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Abstract 
 
An Electromagnetic (EM) radiation in dispersion less free space vacuum is represented by a photon, with 
corpuscular and wave nature. The discussions, for the past century aimed at the nature of photon inside a 
media having dispersion in the refraction property, other than free space. What about its nature if the space 
be of refractive index which is negative, is discussed in this paper. We call mechanical momentum, 
wave-momentum, and try to match our present theories with intriguing property of this ‘photon’ or pulse 
carrying EM energy packet, and more so we try to find its property energy, momentum inside a media a 
positive refractive media, and if the media show a negative refractive index behavior, then these queries are 
profound, and suitable explanations to these classical concepts of corpuscular-wave nature of photon inside 
these media are quest for the scientists dealing with these materials having negative index of refraction. Here 
some of this counterintuitive nature of corpuscular-wave nature of photon inside negative indexed material is 
brought out, with possible ‘new definition’ of its “wave-momentum”, the concept of ‘reactive energy’ inside 
negative indexed material, along with possible “new wave equation”. These definitions and expressions of 
‘wave-momentum’ and ‘reactive energy’ pertaining to negative indexed material are new and discussed and 
derived by classical means. 
 
Keywords: Negative Refractive Indexed Material (NRM), Group Refractive Index, Phase Refractive Index, 

Wave Momentum, Mechanical Momentum, Reactive Energy 

1. Introduction 
 
We have demonstrated negative refractive index ‘meta- 
material’ NRM plasmonic structures in Ka-band. In our 
experimental investigation, we have made these plas-
monic meta-material prisms of 45, 30 and 15 degrees to 
get enhanced transmittance of more than 15 dB from 
background; at negative angles indicating a refractive 
index of about –1.8, [1-7] .This paper is not aimed for 
this experimental design, where the meta-material real- 
ized by us is based on simple wire-array and Labyrinth 
resonators, [1-7], but to focus on possible theory of the 
wave mechanics coupled to particle nature of the EM 
radiation, energy and momentum transport anomalies, a 
possible new momentum energy description, for a ‘sin-
gle’ radiation pulse, single photon. Also in our repeated 
observations on numerical experiments we get, as to if a 
pulse of EM radiation is launched inside a negative re-

fractive index material (NRM), gets squeezed sharpened 
advanced, [1-7]. Though several approaches to explain 
these counterintuitive phenomena have been evolving, 
yet it is interesting if in the negative refractive index 
(NRM) parlance particle-wave theory be re-visited. Here 
we give possible classical explanations to these counter-
intuitive phenomena and also a new explanations re-
garding energy momentum, wave equation if applied to 
this negative indexed material: how shall they look, 
vis-à-vis positive indexed systems. We propose the con-
cept of reactive energy and expression for new wave- 
momentum for pulse of electromagnetic energy inside a 
medium (negative refractive indexed), with suitable 
derivation along with new wave equation. The research 
papers [8-10], discussed momentum and energy of this 
reversed electrodynamics in other contexts. Herein we 
are deriving the similar concepts with different approach, 
limiting to propagation of EM pulse inside NRM for a 
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single photon. 
The paper is organized in several sections. The Section 

2 discusses the observation of an electromagnetic pulse 
(a single photon) as it enters NRM region, from free 
space. This section also deliberates how an electromag-
netic pulse is formed as modulation of slowly varying 
message signal wave with a carrier frequency signal 
wave, and deliberates classical energy momentum con-
cept and phase and group velocity aspect. The Section 3 
and 4 revisits the dispersion of refractive index and de-
fines phase refractive index and group refractive index, 
and its relation to our negative refractive indexed mate-
rial (NRM) and observations. In the Sections 5, 6 and 7 
we present via a thought experiment about meaning of 
equivalence of constant quantity  to a quantity which 
is a product of phase and group velocity. We elaborate 
where they are equal that in wave guides and its similar-
ity in quantum mechanics expressions. We use these de-
veloped concepts and apply them in the expression of 
total energy to get the expressions for mechanical mo-
mentum, wave-momentum inside dispersive media and 
with media of NRM, in Section 8. Section 9 is devoted to 
bring out quantization of electromagnetic energy and 
momentum via Milloni’s quantization technique, [11] to 
Minkowski’s [12] and Abraham’s [13] definition of 
photon momentum; for a single ‘dressed’ photon case, 
while photon is in dispersive non-magnetic dielectric 
media. In Section 10 we discuss signal of reflection and 
transmission for a single electromagnetic pulse (photon) 
from NRM region, and state that the pulse entering the 
NRM should be termed as negative photon. We show 
that its character, inside NRM to a normal photon is dif-
ferent, and give a new definition to its wave-momentum, 
in Section 11. We discuss the momentum transfer con-
cepts of this single photon in NRM in Section 12, and 
state that the Minkowski [12] and Abraham momentum 
[13] are mechanical or corpuscular in nature, while 
wave-momentum has to be defined separately; and we 
formulate the same, with justification. We also show 
here results of the method of momentum transfer via 
reflection and transmission probabilities are same that we 
had obtained via method of total energy description by 
use of  as product of phase and group velocities in 
Section 8. In Section 13 we give interpretation to active 
and reactive energy concepts representing corpuscular 
and wave energies respectively, and their manifestations 
in NRM. From this concept we also bring out the de-
scription of corpuscular and wave momentum of single 
photon. Section 14 we give possible new Quantum-pre- 
scriptors to be operated on wave function to get a modi-
fied Schrodinger wave equation to represent NRM. 
Lastly we conclude our findings followed by list of ref-
erences. 

2c

2c

2. Observing Electromagnetic Pulse  
Propagation inside Negative Refractive  
Indexed Material 

 
A wave with crest and trough moving and carrying a 
Gaussian pulse a ‘packet’ of energy, in free space travel-
ling with speed of light c , (refer Figure 1(a)) when 
entering the NRM with phase refractive index 1pn   , 
will retard the wave-packets (group of frequencies) speed 
to g gv c n  (the gn  being group refractive index) in 
this case 3c , (refer Figures 1(b) and (c)) though the 
direction of travel of wave-packet, energy will be in 
same direction as was in free space; but the phases crests 
and troughs will here start travelling in opposite to 
free-space with phase velocity p . The group ve-
locity of the signal in this case is 

v  c
3gv  c . This is im-

plication of the phase and group refractive index in NRM. 
This we elaborate in next sections.  

The implication at NRM boundary of these opposite 
phases meeting will form a ‘cusp’ which be oscillating at 
the junction of NRM to the free space (refer Figure 1(b)) 
[6,7,14-20]. This phenomenon of retardation of the wave- 
packet envelope and change of direction of travel of crest 
& trough the phase, inside NRM gives the ‘pulse- 
sharpening’ effect, and flattening of wave-front effect, 
what we have been observing in our experiments [6] also, 
[18-20] (refer Figure 1(c)). 

The cusps at the NRM boundary is due to counter 
propagation of the ‘phases’ of the waves inside and out-
side the NRM, they are surface charges, and at the 
boundary Electric Field at this cusp oscillates, [6,7,18-26] 
as two sets of impinging wave fronts meet at the inter-
face with ENG (Epsilon Negative Material 0r   ). 
The same cusp will be obtained for the MNG, (Mu 
Negative Material 0r   ) and it may be argued that 
‘surface’ currents in that case for TE polarized incidence, 
will be at the boundary and magnetic field at the cusp 
then will oscillate, [6,7,18-26].  

