
International Journal of Modern Nonlinear Theory and Application, 2019, 8, 17-39 
http://www.scirp.org/journal/ijmnta 

ISSN Online: 2167-9487 
ISSN Print: 2167-9479 

 

DOI: 10.4236/ijmnta.2019.81002  Feb. 1, 2019 17 Int. J. Modern Nonlinear Theory and Application 
 

 
 
 

Numerical Treatment of Initial Value Problems 
of Nonlinear Ordinary Differential Equations by 
Duan-Rach-Wazwaz Modified Adomian 
Decomposition Method 

Ömür Umut*, Serpil Yaşar 

Department of Mathematics, Faculty of Arts and Sciences, Bolu Abant İzzet Baysal University, Bolu, Turkey 

 
 
 

Abstract 
We employ the Duan-Rach-Wazwaz modified Adomian decomposition me-
thod for solving initial value problems for the systems of nonlinear ordinary 
differential equations numerically. In order to confirm practicality, robust-
ness and reliability of the method, we compare the results from the modified 
Adomian decomposition method with those from the MATHEMATICA so-
lutions and also from the fourth-order Runge Kutta method solutions in 
some cases. Furthermore, we apply Padé approximants technique to improve 
the solutions of the modified decomposition method whenever the exact so-
lutions exist. 
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1. Introduction 

Phenomena as diverse as the oscillations of a suspension bridge, the spread of a 
disease, and the motion of the planets are governed by nonlinear differential eq-
uations. Most of these nonlinear equations do not have analytical solutions, so 
approximation and numerical techniques must be used. The Adomian decom-
position method (ADM), introduced by Adomian [1] [2] [3] [4] provides imme-
diate and visible symbolic terms of analytic solutions as well as numerical ap-

How to cite this paper: Umut, Ö. and Yaşar, 
S. (2019) Numerical Treatment of Initial Value 
Problems of Nonlinear Ordinary Differential 
Equations by Duan-Rach-Wazwaz Mod-
ified Adomian Decomposition Method. 
International Journal of Modern Nonlinear 
Theory and Application, 8, 17-39. 
https://doi.org/10.4236/ijmnta.2019.81002 
 
Received: November 6, 2018 
Accepted: January 29, 2019 
Published: February 1, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/ijmnta
https://doi.org/10.4236/ijmnta.2019.81002
http://www.scirp.org
https://doi.org/10.4236/ijmnta.2019.81002
http://creativecommons.org/licenses/by/4.0/


Ö. Umut, S. Yaşar 
 

 

DOI: 10.4236/ijmnta.2019.81002 18 Int. J. Modern Nonlinear Theory and Application 
 

proximate solutions to both linear and nonlinear problems without unphysical 
restrictive assumptions such as required by linearization, perturbation or discre-
tization [1] [2] [3] [4]. It provides the solution in a rapidly convergent series 
with easily computable components if the equation has a unique solution. The 
technique uses a decomposition of the nonlinear operator as a series of Adomian 
functions. Each term of the series is a generalized polynomial, called the Ado-
mian polynomial. The ADM has been successfully applied to a wide class of 
problems arising in applied sciences and engineering [1]-[14] over three dec-
ades. 

Adomian decomposition method has led to a number of modifications made 
by various researchers for different purposes such as to improve the accuracy, or 
increase the speed of convergence, or expand the application of the original me-
thod. Adomian and Rach [11] introduced modified Adomian polynomials which 
converge slightly faster than the original polynomials and are convenient for 
computer generation. Wazwaz [12] [13] used Padé approximants to the solution 
obtained using a modified decomposition method and found that not only does 
this improve the results, but also that the error decreases with the increase of the 
degree of the Padé approximants. The later modifications of ADM were pro-
posed by Wazwaz [14], Wazwaz and El-Sayed [15], Duan [16] [17] [18] [19] 
[20], Duan and Rach [21] [22] [23], Duan, Rach and Wazwaz [24] [25]. 

In this paper, we consider the applications of the Duan-Rach-Wazwaz mod-
ification of ADM to the initial value problems (IVPs) for the systems of nonli-
near ordinary differential equations (ODEs). In 2013, Duan, Rach and Wazwaz 
[25] presented a reliable modification of the ADM which bases on the previous 
modification schemes [14]-[24], and computes the solutions of variable coeffi-
cients higher-order nonlinear initial value problems (IVPs) and solutions of sys-
tems of coupled nonlinear IVPs. To implement these algorithms they also de-
signed multistage decomposition and numeric algorithms, and presented 
MATHEMATICA routines PSSOL and NSOL. 

The text is organized as follows. The basic principles of ADM are given in 
Section 2. For the numerical solutions of the IVPs for the systems of nonlinear 
differential ODEs, the frameworks of the Duan-Rach-Wazwaz modification are 
presented in Section 3. In Section 4, numerical treatments of the nonlinear IVPs 
using the modified technique and MATHEMATICA numerical solution are 
performed. The solutions of some problems are also computed by using 
fourth-order Runge Kutta method (RK4) and the comparisons of the results are 
presented. A brief conclusion is given in Section 5. All computations are carried 
out in MATHEMATICA. 

