvable in the cases considered here, the random parameters of 
the spectral density are obtained by averaging with respect to the exact probabil-
ity density function, which results in simpler calculations with respect to the 
methods of [6] [10] [11]. However, the present approach does not allow detect-
ing secondary peaks in the spectral density, and it is not applicable when the re-
sponse PDF is not known analytically. 
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