However, these points are valid when the wave hits a 
slab with ENG and MNG i.e. NRM here however there 
will be propagating modes inside NRM-from evanescent 
[6,7,18-26]. In the case of Double Negative slab (NRM) 
there will be cusp formation at the boundary too. The 
formation of surface states or excitation of surface Plas-
mon poalriton is altogether different field in modern op-
tics, where matching of wave vectors and phase veloci-
ties are mandatory, we will not deal with this subject 
here; however this is important. 

Let a single electromagnetic pulse (a single photon) be 
travelling in free space. Observer sitting on the crest and 
another observer sitting on the envelope, travelling in 
free space they will find themselves at rest with respect 
to each other (Figure 1(a)). While the packet (single    
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Figure 1. Propagation of electromagnetic pulse. (a) Pulse propagating towards right in free space, having envelope (dashed) 
and phases (solid) traveling with velocity c in same direction; (b) The same pulse touches the media with NRM with phase 
index as −1, and group index as +3; shows that at the boundary there is ‘cusp’ formation and envelope retards. Here the 
phases travel in opposite direction and the group (envelope) travels in same direction. This cusp oscillates at the surface of the 
NRM boundary; (c) The pulse is traveling as envelope with squeezed envelope inside NRM towards the right direction with 
velocity +c/3 whereas the phases are traveling opposite to envelope, with velocity –c. The pulse is sharpened and squeezed. 
This is ideal case of loss-less NRM while lossy structures will have attenuated pulse as it travels. 

 
photon) enters the NRM, the two observers will find that 
they are moving away from each other (Figure 1(c)). 

This is this nature of wave-momentum that is genera-
tor of infinitesimal translations, and the infinitesimal 
translations of the “waves” corresponds to motion of its 
crests and troughs, and in NRM ‘opposed to’ the direc-
tion of motion of radiation. It is for this reason the 
wave-momentum points in the opposite direction to the 
mechanical momentum inside NRM. We will deal with 
these aspects that are momentum (corpuscular, mechani-
cal, and wave) for a single photon in NRM. 

One can demonstrate backward wave, by a strip-line 
circuit presented in Figure 2. The LHM is being emu-
lated via circuit techniques of strip lines, where the out-
put peak appears to arrive before the input peak; giving 
idea of faster than light propagation. This technique is 
called Periodically Loaded Transmission Line (PLTL) 
depicted in Figure 2. Here there is anomalous dispersion 
giving negative regions in dispersion characteristic [6] 
thereby giving similar effect of Negative Indexed Mate-
rial.  

The Figure 3 gives an idea what is an electromagnetic 
pulse. We shall relate corpuscular and wave nature to the 
same. The probability amplitude is what is of interest to 
say where the particle ought to be at space-time. Ampli-
tude to find a particle (photon) at a place can in some 
circumstances, vary in space and time in a manner say 

, where i( )e t kzA     is the frequency, which is re- 
lated classically to energy by E   , and -the wave 
number, is related to momentum through . In the 
Figure 3 the carrier wave frequency is 0.9 G Hz, thus 

k
p  k

 0.9GHz 2π  .We would say the particle (photon) 
had a definite momentum,  if wave number  were 
exactly that particular wave number (without any spread 
or uncertainty); that is a perfect wave, which goes on 
with same amplitude everywhere. The amplitude equa-
tion as described, then gives amplitude and probability 
(square of amplitude) for finding particle (photon) as 
function of space-time. Thus for a perfect wave the 
probability is constant which means probability to find 
particle (photon) is the same anywhere. This is not the 
situation with single particle (photon) travelling as in 
Figure 3. The amplitude modulated pulse as shown has 
maxima and dies out at both the sides. It was possible to 
get this by adding waves of nearly same 

p k

  and , in 
Figure 3 signals of 0.89 G Hz and 0.91 G Hz were added 
to get the electromagnetic pulse a single photon. Thus 
the particle (photon) is more likely to be near the 
maxima (lump) of Figure 3. After a few moments this 
wave with lump will be elsewhere, as it is traveling with 
group velocity 

k

gv , should be related to particle (photon) 
velocity. We have classical Energy momentum relativis- 

tic expressions as    2 2E 1 vmc c  2 , and  
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Figure 2. Periodically Loaded Transmission Line PLTL to make LHM. 
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Figure 3. Input output response to have a feel of ‘faster than light’ propagation through LHM. 
 

   2 2v 1 vp m c  . Eliminating  from these two  v

expressions lead us to . This relation 
is depicted in Figure 4, and will be used in subsequent 
sections. The  is related to 

2 2 2 2E p c m c  4

E   and  is related to 
, using them in the total energy expression of above we  

p
k

get  2 2 2 2 2 2 2c k m    c , a quantum-mechanical  

relation between frequency and wave number, for a 
quantum-mechanical amplitude wave representing a par-
ticle of mass . From this derived expression we get  m

 2 2 2 2c k m c    , which gives phase velocity  

pv k , as  2 2 2 2
pv c k k m c    

 . Differenti- 

ating, and substituting several related quantities we ob-
tain expression of the group velocity as  

 2 2 2 2 2 2d d     gv k kc k m c c k c p E . 

Recognizing that 2 E = vc p , we say that group velocity 
of the wave packet is particle velocity . Here we have 
a special case as 

v
2

p gv v c , which in general need not 
be equal, but are equivalent. This we shall deal in Sec-
tion 5 and use this concept further to arrive at momentum  
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Figure 4. The Energy Diagram for corpuscular and phase 
(wave) energy in free space. 
 
and energy transfer to medium, by a single photon. 
 
3. Phase and Group Refractive Index  

Revisiting for Negative Refractive Index  
Material 

 
Let us demarcate the two refractive indices, [14,15], and 
[16,17,27] and this demarcation is essential for explain-
ing the NRM theory. This concept is revisited here par-
ticularly to stress the Negative Refraction phenomena.  

Take the refractive index dispersive that is a function 
of frequency call it ( )pn   call it phase refractive index. 
This is basic refractive indices by which the velocity of 
phases of traveling gets modified inside a dispersive me-
dia. This we call phase index pn . Similarly velocity of a 
group of frequency travelling wave gets modulated in the 
media that gives group refractive index gn .  

In case of NRM the phase refractive index if it were 

0( ) 1pn     at a particular frequency 0 , it would 
imply that in that media the phases would be travelling 
with speed of light but in opposite direction. There is a 
backward wave inside NRM [6,7,14-17,21-26]. Refer 
Figure 1(c); where it is demonstrated that phase gets 
reversed while inside NRM compared to the free space 
propagation. Now if there is no change in the refractive 
index for phases with respect to frequency, meaning that 

 d  0dpn    , we call it dispersion less medium. In 
that case the phase velocity ( )pv   of the wave and 
group velocity ( )gv   of the wave are same. In the free 
space (refer Figure 1(a)) both group of frequencies and 
the crests and troughs of phases are travelling with 

0 0( ) ( )p gv v c   . In the free space we have same 
modulation for the phases of the signal and group of fre-
quency at a particular frequency and thus we say phase 
and group index are same 0 0( )p gn n ( ) 1   .  