2. Basic Principles of the Adomian Decomposition Method 

Consider the general nonlinear ODE in the Adomian’s operator-theoretic form 

( ) ,Lu Ru Nu g t+ + =                        (1) 

where g is a given analytic function and u is the unknown solution, and L is the 

https://doi.org/10.4236/ijmnta.2019.81002


Ö. Umut, S. Yaşar 
 

 

DOI: 10.4236/ijmnta.2019.81002 19 Int. J. Modern Nonlinear Theory and Application 
 

linear operator to be inverted, R is the linear remainder operator, and N is an 
analytic nonlinear operator. We remark that the choice of the linear operator is 
designed to yield an easily invertible operator with resulting trivial integrations.  

This means that the choice is not unique. Generally we choose ( )d
d

n

nL
t

= ⋅  for  

n-th order ODEs, then its inverse 1L−  follows as the n-fold definite integration 
operator from 0t  to t. Hence, we have 1L u u ψ− = − , where ψ  is determined 
using the initial conditions. 

Application of 1L−  to each side of Equation (1) yields  

( ) ( ) ( ) ( )1 ,u t t L Ru t Nu tγ −= − +                    (2) 

where ( ) ( ) ( )1Lt gt tγ ψ −= + . 
The ADM decomposes the solution into a series  

( ) ( )
0

,i
i

ut tu
∞

=

= ∑                          (3) 

and then decomposes the nonlinear term into a series of Adomian polynomials  

( ) ( ) ( )( )0
0

, , ,i i
i

t tNu A u tu
∞

=

= ∑                    (4) 

where , 0iA i ≥  are called the Adomian polynomials and generated by the defi-
nitional formula  

0 0

1 ,
!

i
k

i ki
k

A f u
i

λ

λ
λ

∞

= =

 ∂  =   ∂   
∑                   (5) 

where λ  is a grouping parameter of convenience. The formulas of the first four 
Adomian polynomials for the one-variable simple analytic nonlinearity 

( ) ( )( )Nu t tf u=  are listed as  

( )0 0 ,A f u=  

( )1 0 1,A f u u′=  

( ) ( )
2
1

2 0 2 0 ,
2!
uA f u u f u′ ′′= +  

( ) ( ) ( ) ( )
3

3 1
3 0 3 0 1 2 0 ,

3!
uA f u u f u u u f u′ ′′= + +  

( ) ( ) ( ) ( ) ( ) ( )
2 2 4

3 42 1 2 1
4 0 4 0 1 3 0 0 .

2! 3! 4!
u u u uA f u u f u u u f u f u

 
′ ′′= + + + + 

 
 

In the Duan-Rach-Wazwaz modification, by using Duan’s Corollary 3 algo-
rithm [18] the one variable Adomian polynomials are written as  

( ) ( ) ( )0 0 0
1

, for 1,
i

kk
i i

k
A f u A C f u i

=

= = ≥∑              (6) 

where the coefficients k
iC  are defined recursively [18] as  

( )1 1
1 1

0

1, 1, 1 , 2 .
i k

k k
i i i j i j

j
C u i C j u C k i

i

−
−

+ − −
=

= ≥ = + ≤ ≤∑           (7) 
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The formulae in (7) does not involve the differentiation operator for the coef-
ficients k

iC  [20] [21] [22], but requires only addition and multiplication. So, it 
is more convenient for computer algebra systems. 

The definitional formula of the Adomian polynomials for decomposing mul-
tivariable nonlinear functions occurring in either single nonlinear nth-order 
ODEs ( )( )1, , , , nf u u u u −′ ′′

  or in systems of coupled nonlinear ODEs with mul-
tivariable nonlinearities are published by Adomian and Rach in [6]. By assuming 
f is an m-ary analytic function ( )1, , mf u u , where the ku , for 1 k m≤ ≤  are 
the unknown functions to be determined, the solutions qu , 1, ,q m=   and 
the nonlinear function ( )1, , mf u u  are decomposed as  

( ), 1
0 0

, 1, , and , , ,q q j m i
j i

u u q m f u u A
∞ ∞

= =

= = =∑ ∑              (8) 

where the multivariable Adomian polynomials iA  depend on the ( )1m i +  
solution components 1,0 1,1 1, 2,0 2,1 2, ,0 ,1 ,; ; ;i i m m m iu u u u u u u u u     and are de-
fined by [6]  

1, ,
0 0 0

1 , , ,
!

i
j j

i j m ji
j j

A f u u
i

λ

λ λ
λ

∞ ∞

= = =

 ∂
=  

∂  
∑ ∑                 (9) 

where λ  is a grouping parameter of convenience. The first m-variable Ado-
mian polynomial 0A  is ( )0 0A f u= , where ( )0 1,0 ,0mu u u=  . 

Substitution of the Adomian decomposition series for the solution ( )u t  and 
the series of Adomian polynomials for the nonlinearity Nu, Equations (3) and 
(4) respectively, into Equation (2) yields  

( ) ( ) ( ) ( )1

0 0 0
.i i i

i i i
u t t L R u t A tγ

∞ ∞ ∞
−

= = =

 = − +  
∑ ∑ ∑               (10) 

The solution components ( )iu t  may be determined by one of the several 
advantageous recursion schemes, which differ from another by the choice of the 
initial solution component ( )0u t , beginning with the classic Adomian recur-
sion scheme  

( ) ( ) ( ) ( ) ( )1
0 1, , 0,i i iu u L Rt t t t tu A iγ −

+   = = − + ≥           (11) 

where Adomian has chosen ( ) ( )0u t tγ=  as the initial solution. All the solution 
components ( ) , 0iu t i ≥  of the solution ( )u t  can be determined using Equa-
tion (11) and hence, the solution series follows immediately [25]. We remark 
that the convergence of the Adomian series has already been proved by several 
investigators [26] [27]. 

3. Duan-Rach-Wazwaz Modification of the Adomian  
Decomposition Method 

We illustrate the general frameworks of the Duan-Rach-Wazwaz modification 
of the Adomian decomposition method [25] for solving the first-order diffe-
rential equations and the systems of coupled nonlinear differential equations 
numerically. Throughout the section we assume the equations are in canonical 

https://doi.org/10.4236/ijmnta.2019.81002


Ö. Umut, S. Yaşar 
 

 

DOI: 10.4236/ijmnta.2019.81002 21 Int. J. Modern Nonlinear Theory and Application 
 

forms. 

3.1. IVP of the First-Order Nonlinear ODE 

We consider the following first-order nonlinear, nonhomogeneous differential 
equation subject to a bounded initial condition 

( ) ( ) ( ) ( ) ( )( ) ( )0 ,t t t tu u tu gtfα β′ + + =                (12) 

( ) 00 .u C=                            (13) 

We assume that the nonhomogeneous term g and system coefficients ( )0 tα  
and ( )tβ  are analytic functions. 

In Adomian’s operator-theoretic form, the Equation (12) can be written as  

( ) ( ) ( ) ( ) ,t tLu Ru Nu gt t+ + =                   (14) 

where L is the linear operator, R is the linear remainder operator and N is the 
nonlinear operator such that  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )0
d . , , .
d

t tL Ru u Nu f
t

t t tutα β= = =  

We note that, accordance by ([27], page 105) ( )f u  and g are continuously 
differentiable at any order and they can be expandable in entire series in the 
neighbourhood of 0t = , therefore, sum function ( )u t  is real analytic and in-
dicated series is absolutely, uniformly convergent. Therefore, the presentation 
formula for function ( )u t  is meaningful. 

From the assumption on the analyticity of the functions ( ) ( )0 ,t tα β  and 
( )g t  we write the respective Taylor expansion series as  

( )
( ) ( ) ( )

( ) ( )0
0 0, 0,

0 0

0 0
, , ,

! !

i i
i i

i i i i
i i

t t t t
i i

α β
α α α β β β

∞ ∞

= =

= = = =∑ ∑  

( )
( ) ( )

0

0
, .

!

i
i

i i
i

g
g t g t g

i

∞

=

= =∑  

Application of the Adomian decomposition series and Adomian polynomials 
series result  

( ) ( ) ( ) ( ) ( )( ) ( )
0 0 0

, , ,i i i
i i i

u u Nu At t t t t tf u B
∞ ∞ ∞

= = =

= = =∑ ∑ ∑       (15) 

where ( )f u  is the simple nonlinearity term and can be any analytic function 
in u and the corresponding one-variable Adomian polynomials ( )iB t  have the 
standard formula [6] [16] [17] [18] ( ) ( ) ( )( )0 , ,i i iB t B u t u t=  . 

By calculating the Cauchy products ( ) ( )0 t tuα  and ( ) ( )( )t tf uβ , respec-
tively we write 

( ) ( ) ( ) ( )0 0,
0 0

,
i

i m
i m i

i m
Ru u t ut t t tα α

∞
−

−
= =

= = ∑∑             (16) 

( ) ( ) ( )( ) ( )0
0 0

,
i

i m
i m i

i m
Nu ft t u tt tBβ β

∞
−

−
= =

= = ∑∑            (17) 

and hence  
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( ) ( )
0

.
i

i m
i i m i

m
A t t B tβ −

−
=

= ∑                     (18) 

We, next solve Equation (14) for ( )Lu t  and apply the one-fold definite 

integral operator ( )1
0

. d
t

L s− = ∫  to each side of the resulting equation to get  

( ) ( ) ( ) ( )1 1 1
0 ,t tu C L g L R L u tu t N− − −= + − −              (19) 

since ( ) ( ) ( ) ( )1
00L Lu u Ct tut u− = − = − . 

Equation (19) is the equivalent nonlinear Volterra integral equation for the 
solution ( )u t . 