If the media were dispersive we take phase refractive 
index as an ‘analytic’ function of the frequency, that is 

analytic ( )pn f   at a particular frequency 0 . Expan-
sion of Taylor series for ( )pn  , taking 0 0  , as in 
expression (1) [6,7,14-17,21-26], for this dispersive 
phase refractive index; taking the origin at 0  , 
gives group refractive index. That is frequency response 
of NRM behavior, (only to its first derivative term at the 

frequency 0  near electric plasma and magnetic plasma 
resonance where, 0r   and 0r 

 

 for NRM), is 
defined as group refractive index, which needs be posi-
tive.  

Meaning that  

      
 

d d

d d
at  0

p
g p p

n
n n n



0 0and gn

     
 





  
  (1) 

This demarcation of phase and group refractive index 
is very important in understating the behavior of NRM. 
NRM have unusual properties and in particular Snell’s 
law predicts that the refracted ray of EM signal on enter-
ing such a medium would be refracted on the same side 
of normal to the surface of the incident beam. The wave 
number that is pk n c  has the opposite sign to its 
value in positive indexed media, since 0pn   at 

0  . From (1) we can also write the expression of 
group velocity as  d dn c n ng g p pv c       , 
where the phase velocity is p p ; for a media hav-
ing dispersion in phase refractive index. It is shown [6,7, 
14-17,21-26], that however that Poynting vector,  

v c n

S E H   and flow of energy points in opposite direc-
tion to the wave vector k . Hence in the expected direc-
tion of the propagation of the EM wave, where the phase 
travels in opposite direction, is depicted in Figure 1(c). 
The existence of negative values of r  and r  tends 
to suggest “negative energy density”; but that is not the 
case when dispersion is taken into consideration. Indeed 
NRM can only exist if the NRM media is dispersive. 
Moreover causality (in form of Kramer-Kronigs relation) 
requires that group refractive index defined in (1) 

 0n   0g  and group velocity  are always 
positive [6,7,14-17,21-26]. 

 0 0gv 

 
4. Negative Phase Refractive Index and  

Positive Group Refractive Index for  
Negative Refractive Indexed Artificial  
Media a Prism 

 
In the introduction we have made a statement of our 
prism experiment showing a negative value of refractive 
index of –1.8. We clarify that the, observed negative 
refraction is for ‘phase-refractive-index’ as;  

 0n   1.8p , at 0 2π 33GHz  , with region of 
NRM as 0.85GHz  where as the group refractive 
index  0 0g , as this gives positive group velocity. 
We thus can say that we can observe a negative phase 
refractive index but the group refractive index is always 
shall be positive. Equation (1) should be read at a par-
ticular frequency 0

n 

  of interest, where we are observ-
ing a negative refractive index, in our experimental case 
it were around 33 GHz, [6]. 
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We can emulate and model by a simplest model as in 
(2). An NRM (phase refractive index), by a function such 
that 0  is a frequency below which the phase refractive 
index is negative and above which the phase refractive 
index is positive. [6,7,14-17,21-26], as (2) 

 
2
0
2

1pn





                (2) 

This (2) is simplest form of model where one gets 
ENG (Epsilon Negative) and MNG (Mu Negative) mate-
rial representation as    2 21r ep       and 

   2 21r mp      . Where ep  and mp  are re-
spectively electric and magnetic frequencies below which 
the permittivity and permeability are respectively nega-
tive. In (2) 0  is chosen in the region where 0( )r   
and 0r ( )  both are negative so that 0p ( ) 0n   . This 
is design issue dealt in [6,7,14-17,21-26], to realize arti-
ficially NRM. 

From (2) the differentiation with respect to   gives 
   2

0d d 2pn 3    , putting this and (2) in (1) we 
get 

 
2 2
0 0
2 3

1 2 1gn
2
0
2

  
 

  
   

       
   

      (3) 

We call r   and r   explicitly to distinguish NRM, 
for ENG and MNG with negative permittivity and nega-
tive permeability, respectively. For plasmonic system to 
achieve NRM we need 0r    and 0r  

1
, and for 

ideal case for p , we need r1n      and   1r    , 
[6,7,21-26]. Well one can have electric plasma and ma- 
gnetic plasma frequency overlapped, as 0ep mp     
below which the values of r   and r   are negatives, 
so we get NRM as (2). At the Surface Plasmon Polariton 
resonance frequency 0ep 2 0.7   , the value of 

1r    , [6,7,18,19,20]; thereby, giving the value of 
phase refractive index as, p ( ) 1n    . Also from (2) we 
find that p ( ) 1n    , when 2 2

0 2
3

 
n

. Putting this 
value of frequency, we obtain that g  when  

 at the frequency of operation Surface Mode 
Resonances, [6,7,18-20]. Thus we say that the phase re-
fractive index is negative for NRM and the group refrac-
tive index in positive for NRM. 

1pn  

 
5. Understanding the Physical Meaning of c2  

that Equivalent to Product of Phase  
Velocity and Group Velocity 

 
If a space between radiator and receiver is filled by vac-
uum that carrying between them is an electromagnetic 
radiation with energy E and to that we assign a linear 
momentum as Ep  c , is also accompanying by a 
mass 2Em c . Really radiator after emitting wave- 
packet recoils with velocity recoilv Ep M Mc  , 

where M  is the mass of radiator. The Wave packet 
reaches receiver sitting at distance Z after time t c Z , 
and the radiator moves a distance  

       2
rt ecoil

The requirement of stillness of inertia of entire system 
gives moment balance as 

v E Ec Mc Mc   Z Zz .  

  2EM c  Zz . This de-
scription could be interpreted as, when energy E is 
transported from radiator to a receiver the mass of radia-
tor gets decreased, but the mass of receiver gets in-
creased by  equal to m 2E c ! The question is for the 
multiplier as  , which is numerically equal to square 
of velocity of light in vacuum, which is used to justify 
the dimensions of the Energy Mass equation that is 

2c

2cEm  ! Well can this multiplier have different 
physical meaning?  

Let us associate gc as group velocity of the 
wave-packet, then in above paragraph the expression for 
time will be gt c Z . Let the phase velocity be associ-
ated to crest and trough be identified as wave-velocity as 

pc  then wave momentum correlation will be E pp c , 
this makes the accompanying mass as E p gm c c . In 
free space vacuum, both velocities are . p g

This validates our choice of multiplier 
c c 

2
c

p g , and 
this could be physical interpretation also. In the free 
space we have p g

c v v

v v c   and thus in free space case 
2cp gv v  , that is exactly equal. In media where pv  and 

gv  are different then  we replace by the product 2c

p g  not essentially equal to . In general the product 
of group velocity and phase velocity is equivalent (but 
not always equal to) the  term. 

v v 2c

2c
 
6. A Special Case of Propagation of  

Radiation inside Wave Guide Where c2  
Is Equal to vpvg 

 
This section demonstrate that the concepts developed in 
Section 5 has special case apart from free space radiation 
propagation where 2

p gc v v . In wave guide Electric 
Field E  must agree with all Maxwell’s equations in the 
free space inside the guide. Along with divergence of E  
must be zero in the free space inside the guide since there 
are no charges there. That is the same thing as saying 
that it must satisfy the wave Equation (4) [19] 