Evaluating the integrals ( ) ( )1 1,L g Lt tRu− −  and ( )1L tNu− , we write  

( ) ( ) ( ) ( )
1

1 1
0, 0

0 0 0
, d ,

1 !

i i t i mi
i m m

i i m

g t
L g L Ru s ut s st

i
α

+∞ ∞
− − −

−
= = =

= =
+∑ ∑∑ ∫       (20) 

( ) ( )1
0

0 0
d .

i t i m
i m m

i m
L Nu s Bt s sβ

∞
− −

−
= =

= ∑∑ ∫                (21) 

By substituting Equations (15), (20) and (21) into Equation (19) we get the 
Adomian decomposition series as  

( ) ( ) ( )

( )

1

0 0, 0
0 0 0 0

0
0 0

d ,
1 !

d .

i i t i mi
i i m m

i i i m

i t i m
i m m

i m

g t
u s C s u s s

i

s B s s

α

β

+∞ ∞ ∞
−

−
= = = =

∞
−

−
= =

= + −
+

−

∑ ∑ ∑∑ ∫

∑∑ ∫
 

Therefore, the modified recursion scheme is written as  

( )0 0 ,u t C=  

( ) ( ) ( ) ( )
1

1 0,
0

d ,
1 !

i i
i

i i m i m m
m

g t
u u s Bt s s

i
α β

+

+ − −
=

 = − + + ∑           (22) 

for 0i ≥ , where the one-variable Adomian polynomials ( )mB t  are 

( ) ( ) ( )( )0 , , .m m mt tB tB u u=                    (23) 

As a result, the (m + 1)th-stage solution approximant is given by 
( ) ( )1 0

m
m iit tuφ + =

= ∑ , for 0m ≥ , in the limit, it yields the exact solution, that is, 
( ) ( ) ( )1 0lim lim m

m m m iit u t u tφ→∞ + →∞ =
= =∑ . 

By calculating the first several solution components using Equations (22) and 
(23), we derive the following sequence 

( ) ( ) ( )
0 0,0 0 0 0

0 0 0 1 1, ,
1

g c B
u C c u t c tt t

α β− −
= = = =  

( ) ( )
1 0,1 0 0,0 1 1 0 0 1 2 2

2 2 , ,
2

g c c B B
u t t c t

α α β β− − − −
= =   

By using induction, we find for 0i ≥  that 

( ) ( )
( )

0,0 1 1
1 1 ,

1

i
i i m m i m mm i i

i i

g c B
u t t c t

i
α β− −= + +

+ +

− +
= =

+
∑          (24) 

where the one-variable Adomian polynomials mB  depend solely on the solu-
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tion coefficients jc , for 0 j m≤ ≤ , and are determined as  

( ) ( ) ( ) ( )0 0 0 1 1 0 1 2 2 0 1 2 0, , , , , , , , , ,m m mB B c B B c c B B c c c B B c c= = = =     (25) 

instead of the solution components ( )ju t  for 0 j m≤ ≤ . 
Therefore, we have derived the desired Taylor expansion series for the solu-

tion ( )u t  as ( ) 0
i

iiu t c t∞

=
= ∑ . By inspection, from the Equation (25), the solu-

tion coefficients ic  are obtained as the nonlinear recurrence relation  

( )
( )

0,0
0 0 1, , 0,

1

i
i i m m i m mm

i

g c B
c C c i

i
α β− −=

+

− +
= = ≥

+
∑          (26) 

where the one-variable Adomian polynomials mB  are the same as shown in 
Equation (26). So, the rule of recursion for the solution coefficients of the first 
order canonical nonhomogeneous nonlinear IVP with a variable input and va-
riable system coefficients is obtained as ( )1 1 0 , ,n n ic c c c+ +=  , for 0n ≥ . 

3.2. IVP of the System of Coupled Nonlinear DEs 

We consider the following n-th order system of m-coupled nk-th order nonho-
mogeneous nonlinear IVPs 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )1

1
1

, , 1
1 0

11
1 1, , ; , , , ,

k
pk

q

m

nm
n rn

k k p n r p
p r

nn
k k m m k

u t t u t

t f u t u t u t u t g t

α

β

−
− −

− −
= =

−−

+

+ =

∑∑

  

     (27) 

( ) ,0 , 1 , 0 1, 1, 1,j
k k j k ku C k m j n m n= ≤ ≤ ≤ ≤ − ≥ ≥           (28) 

where ( ), ,k p j tα  and ( )k tβ  for 0 ,k p m≤ ≤ , 0 1pj n≤ ≤ − , , 1k pn n ≥  are 
variable system coefficients and ( )kg t  are variable inputs, and  

( )1 2max , , , , 1mn n n n m= ≥ . We assume that the system coefficients and the 
system inputs are analytic functions. We also assume that the problem is subject 
to appropriate ( 1

m
pp n

=∑ ) bounded initial conditions, i.e., kn  bounded initial 
conditions for each nkth-order nonlinear DE, 1 k m≤ ≤ . 