2 2 2 2

2 2 2 2 2 2

1
0y y y yE E E E

x y z c t

   
   

   
     (4) 

The wave guide of our example guides the waves in 
 direction with z x y  plane as its cross section hav-

ing  dimension (y cmb  ) shorter than x  dimension 
( cma  ). Our electric field E  has only a y  compo-
nent, and it doesn’t change with . This gives principal 
propagating mode with  as  

y
πxk a

   z z0 sin ey xk x xp i E E t k   . Equation (4), where 
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yE  doesn’t depend on  says that y
2

2 2
zk E

2
0x y y yk E E

c


              (5) 

Unless yE  is zero everywhere (which is not very in-
teresting) this (5) is correct if 

2
2 2
x zk k

2
0

c


                 (6) 

We have already fixed πxk a , as for principal 
mode, so the (6) tells us that there can be waves of type 
of principal mode (as we have assumed) if zk  is related 
to the frequency   so that (6) gets satisfied. In other 
words if 

   2 2 2 2πzk c  a            (7) 

The waves we assumed and described in the 
wave-guide are propagated in direction with value 
of wave number 

z 
zk  given by (7). This wave number 

from (7) tells us, for a given frequency   the speed 
with which nodes (or antinodes) of waves propagate 
down the guide, thus giving phase velocity p zv k . 
The cut-off frequency of wave guide is πc c a   be-
low which waves do not propagate down the guide [27]. 
Using these and (7) we get 

 2
1

p

c

c
v

 



             (8) 

For frequencies above cut-off where travelling waves 
exists the pv  in wave guide is greater than the speed of 
light in vacuum . Therefore, the wave guide simulates 
a material with refractive index less than unity. In order 
to know how fast the signals travel, we have to calculate 
the speed of pulses or modulations made by the interfer-
ence of waves of one frequency with one or more waves 
of slightly different frequencies. The speed of the enve-
lope of such group of waves is the group velocity, it is 

c

d dgv k . Taking derivative of (7) and utilizing the 
definitions of cut-off frequency we get 

 2
1g cv c                 (9) 

This is less than the speed of light in vacuum . y
Therefore geometric mean of pv  and gv  in this spe-

cial case is just equal to . c
 
7. Relation vpvg = c2 Similarity with  

Quantum Mechanics  
 
The Section 5 and Section 6 give us curiosity a similar 
relation in quantum mechanics. For a particle with any 
velocity (even relativistic) the momentum  and en-
ergy  are related by 

p
E

2 2 2 2E p c m c  4               (10) 

But in the quantum mechanics the energy is   and 
the momentum is   , that is  so we write (10) as k

2 2
2

2

m c
k

c


 



2

2
               (11) 

   2 2 2 2 2k c m c               (12) 

which looks very similar to (7), an interesting observa-
tion. The Equation (10) has two parts a corpuscular part 
represented by  and the wave-energy mo- 
mentum part represented by . These two com- 
ponents are represented by right angle triangle of Figure 
4. So we get total energy as (10) that is 

2Em mc
Ew pc

2 2E E Em w
2  . 

In the next sections we shall use this relation and see 
how, equivalence of  that is product of 2c pv  and gv , 
is utilized see have energy and momentum transport. 
 
8. Energy and Momentum Transfer to  

Media by a Photon 
 
Consider photon travelling in free space with mechanical 
energy  that is energy associated with its cor-
puscular part, and with phase or wave- momentum as 

2Em mc

0p c 
E
 having wave energy as , thus total 

energy is , having relation as below [27]. 
Ew pc

2 2 2 2E p c m c  4                (13) 

We depict this by diagram of Figure 4. Call pv  as 
phase velocity and gv  as group velocity of monochro-
matic EM signal travelling in the region 0 (d z 2) , 
where the ( ) 1pn    , with relative permeability 

1r   , and relative permittivity as r 1   . Conven-
tionally, we can write for the dispersion less ideal region 
( ( 2)dz ) that is; 

2
p gv v c                  (14) 

This we are assuming that  
   ; d dpv k c k  c    in a vacuum where EM 

waves are travelling is ideal condition. For negative in-
dexed material NRM (lossless and ideal case, with 

1pn   ) we can write, an approximate relation (15), for 
region ( ( 2) (3 2)d d z ), where we have assumed 
perfect condition as 1r r    

1
; with refractive in-

dex as 0p ( )n    , and 0( )gn 1  

c

 this enables the 
propagating modes inside the LHM slab, with (15). In 
(15) we assume gv  , inside LHM, (assumed ideally). 

2
p gv v c                  (15) 

This negative sign in right hand side is represent that 
group velocity and phase velocity are 180˚ apart from 
each other, magnitude being c. Energy mass momentum 
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expression for particle at speed of light in relativistic 
approach is (13), and substituting (14) we get 

   22 2 2 2 4 2 2E p g p gp c m c p v v m v v       (16) 

where E is total energy p is momentum of the particle 
(wave) which is present inside the meta-material; m is 
(rest) mass of the particle carrying the energy packet. 
The rest mass of photon is zero, but we can always asso-
ciate a mass 2Emm  c , for the Electro Magnetic En-
ergy carrying mechanical (corpuscular) energy . This 
mechanical energy is responsible for radiation positive 
radiation pressure. While the other part of energy we 
may associate to phase wave-momentum energy due to 
the wave nature associated with photon-movement or 
translation of phases “crests” and “trough’s” motion, in 
the media; call it infinitesimal spatial translations (vac-
uum or otherwise). 

Em

Manipulating (16) we get the following: 

   22 2 2

2
2 2

2

E

E

p g p g

p g p g

p v v m v v

p
m v v v v

m

 


  

 





        (17) 

The Equation (17) is for free-space, medium with 
positive phase and group velocity and both equal to . 
That is . 

c

p g

Now we use (17), for NRM medium and manipulate 
as below: 

v v c 

      

2 2 2 2 4

2 22 2 2 2

2
2

2

E

p g p g p g

p g p g

p c m c

p v v m v v m v v p v v

p
m v v v v

m

 

     

 
  

 

p g

 (18) 

Put in the Equation (18) 2
p gv v c , we get  

   

 

2 2
2 2 2 2 2 2 2

2

2 4 2 2

E

     

p
m c c m c c

m m

m c p c

           
    

  

p



)
)

  (19) 

The expression of (19) we split into two parts, the 
mechanical (corpuscular) energy part  and the 
energy transport by wave-momentum part  part. 
(Figure 5(b)) 

2 4(m c
( p c 2 2

The (19) show that particle energy is retained itself by 
the particle, inside NRM where the phase velocity is op-
posite to group velocity. In this case no (mechanical- 
corpuscular) energy is transferred to the NRM medium. 
This we derive from the part of rest mass-energy that is 
the first part of expression ; meaning that corpus-
cular energy by photon is retained. But the intriguing 

question is the energy due to wave-momentum part is 
imaginary negative, inside NRM. That is equal to  
(considering the positive root). We can ascribe to this 
imaginary “negative’-photon” a wave-momentum a value  

2mc

-ipc

0 c . (Compare Figures 5(a) and (b)) 
Now we retard the group velocity to 3gv c , (this is 

the case with NRM dispersive media with  n  1p   ) 
and have phase reversal with phase velocity inside NRM 
as pv c   then 2 3p gv v c , and put the same in (16) 
to get the following 

   

2 2 2
2 2

2

2 4 2 2 2 4 2 2

E
3 3

1 1 1
3

9 9 3

c c p
m

m

m c p c m c p c

   
    

   

    

  (20) 

Here the particle inside the NRM has less total cor-
puscular energy; the difference of energy has been ab-
sorbed by the media itself. Expression (20) suggests one 
third of the corpuscular energy 2(1 3)mc  is retained by 
the ‘photon’ inside the NRM slab, and the two thirds of 
its corpuscular energy are given to the slab. The energy 
due wave momentum of the photon manifests as imagi-
nary negative energy in this case as  1 3i pc , (again 
retaining the positive root). We can ascribe to this imagi-
nary “negative’-photon” a wave-momentum a value 

  01 3 c  . These concepts are expressed in Figure 
5(c). 
 
9. Electromagnetic Momentum and Energy  

Quantization for a Single Photon inside  
Weakly Dispersive Dielectric Media 

 
The peculiar situation about momentum of electromag-
netic radiation is long standing controversy, starting from 
Mikowski’s (subscripted M) definition [12] (1909) and 
followed by Abraham’s (subscripted A) definition [13] 
(1910). Where the former is referred to canonical one 
and later is referred to mechanical one classically. The 
traditional electromagnetic momentum density in a me-
dium [12] and [13], with averaging over a time period, 
are: 

 
     

 

   
 

2 2

2

, , ,
,

, ( , ) ( , )

,
            , ,

A

M

p

E r t H r t S r t
g r t

c c

g r t D r t B r t

S r t
E r t H r t

v



 

 

  

   (21) 

In the definition of Mg  above, (21), in dispersive 
media we have used 1 2( ) pv

( )
 

1 2c
, similar to if it was 

ree space then f 0 0   .     
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Figure 5. Energy diagrams of corpuscular and wave (phase) energy in NRM. 
 

The quantization scheme we will use a very simple 
one, starts with standard classical expression for the 
electromagnetic energy density in a dispersive dielectric 
medium (non-magnetic one to keep the derivation sim-
pler). For classical fields in such a dispersive medium 
[27], the effective energy is 

   2 23 3
0 0

d d1 1
d d

d 2 d 2emU r E
 
 

   r H   (22) 

For a non magnetic media, then 0  , and from 
above (22) we obtain, by putting 0 H B  (23) 

  23
0 0

0

d 1 1
d d

d 2 2emU r E

 

  
23r B     (23) 

Note that in (22) (23) we take average over the carrier 
period 0 02πT  , for a monochromatic radiation. 
Therefore ½ is appearing in the expressions, that is av-
erage of sinusoidal square. The amplitudes 0E  and 0B  
are the peak values of the field. For monochromatic 
fields of interest, the power Fourier spectrum is concen-
trated at a particular frequency 0  with spectral width 

0   . The medium is assumed to be weakly disper-
sive with respect to this wave packet (a single photon), 
that is 

   
0

0
p

p p

n
n n

 


 





  


       (24) 

The quantum theory of the electromagnetic field starts 
by Fourier expanding the vector potential and then sub-
stituting operators for the amplitude term. Consider the 

classical field described by a vector potential in Fourier 
series having Fourier (root mean squared) amplitude as 

 sA k , that is 

 
 

   

 
     

3
i( )

3

3

3

d
, e

2π

d
            e

2π

k r t
s s

s

t
s s

s

k
A r t A k k

k
A k k F r






 











e

e

   (25) 

The amplitudes in  space are in root mean squared 
(RMS). The term 

k

se  is unit ‘polarization’ vector in a 
plane perpendicular to   pk k k n c   . The   is 
function of wave vector  in (25) and k  F r  is mode 
function satisfying the transversality condition and 
Helmholtz equation that is 

 

   
2

2
2

0

0

F r

F r F r
c



 
 

 

  
        (26) 

From the vector potential (25) we obtain the electric 
and magnetic field from ( , ) ( , )B r t A r t   and  

( , ) ( ( , ) )E r t A r t t     (assuming scalar electric poten-
tial is a constant and using ), as ik 

 
 

     
3

3

d
, i e

2π

t
s s

s

k
E r t A k k F r

   e   (27) 

   

     
3

3

, ,

d
          i e

(2π)
t

s s
s

B r t A r t

k
k A k F r k




 

  e
  (28) 
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From (27) and (28) we get peak value of the field, 
from RMS expression of Fourier components as 

 
   

3

0 3

d
2

2π
s

s

k
E A k   F r  and  

 
   

3

0 3

d
2

2π
s s

s

k
B k A k F  er . We substitute  

this in (23) and write (29). 

 
     

 
   

3 2 22 3
3

3 2 2 23
3

0

dd
d

d2π

d
         d

2π

em s
s

s
s

k
U A k

k k
A k r F r














 

 

  es

r F r

  (29) 

We employ the identity  

   23 3d dsr F r r F r   e
2

  for the mode function,  

assuming the mode function is normalized such that this 
integral is unity we simplify (29) to get 

 
   

3 2 2
2

3
0

dd

d2π
em s

s

k k
U




 
    
  

 A k     (30) 

Also with this peak values, of 0E  and 0 0 0H B   
we can write time averaged magnitude of the Poynting 
flux as  

 

     

 

0 0

0

2
2

0

       2 2

        2

s s
s s

s
s

S k E H

A k k A

kc A k

 

 

 

   
 



 



k




1

. 

In this expression we manipulated by using  
2

0 0( )c   

E

 to get the Poynting flux, and the Fourier 
expansion as indicated above is for plane wave expan-
sion, thus  and H  are orthogonal, we get simplified 
Poynting or energy flux expression. This expression we 
will use later for momentum quantization. 

We use the relation 2
0pn    and  

   d d d dg p pv k c n n       , p pv c n to re- 
write (30) after a simple algebraic manipulation as 

 
 

23 2

0 3

d
2

2π

p
em s

s g

n ck
U A

v


  k         (31) 

This electro-magnetic energy is a harmonic oscillator 
can be expressed as sum of energies   of several ra-
diation oscillators with new amplitudes as ( )sa k , that is 

 
 

 
 

23 2

0 3

3 2

3

d
2

2π

d
        

2π

p
em s

s g

s s
s

n ck
U

v

k
a k












 

So we get by this quantization rule, a standard 

   
02

g
s

p

v
sA k

n c 



a k           (33) 

The Hamiltonian and the vector fields are represented 
as 

 
   

 
 

   

3
†

3

3
i i

3
0

d

2π

, e
22π

em s s s
s

g k r t
s s

s p
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a k a k
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A r t a k k
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e 



 
 







 e







(34) 

The quantized vector potential for free space would be, 
where 1pn  , gv c , that is photon in free space, is  

 
 

   
3

i i
3

0

d
, e e

22π

k r t
s s

s

k
A r t a k k 

 
   e


. In this  

section of Fourier expansion we are considering only the 
positive frequency  , and writing the Fourier series 
representation. Applying the quantization rule to the 
momentum density definitions (21) we get two momen-
tums as 
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s
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      (35) 
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     (36) 

A k

        (32) 

The    †
s sa k a k  operation with complex ampli-

tudes represent modal-number operator for photons in 
the -th mode, the expressions (35) and (36) imply that 
a single photon in a dispersive dielectric medium has the 
momentums 

k
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g p g g p
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p p
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v v v v n
p k k

n cc n

v
n cc

c



 

  

       
   


 

 
       (37) 

0

2 0 0
2

      

g p g p g p
M

p

p
p g

g

v n v n v n
p k k

v c c

n
n v

n cc

c



 

  

    
 


 

 
       (38) 

We will use these definitions and show that these 
photon momentums are actually mechanical in nature. 
 