In Adomian’s operator-theoretic form Equation (27) can written as  

( ) ( ) ( ) ( ) ( ) ( )1 1, , , , ,k k k m k m kL u R u u N ut t t tu gt t+ + =          (29) 

where kL  are the linear operators, kR  are the linear remainder operators, i.e., 
generally sequential-order differential operators, and kN  are the nonlinear op-
erators such that  

( ) ( ) ( ) ( ) ( ) ( )
1

1
1 , , 1

1 0

d . , , , ,
d

pk
p

pk

nn m n r
k k m k p n r pn

p r
L R u u u

t
t t t tα

−
− −

− −
= =

= = ∑∑  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 11
1 1 1, , , , ; ; , , .mnn

k m k k m mN u u f u ut t t ut t tutβ −−=     

For a particular nkth-order nonlinear DE in the system represented by Equa-
tion (27) or Equation (29), we choose the corresponding solution ( )ku t  as the 
primary solution and the solutions ( )pu t , for p k≠ , as the secondary solu-
tions with respect to this same nkth-order DE. We assume that  
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( ) ( ) ( ), , 1 , ,0, , ,
pk p n k p kt t tα α β−   and ( )kg t  are analytic, and hence have the re-

lating Taylor expansion series  

( )
( ) ( ), ,

, , , , , , , ,
0

0
, , 1 , , 0 1,

!

i
k p ji

k p j k p j i k p j i p
i

t k p m j n
i

t
α

α α α
∞

=

= = ≤ ≤ ≤ ≤ −∑  

( )
( ) ( )

, ,
0

0
,

!

i
ki

k k i k i
i

t t
i

β
β β β

∞

=

= =∑  

( )
( ) ( )

, ,
0

0
, .

!

i
ki

k k i k i
i

g
g t g t g

i

∞

=

= =∑  

The linear differential operators kL  are invertible, and their inverse opera-
tors 1

kL−  are given by the kn -fold integral ( )1
0 0

. d d
t t

kL t t− = ∫ ∫   for the case 
of a system of m-coupled nkth-order IVPs, where the initial conditions are all 
specified at the origin. 

Application of the Adomian decomposition series and the series of the Ado-
mian polynomials, yields  

( ) ( ) ( ) ( ) ( ), 1 ,
0 0

, , , ,k k i k m k i
i i

t t tu u u u t tN A
∞ ∞

= =

= =∑ ∑  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )1 11
1 1 ,

0
, , ; ; , , ,mnn

k m m k i
i

t t t tf u u u u B t
∞

−−

=

= ∑          (30) 

where the multi-order differential nonlinearity  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )1 11
1 1 ,

0
, , ; ; , , mnn

k m m k i
i

f u u u ut t t t B t
∞

−−

=

= ∑    

can be any analytic function in ( ) ( ) ( ) ( ) ( ) ( )1 11
1 1, , ; ; , , mnn

m mt t t tu u u u −−
    and 

the relating 1
m

pp n
=∑ -variable Adomian polynomials ( ),k iB t  have the standard 

formula [6] [16] [17] [18].  

( ) ( ) ( ) ( ) ( ) ( ) ( )(
( ) ( ) ( ) ( ) ( ) ( ))

1 11 1
, , 1,0 1, 1,0 1,

1 1
,0 , ,0 ,

, , ; ; , , ; ;

, , ; ; , ,k k

n n
k i k i i i

n n
m m i m m i

tB B u u u u

u u u t u t

t t t t

t t

− −

− −

=    

  

 

or equivalently,  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

1 11 1

1 1

, , 1,0 1, 1, 1 1, 11 1

1 1

,0 , , 1 , 11 1

d d, , ; ; , , ; ;
d d

d d, , ; ; , ,
d d

k k

k kk k

n n

k i k i i n i nn n

n n

m m i m n m i nn n

t t t t tB B u u u u
t t

u u u t tut
t t

t

− −

− + −− −

− −

− + −− −


= 






   

  

  (31) 

The relating Cauchy products are  

( ) ( ) ( ) ( ) ( )
1

1
1 , , 1

1 0
, ,

p
p

p

nm n r
k m k p n r p

p r
R t t t u tu u α

−
− −

− −
= =

= ∑∑  

where  

( ) ( ) ( ) ( ) ( ), , , , , , , , ,
0 0 0 0

d ,
d

ji
jj i i s

k p j p k p j p s k p j i s p s jj
i s i s

t tu t u t u
t

t tα α α
∞ ∞ ∞

−
− +

= = = =

= =∑ ∑ ∑∑  

where 1pj n r= − − ,  
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( ) ( ) ( )

( )

1 , ,
0 0

, ,
0 0

, ,

,

i
k m k i k s

i p

i
i s

k i s k s
i s

t t t

t

N u u t B

t B

β

β

∞ ∞

= =

∞
−

−
= =

=

=

∑ ∑

∑∑



 

hence it is also determined that  

( ) ( ), , ,
0

i
k i k i k s

i
tA t B tβ

∞

=

= ∑  

Next we solve Equation (29) for ( )kL t  as  

( ) ( ) ( ) ( ) ( ) ( )1 1, , , ,k k k k m k mt t t tL u g R u N u ut tu= − −         (32) 

Applying the nk-fold integral operator 1
kL−  to each side of Equation (32), we 

obtain  

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1
1 1, , , ,k k k k k k k m k k mL L u L g L R ut t u L N ut t t u t− − − −= − −     (33) 

By integrating left side of Equation (33) and substituting the values specified 
in Equation (28) we obtain  

( ) ( )
1

1
,

0
.