10. Pulse of Electromagnetic Energy  

Travelling in Free Space and Inside  
Medium Its Transmission and  
Reflection at the Interface Boundary  

 
The discussion on this section is from classical electro-
dynamics principles [19]. Let us take following example 
a pulse of EM energy travelling in free-space at a par-
ticular frequency 0 , thus carrying an energy packet of 

0 . This packet of EM radiation may be represented as 
a Gaussian pulse; that will strike a medium (other than 
free-space) located at 0z , by (39), this is derived in 
(40) [27]. 

   0 0

2
2i / i

0 π e e exp
4

z c tE E t z c      
  

 
   (39) 

The field incident at 0z  is adequately represented 
by complex Electric field as: 

   

   

2in 2
0 0

2
2

0 0

d exp exp i

π exp i exp
4

E E kz t

E t z c t

    

 

     
 

        
 



z c


 

(40) 

The (39) expression is for travelling Electric field that 
has two parts. The phase part given inside the    
brackets, and multiplied by Gaussian travelling envelope  

in free space as  22exp 4t z c 

 , having variance  

2  i.e. the width of the packet (Full Width Half 
Maxima FWHM). The packet is travelling from left to 
right thus phases (crest and trough are translating in 

-direction) with a phase velocity p , and the 
group i.e. the envelope carrying the information / energy 
is travelling with group velocity gv  in the same 
direction of  in free space having , 
[19]. Refer Figure 1(a) the (39) is depicted there travel-
ing towards right with envelope as dashed and phases as 

solid lines. 

z v 

c

We investigate what happens when this (39) (40) in-
cident Gaussian Electromagnetic pulse enters a medium. 
This Gaussian pulse is centered at angular frequency 0  
and we assume that this energy beam is weakly focused 
so we take spatial spread in only one dimension. The 
reflection and refraction of Electromagnetic waves at an 
interface are described by Fresnel law. For normal inci-
dent [27] we have reflection coefficient ( )  and 
transmission coefficient ( )   described as (41) [27]; 
both being function of frequency since impedance of 
media is dispersive. 

   0

0 0

2
        

Z Z Z

Z Z Z
   


 

Z 
      (41) 

where Z    is impedance of medium and 0Z  is 
free space impedance. Note for a NRM with  

1r r     the 0Z Z , the incident beam suffers no 
reflection and is 100% transmitted. The forms of re-
flected and transmitted waves follow from the spectrum 
of the incidence pulse (40) as (42) and (43) [27]. 

 

   

2ref 2
0 0d exp

          exp i

E E

t z c

   

  

    
  


      (42) 

 

    

2trans 2
0 0d exp

           exp i p

E E

t n z c

   

   

    
   


     (43) 

It suffices for our purpose to assume that spectrum is 
narrow so that we can approximate ( )   and ( )   
by their values at 0  and ( )pn   by first two terms of 
Taylor series expansion (1). This leads to simple Gaus-
sian forms for (42) and (43) as (44) and (45) 

   

 

ref
0 0 0

2
2

π exp i

         exp
4

E E t

t z c

   



   
 
  
 

z c

     (44) 

   

 

trans
0 0 0

2
2

π exp i

           exp
4

p

g

E E t n

t n z c

   



    
 
  
 

z c

    (45) 

For 100% transmission when 0Z Z  say for NRM 
when 1r r    , with 0pn ( ) 1   and 0( ) 3gn    
we get ref 0E   since 0( ) 0   , 0( ) 1    and 
transmitted field inside NRM is thus given below (46). 

c

z 1p gn n  
 

 

trans
0 0

2
2

π exp i

           exp 3
4

E E t z c

t z c

 



    

  
 

          (46) 
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11. Energy Momentum of Gaussian  
Electromagnetic Pulse 

 
To this Gaussian pulse there is a packet of energy 0 ; 
we can associate momentum 0 c  with this pulse. 
The research papers [8-13], discuss momentum of energy 
of this reversed electrodynamics, in different context but 
our approach and discussions are differently oriented. 
Inside a medium we can have scenario where the mo-
mentum can have different interpretation if we say 

0pp n c   as phase ‘wave’ momentum inside me-
dium, then if the media has n we get confused by 
this negative momentum indicating a decrease in pres-
sure for radiation of electromagnetic wave, when it 
strikes a boundary. Call this momentum 

1p   , 

0pn c  as 
‘wave’ momentum, to distinguish from ‘mechanical’ 
momentum (47) (48) (containing group velocity and 
group index) as, [12], Minkowski or [13] Abraham;   

   2 2
1 0 0M m p g g pp p n n c v n c   2      (47) 

    2
2 0 0A m g gp p n c v c         (48) 

These definitions of mechanical momentum ensure 
that they are positive, in side NRM as well.  These me-
chanical momentum definitions (47) (48) give us confi-
dence thought that even with  still there is posi-
tive electromagnetic pressure, as against definition of 
‘wave’ momentum 

0pn 

0pp n c  , where we let believe 
if the electromagnetic pressure be negative in case of 
NRM. Only for phase reversal we make use of wave- 
momentum, and for energy transport and electromagnetic 
energy pressure we shall make use of mechanical mo-
mentum. The confusion is arising because of dual nature 
of radiation, particle as well as wave nature. 

When the Gaussian pulse or this Electromagnetic en-
ergy enters a slab with 1pn   and , assuming 
100% transmission into that slab we have different Elec-
tric field as from (45) 

1gn 

  0 0

2
2i / i

0 π e e exp
4

pn z c t
gE E t n z c

     
  

 
  (49) 

Now if we state that , and , then we 
will observe that the Gaussian pulse envelope will com-
press itself and keep propagating inside NRM block in 
the same direction of ,with group velocity 

1pn  

z

3gn 

 3c  but 
the phases will keep now translating in space in opposite 
direction but with phase velocity , refer Figure 1(c). 
The meeting of the two opposite phases, (refer Figure 
1(b)) at the NRM boundary gives rise to cusps-owing to 
surface modes, which travel and oscillate in direction 
perpendicular to propagation direction and along the 
surface of the interface [6,7,18-26].  

c

We pose a query that is, if (46) can be called a photon 

as it has now become inside NRM of our choice as: 

   0 0

2
2-i / iphoton

N 0 π e e exp 3
4

z c tE E t z c     
  

 
    

(50) 

is different from original that is  

 
2

2

0 0
( / )i / iphoton 4

P 0 π e e e
t z cz c tE E


 

    in the free space. 

The (50) seems to suggest that the pulse envelope and 
the phases travel are in opposite direction, this packet 
need not be thus called a photon packet rather ‘negative’ 
photon packet! (Refer Figure 1(c)). 

Here we are visualizing that electromagnetic pulse (39) 
is a ‘photon’. Our argument of “negative” photon stems 
from the fact that had there be 100% reflection to (39), 
 0 1    , then we get, a packet of original photon as 

om (44) where the envelope and phases are 
travelling in z
in (51), fr

  direction after hitting the boundary at 
0z  , thus retaining the character of original photon. 

   

 

 
2

2

0 0

0 0 0

2
2

( /-i / iphoton 4
0

          exp
4

π e e e
t z cz c t

P

E

t z c

E E


 




 

 
 
  
 

 

 (51) 

Reflected photon is original photon as incident photon, 
w

2. Single Photon Momentum Transfer to  

 
aking clue from the above discussions in Section 8 let 

ref π exp iE t z c      

)

hile transmitted photon inside NRM is “negative” pho-
ton (50).  
 
1

the Medium 

T
us define phase momentum, or wave-momentum of a 
photon packet as (52); this choice will be clear as we 
proceed for proof subsequently. 

 def
0 0

sgn
,

where 0;  sgn 1;  0;  sgn 1

p

c

p g

p p p p

n
p N

c cn n

n n n n

 
 

   

 

 

 (52) 

If the photon is in free space then (52), would be 

0c cp    or if it were in our chosen NRM with 
1pn    and 3gn  , then inside NRM this ‘negative’ 

ill hav e-momentum as  photon w e wav
  01 3cp c   .  

ssioWe start our discu n of effect of our single photon 
entering the medium from region of free space. If the 
photon is totally reflected then because of the momentum 
conservation it transfers 02 c  momentum to the 
medium. If the photon pas  the medium in that ses into
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case momentum will be transferred to the medium at the 
interface surface where there will be reflection and 
transmission, the momentum transferred to surface is 
given as: 

 media 01p R
c


  


 Tp            (53) 

where the reflection probability  and transmission R
probability T  [27] with respect to free-space imped-
ance 0Z  an mpedance of medium d i Z  are defined as 

 

2
42 0 0

2
0 0

 1
Z Z Z Z

R T R
Z Z Z Z

       
   (54) 

The probabilities are square of amplitude and reflec-
tio

 

n and transmission coefficients (amplitudes) are given 
by Fresnel relation, as   and   used in (54) 

Putting (54) in (53) and using p  of (53) we get the 
following algebraic manipulations 
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  
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 

 

 

 
     

 
      

 
    
   

  


 

  

   

 

 

   1 N T

 (55) 

Therefore with the definition of wave-momentum
(5

 as in 
3) we get momentum transferred to the media, at the 

surface as (56)  

 media 0 0
sgn2

1
p

p g

n
p

c c n n

   
   


 
 T



     (56) 

Using the mechanical momentum definitions of mo-
mentum obtained for a single photon in dispersive media 
in section-9, and doing the same algebraic manipulations 
of (55) we get the mechanical momentums transferred to 
the medium at the surface as: 

2
media 0 0

1

media 0 0
2

2
1

2
1

p g
m

g
m

n v
p T

c c c

v
p

c c c
T

 

 
    

 
 

   
 

 
        (57) 

All these momentums transferred to medium at the 
surface of all types (56) and (57) reduces to 

  

02 c  for 
a perfectly reflecting surface when
ing to change in momentum due
clear that mechanical momentum trans o medium 
by definition of will always be e as 

 0T 
 to reflectio

ferred t
 positiv

, correspond-
n. It is also 

2m gp  v c , 

e ca
ho

rfac
prope

wever the definition of 1mp , and cp  (53), when used 
the momentum transfer to the medium at su n be 
positive or negative depending on the rty of media. 

Let us take an example of ideal case whence 0R   
and 1T  , zero reflection and 100% transmission for, 
NRM with 1;  3;  3p g gn n v c    . The condition r 
this is 1r r

 fo
     , gives 0 Z Z hus 0R, t  . Here 

the photon passes into NRM with 100% probability 
( 1T  ). For this NRM condition the momentum transfer 
associated with mechanical momentums are ide  
corresp ing to

ntical,
ond  1 gv c , that is 2/3, of the original 

photon mech erred to the media. 
The mechanic entum r  by pho s (1/3) 
the original photon momentum. This process is depicted 
in ure 1, with explanations about momentum and 
energy in Figure 5. 

Whereas the wave entum transferred (56), for 
these values is 

anical momentum 
al mom etained ton i

 Fig

-mom

transf

 3 1 3 1.577   of the original 
momentum. The wave-momentum retained by ‘negative’ 
photon is  1 3  times the original momentum, 
pointing in opposite direction to wave-momentum of 
original photon. This also factually matches that inside 
N

,18-26]. The mecha

it exists)

RM phase velocity is opposite to the energy flow or 
group velocity [6,7 nism is shown in 
Figure 5(c). The case where 1;  1p gn n   , (hypo-
thetically if  the wave momentum transferred 
(56) to the medium is twice the original wave-momen- 
tum, and no mechanical momentum gets transferred to 
the media, well this is case of total internal reflection. 
For a medium 1pn   and 1gn  , the wave and me-
chanical momentum transferred  is zero, 
that is all the momentum is retained by photon. 

Let us consider the length of NRM slab, as Z , with 
1pn

to the medium

  , and 3gn  . The photon is retarded in com-
parison to its position in absence of medium by distance 
z , which is 

   1g gc v n   
Z

Zz      
gv

Z  is th kness of medium. The relativistic 
form of Newton’s first law of motion requires that the 

ntre-of-mas

    (58) 

where e thic

ce s energy of a system not subjected to any 
extern rce should be stationary or in uniform motion. 
Our m m is isolated from such ex
then t relevant total energy is sum of photon energy 

al fo
ediu

he 
ternal influence 

0  and the rest mass energy of the medium 2Mc , 
where M  is mass of medium. The fact that photon has 
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been retarded by the medium means the centre-of-mass- 
energy can only have been in uniform motion if the me-
dium has itself moved to the right by a distance z , 
then the moments are 

     2
0Mc   z z             (59) 

Substituting value of z  from (58) we get 

 0 1n
M


  

Z
z                (  

2 gc

This motion can only take place
takes pl  whi edium
re e 

60)

. The 
 if energy transfer 

ace from photon lst inside the m
quired velocity of th medium is  gv z Z , fr  

which we can readily obtain momentum 
om

medium 0
01

3gp Mv p
c c

 
 Z

     (61) 

where 0p  is the initial momentum of t e pho  in free 
space. Momentum conservation suggests ascribe 
the difference between the initial mom

2gv  
   

z

h ton
 that we 
entum and  

medium momentum to the photon momentum
medium. From previous section the mechanic
tum of photon in this NRM would be  

 this
 inside the 
al momen-

NRM 2 2 2 0
1 0 0 0

1 1

3 3m p g g pp n n c v n c p
c


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
     

(62) 

NRM 2 0
2 0 0

1 1

3 3m g gp n c v c p

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

    (63) 0

e

raham’s

 the

c

The motions of the recoil and momentum transf
the media, as described here can only take place if the 
momentum nature be of mechanical. Therefore the
tained definitions of the Minkowski’s and Ab  
momentums are mechanical in nature; the wave m
tum is different from them. The wave momentum and  
m

r to 

 ob-

omen-

echanical momentums of single photon in NRM is 
calculated in (20); which also corresponds to (62) and 
(63), refer Figure 5. The wave momentum of photon in- 
side this NRM slab is separate than Minkowski’s, Abra- 
ham’s momentum. 