!

k rn

k k k k k r
r

tL L u t u Ct
r

−
−

=

= − ∑                   (34) 

Substituting this on the left side of Equation (33), we obtain  

( ) ( ) ( ) ( ) ( ) ( )
1

1 1 1
, 1 1

0
, , , , .

!

k rn

k k r k k k k m k k m
r

t t t ttu C L g L R u u t u tL N u
r

−
− − −

=

= + − −∑    (35) 

Formula (35) is the equivalent system of m-coupled nonlinear Volterra 
integral equations. 

Evaluating the relating integrals, we get  

( ) ( ) ( )
,1

0
,

1

ki n
k i

k k
i k

g t
L g t

i i n

+∞
−

=

=
+ +∑


                  (36) 

( ) ( ) ( ) ( ) ( )
1

11 1
1 , , 1

1 0
, , ,

p
p

p

nm n r
k k m k k p n r p

p r
L R u t tu ut tL α

−
− −− −

− −
= =

= ∑∑         (37) 

where  

( ) ( ) ( ) ( )1 1
, , , , , ,

0 0

d ,
d

ji
j i s

k k p j p k p j i s k p s jj
i s

L u L t u
t

t t tα α
∞

− − −
− +

= =

= ∑∑         (38) 

where 1pj n r= − − ,  

( ) ( ) ( )1 1
1 , ,

0 0
, , .

i
i s

k k m k i s k k s
i s

L N u t Bt tu Lt β
∞

− − −
−

= =

= ∑∑           (39) 

Substitution of the Equations (30), (36), (37), (38) and (39) into Equation (35) 
yields the following system of m-coupled modified recursion schemes  

( ) ( ) ( )

( ) ( )

2

,0 ,0 ,1 ,1 ,2 ,2

1

, 1 , 1

, , , ,
2!

,
1 !

k

k k

k k k k k k

n

k n k n
k

t t t

t

tu C u tC u C

tu C
n

−

− −

= = =

=
−




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( )
( )

( )

( )

1
, , ,

0
1

1
1

, , 1 , , 11
0 1 0

d
d

k

k k

p

p pp

i n i
i s

k i n k i s k k sn
s

q

n ri m i
i s

k p n r i s k p s n rn r
s p r

tu L t B
i q

t

t
t

t

tL u

β

α

+
− −

+ −
=

=

− −
− −

− − − + − −− −
= = =

= −
+

×

∑
∏

∑∑∑
 

for 1 , , 1, 0k pk m n n i≤ ≤ ≥ ≥ . 
Therefore, the (s + 1)th-stage solution approximants ( ), 1k s t+Φ  are given by 

( ) ( ), 1 ,0
s

k s k iit tu+ =
Φ = ∑  for 0s ≥ . 

From the calculation of the first several solution components, we deduce the 
following sequence  

( ) ( ) ( ) ( )
1

1
,0 ,0 ,0 ,1 ,1 ,1 , 1 , 1, , ,

1 !

k
k

k k

n
n

k k k k k k k n k n
k

t t t tu C c u tC c t u c t
n

−
−

− −= = = = = =
−

  

( )

( ){ }
( )

,

11
, , , , , 1 , , 11 0 1

0

1

, , 0

k

pp

p p
k

k

k
k

k i n

i n rm n
k i k i s k s k p n r i s p s n rp r j

i ns
n
q

i n
k n

u

g B s j c
t

i q

c t i

t

β α

+

− −−
− − − − + − −= = =

+=

=

+

 − + + 
=

+

= ≥

∑ ∑ ∑ ∏

∏
  

(40) 

where the ( 1
m

pp n
=∑ )-variable Adomian polynomials ,k sB  are now constants 

and depend merely on the solution coefficients ,k jc  for 0 1pj n≤ ≤ − . They 
are determined by induction as  

( ) ( ) ( )(
( ) ( ) )
1 11 1

, , 1,0 1, 1,0 1,

1 1
,0 , ,0 ,

, , ; ; , , ; ;

, , ; ; , ,m m

n p
k s k s s s

n n
m m s m m s

B t B c c c c

c c c c

− −

− −

=    

  

          (41) 

or equivalently,  

( ){ } ( ){ }(
( ){ } ( ){ } )

1 1

1 1

1 1
, , 1,0 1, 1, 1 1, 11 1

1 1
,0 , , 1 , 11 1

, , ; ; , , ; ;

, , ; , ,m m

m m

n n
k s k s s n s nj j

n n
m m s m n m s nj j

B B c c j c s j c

c c j c s j c

− −
− + −= =

− −
− + −= =

= +

+

∏ ∏

∏ ∏

   

 