 NRM 0
0

sgn 1

3

p

c

p g

n
p p

cn n


  


          (64) 

The (62) (63) states that; (1/3) of the mechanical mo-
mentum is retained by the ‘photon’ inside th
This is well equating as if 1/3 of ‘particular’ photon
puscular energy is retained by photo
whereas the wave-momentum retained by
NRM (64) is 

is NRM. 
 cor-

n inside NRM, 
 photon inside 

 1 3  times the original wave
m

e cor
ntum is transferred to the 

ton 
take nergy 

f the photon inside the NRM, what we termed as ‘reac-

 

momentum but the wave momentum corre-
onds rather to motion of the phase fronts. The differ-

e-
locities for a wave; the phase velocity is that at which the 

hase font propagate, while the pulse and its associated 

etic plus potential as 

 mo-
entum-also derived in (20). 

13. Imaginary ‘Reactive Energy’ and  
‘Wave-Momentum’ inside Medium 

 
In the previous sections we could balance the retardation 
effect stating that th puscular energy that comprising 
of mechanical photon mome
medium thereby inside NRM the retardation of pho

s place. What was intriguing was imaginary e
o
tive’ energy. This reactive energy of photon inside NRM 
is making the waves of phases travel backward inside 
NRM as contrary to positive indexed material. This reac-
tive energy, represented as perpendicular in Figure 5, is 
the translation of space which gives phase and only on 
which rides the information or packet or lump (Figure 3).
The active energy is the corpuscular part and the reactive 
energy is the wave part-both are needed be it positive 
indexed material negative indexed material or be it free 
space. The depiction is shown in the Figure 5. The dif-
ference in NRM is that the reactive energy is opposite to 
what is in free space or in positive indexed material. This 
reactive energy of manifests as wave-momentum, giving 
infinitesimal spatial translations; positive spatial transla-
tions in case of free space or positive indexed material 
and negative spatial translations in case of NRM. On 
these spatial translation the information, packet, photon 
travels with group velocity manifesting through me-
chanical momentum and active energy (the base part in 
Figure 5). 
 
14. Wave Equation for Negative Indexed  

Material 
 
We can identify the motion of the photon pulse with 
mechanical 
sp
ence is analogous to that between phase and group v

p
energy propagate at group velocity, thus the phase veloc-
ity does not appear in mechanical momentum expres-
sions used above. 

We now resort to classical wave as photon and see if 
we can distinguish between positive refractive indexed 
media and negative refractive indexed media, through 
wave equation. Classical Quantum Prescriptor and Sch- 
rodinger wave equation, where the total energy of system 
is expressed as Kin

2

E
2

p
T V V

m
                 (65) 

By putting standard Q prescriptors that is ip    
and  E i t      , and in addition asking these 
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nprescriptors to operate on wave functio   , the stan-
dard Schrodinger wave equation is obtained as 

2
2 i

2m t


V  

   
           (66) 

e plane wave soluti



Th on in vector form is  

   

(i / )( )e p rA    . With p k   as photon’s omentum 
vector linked with its wave vector, and E

 m
  , without 

any potential the wav  straigh e and we 
have 

e travels in t lin
2E 2p m  (as d w

free wave equation as 
0V  ) an e obtain potential 

2 2

2
0

2m x






             (67) 

This has two solutions 

 

E 

2 2i 2 i 2 E/e x x mx A  E/ em B     (68) 

(68) is case for positive E a propagating

    

 case 

  2 22 E/ 2 E/e ex m x mx A B             (69) 

(6  a bounded case. This bounded 
case is for surface wave happens for ENG 

0) 

9) is case for negative E
or MNG only. 

Let us take the Q prescriptors modified as (7

 

 exp ip k

i exp i ;  Ep i
x

;
t

  
    (70) 

   

Put them in potential free energy expression  

 
   


 



2 2p m , when we operate this on wave functiE on  , 
we get a new Schrodinger equation as 

2 2
2

2
e E 0    

2
i

m x
   

 



       

th

  (71) 

e solutions are for this wave equation then: 

  2 2i 2 E/ exp(i ) i 2 E/ exp(i )e ex m x mx A B
i exp(i ) i exp(i )        e exk xkA B

    

  
   (72) 

(72) is case for propagating case 

  2 22 E/ exp(i ) 2 E/ exp(ie ex m x mx A B )

exp(i ) exp(i )        e exk xkA B

 

  
    (73) 

(73) is case for bounded case 
that for 

   

A quick verification shall state 0   one 
media wh ight 

Handed Media (RHM), while 
gets wave equation for normal ere the R

π   gi
propagation in Left Handed Media (LHM
This also opens up a possibility of havi m in 

s gives a  descrip-
tio  the 

iffere

ve
) w

ng a syste
wave

s a wave 
ith NRM. 

between RHM and LHM.  Thi
n of RHM and LHM where in the later case phase 

is opposite the energy flow can be represented as differ-
ent Quantum prescriptors and d nt Schrodinger 

wave equations. At least mathematics hints so; the 
physical consequences are far from reality, at present for 
these new Q-prescriptors. The rotational component 

 exp i  may be personified as demarcation between 
phase velocity and group velocity and their relation to 
the phase and group indices, a future work! The future 
work shall also relate the relation between this rotational  

component with that of sgn p p gN n n n in new for- 

 of the canonical (wave) momentum. 
 
15. Conclusions 
 

 

 of negative index o
ortant questions abou

rmulas of 
he question of corpuscular energy transport 

aterial, formation of reactive 
aginary) energy inside the negative indexed 

ED MAX-
YSTEMS (LHM-Project). We acknowledge the 

ri. B. B. Biswas, Head Re-
ntrol Division-BARC, Dr. B. N. Jagtap, Head 

mulation

hysics. T

egative-im

ELL S

tor Co

Experimental realization f refraction 
has as a result raised imp t the valid-
ity of this negative value in well known fo
p
inside negative indexed m
(n
substances, the character of single photon pulse espe-
cially its momentum (corpuscular and wave) is addressed 
along with duality of particle-wave nature of photon. 
Also it has been shown the classical Minkowski’s and 
Abraham’s definition for single photon inside negative 
indexed material is mechanical in nature and is related to 
corpuscular part of wave-particle duality, which corre-
sponds to active energy, whereas we need separate defi-
nition of ‘wave-momentum’ corresponding to wave en-
ergy (reactive in nature), for spatial infinitesimal transla-
tions in forward or backward direction opposite to en-
ergy flow. Few new concepts regarding new wave-mo- 
mentum inside slab and reactive energy inside negative 
indexed material, and new generalized wave equation is 
proposed; to meet the future theoretical advances on 
these realized negative indexed materials.   
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