   (42) 

instead of the solution components ( ),k ju t  and solution derivative components 
( ) ( ),
i

k ju t  for 1 ,0k m j s≤ ≤ ≤ ≤  and 0 1pq n≤ ≤ − . Thus we have derived the 
desired Taylor expansion series for each of the m solutions ( )ku t  as 

( ) ,0
i

k k iiu c tt ∞

=
= ∑  where the solution coefficients ,k ic  are given by the system 

of m-coupled nonlinear recurrence relations, obtained from inspection of Equa-
tion (39), as  

,
, ,1 ,0 1,

!
k j

k j p

c
c k m j n

j
= ≤ ≤ ≤ ≤ −  

( ){ }
( )

11
, , , , , 1 , , 11 0 1

0
,

1

,

pp

p p

k k

i n rm n
k i k i s k s k p n r i s p s n rp r j

s
k i n n

q

g B s j c
c

i q

β α− −−
− − − − + − −= = =

=
+

=

 − + + 
=

+

∑ ∑ ∑ ∏

∏
  

(43) 
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0, 1i m≥ ≥  and 1kn ≥ , where the ( 1
m

pp n
=∑ )-variable Adomian polynomials 

,k sB  depend on the solution coefficients ,k jc , for 0 1pj n≤ ≤ − , as in Equa-
tion (41). Consequently, the rule of recursion for the solution coefficients of the 
canonical nth-order system of m-coupled nkth order nonhomogeneous nonli-
near IVPs with variable inputs and variable system coefficients are given as  

( )1, , 1,0 1, 1 ,0 , 1 , 1 , 1, , ; ; , , ; ; , , ,
k k p m mk i n k i n i n p p i n m n m s nc c c c c c c c+ + + − + − − + −=       

for 0,1 ,i k p m≥ ≤ ≤ . 

4. Examples 

In this section, we consider several examples of IVPs for the systems of nonli-
near ODEs, which have either quadratic or cubic nonlinearities but, exhibit ra-
ther complex behavior. The modified numeric solutions of the problems are ob-
tained by using MATHEMATICA routines PSSOL and NSOL [25]. To compare 
the results, we have calculated the MATHEMATICA numeric solutions for the 
systems of differential equations by using the command “NDSolve”. We also 
compute numerical solutions using RK4 in examples 1, 2 and 3. Moreover, we 
use diagonal Padé approximants [28] [29] [30] to improve the modified results 
and compute errors in the approximations in the examples 2 and 3 since the ex-
act solutions of these problems are known. 

Example 1. Consider the Abel differential equation of the first kind in canon-
ical form. It is a first order, nonhomogeneous differential equation with a cubic 
nonlinearity [31].  

( )3 1sin , 0 ,
2

y t y y′ = − =                     (44) 

over the interval 0 40t≤ ≤ . This nonlinear IVP does not have an exact solution 
but, a detailed qualitative analysis can be found in [31]. 

Running PSSOL by taking 4n =  to output 5th-degree or equivalently 6-term 
approximation to the solution as  

( ) 2 3 4 5
5

1 35 37 457 1823 .
2 8 64 256 12288 16384

ty t t t t t= − + − + −  

We note that the order of approximation is ( )5O t . 
Running NSOL for 4n =  and step size 0.05h =  to output the numeric so-

lution 5y  of order 5 which is depicted with red line as the curve of 5th order 
approximation 5y  and parametric plot on the left in Figure 1. 

As the comparison, MATHEMATICA numeric solution and RK4 solution are 
found and the curves and the parametric plots of the results are sketched with 
blue and black lines in the middle and on the right, respectively in Figure 1. 

From Figure 1, we conclude that this problem has a limit cycle. 
Example 2. Consider the first-order nonhomogeneous nonlinear differential 

equation with a quadratic nonlinearity [32]  

( )2 2 2, 0 0,y y y y′ = + + =                   (45) 
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Figure 1. The curves and parametric plots of the 5th-degree MADM approximate solu-
tion (red), MATHEMATICA numeric solution (blue) and RK4 solution (black) using the 
step-size 0.05h =  over the interval 0 40t≤ ≤ . 
 

on the interval 0 π 6t≤ ≤ . It has the exact solution ( ) π1 tan
4

y t t = − + + 
 

. 

Running PSSOL routine for 6,7n =  and 8 to output the 13-term, 15-term 
and 17-term approximants of the solution, respectively, as  

( ) 2 3 4 5 6 7 8
12

9 10 11 12

8 10 64 244 2176 5542 2
3 3 15 45 315 64

31744 202084 2830336 2162212
2835 13175 155925 93555

y t t t t t t t t t

t t t t

= + + + + + + +

+ + + +
 

( ) 2 3 4 5 6 7 8
14

9 10 11 12

13 14

8 10 64 244 2176 5542 2
3 3 15 45 315 64

31744 202084 2830336 2162212
2835 13175 155925 93555

178946048 1594887848
6081075 42567525

y t t t t t t t t t

t t t t

t t

= + + + + + + +

+ + + +

+ +

 

( ) 2 3 4 5 6 7 8
16

9 10 11 12

13 14

8 10 64 244 2176 5542 2
3 3 15 45 315 64

31744 202084 2830336 2162212
2835 13175 155925 93555

178946048 1594887848
6081075 42567525

y t t t t t t t t t

t t t t

t t

= + + + + + + +

+ + + +

+ +

 

Indeed, these are the first 12, 14 and 16 terms of the Taylor series of the  

function ( ) π1 tan
4

y t t = − + + 
 

 about the point 0t = , respectively. So, if it is  

possible to compute all terms of the series we shall see that the Adomian series 
for this problem is simply that Taylor series. All terms of the series are positive 
so, absolute convergence is simply the convergence of the series. 

Since 
π 31 tan 1
4 2

t − + + ≤ + 
 

 on the interval 
π0
6

t≤ ≤ , and  

https://doi.org/10.4236/ijmnta.2019.81002


Ö. Umut, S. Yaşar 
 

 

DOI: 10.4236/ijmnta.2019.81002 29 Int. J. Modern Nonlinear Theory and Application 
 

( ) ( ) ( )2

0

d0 2
d

n
n

n
y

f y
y =

= ≤  for any n, accordance by ([26], page 105) the  

respective truncation errors are 

12

6

32 1
2

7.44224 10
12!

τ −

 
+  

 = = × ,  

14

7

32 1
2

1.42386 10
14!

τ −

 
+  

 = = ×  and 

16

8

32 1
2

2.06581 10
16!

τ −

 
+  

 = = × . 

We note that in these computations approximation orders are ( ) ( )12 14,O t O t  
and ( )16O t , respectively. 

The curves of the computed approximants and the exact solution are plotted 
in Figure 2(a). 

The MATHEMATICA command ( ) { }{ }2 1 , ,0, ,nPadeApproximant y t t n n+    
for 6,7n =  and 8 output the [6/6], [7/7] and [8/8] diagonal Padé-approximants 
of the 13-term, 15-term and 17-term approximants, generated by the routine 
PSSOL respectively. The curves of the Padé approximants and the exact solution 
are plotted in Figure 2(b). 

Running NSOL routine for 11,13n = , and 15 and step size 0.05h =  to gen-
erate numeric solutions on the interval 0 π 6t≤ ≤ . In Figure 2(c), the curves 
of these NSOL numeric solutions and the exact solution are depicted. 

As a comparison RK4 solution is computed and depicted with exact solution 
in Figure 2(d). 
 

 
Figure 2. PSSOL outputs and exact solution in (a), Padé-approximants and exact solution 
in (b), outputs of the NSOL routine and exact solution in (c) and RK4 results and exact 
solution in (d) for n = 6, 7 and 8. 
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We denote ( ) [ ] ( ){ }2 1n nP t n n y t+=  and consider the absolute error function 
( ) ( ) ( )n nE t P t y t= −  for ( )nP t  on the interval 0 π 6t≤ ≤  and the maximal 

error parameter ( )0 π 6maxn t nME E t≤ ≤=  for 6,7n = , and 8. 
In Figure 3, the curves of the absolute error function ( )nE t  for 6,7n = , 

and 8 are given. 
From Figure 3 we can conclude that the ADM can be combined with the di-

agonal Padé approximants to estimate the blow-up time [28]. Since π 4t =  is 
the blow-up time for this problem, this can be seen from the figure. 

The maximal error parameters nME  for 6,7n =  and 8 are given in Table 
1. 

Table 1 shows that the maximal errors for the exact solution decrease ap-
proximately at an exponential rate. 

Example 3. Consider the 2-dimensional system of nonlinear differential equa-
tions with quadratic nonlinearity [32]  

( ) ( )2, , 0 1, 0 0,x xy y x x y′ ′= = = =                 (46) 

over the interval 
π0
3

t≤ ≤ . The exact solutions are ( ) ( )sec , tanx t t y t t= = . 

Running PSSOL for 10n =  to generate 11-term approximants 11x  and 11y  
of the solutions ( )x t  and ( )y t , respectively as  

( )

( )

2 4 6 8 10

11

3 5 7 9 11

11

5 61 277 505211 , and
2 24 720 8064 3628800

2 17 62 1382 .
3 15 315 2835 155925

t t t t tx t

t t t t ty t t

= + + + + +

= + + + + +

 

We note that the respective orders of the approximation are ( )10O t  and  
 

 
Figure 3. The absolute error function for n = 6 (Red line), n = 7 (Blue line) and n = 8 
(Purple line). 
 
Table 1. The maximal error parameters MEn for n = 6, 7 and 8. 

n 6 7 8 

nME  121.0747 10−×  151.33227 10−×  168.88178 10−×  
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( )11O t . 
The MATHEMATICA command ( ) { }{ }11 , ,0, 5,5PadeApproximant x t t    

and the MATHEMATICA command ( ) { }{ }11 , ,0, 5,5PadeApproximant y t t    
for 5n =  output [5/5] Padé approximants for ( )11x t  and ( )11y t  as 

[ ] [ ]

2 4 3 5

2 4 2 4

11 131
252 15120 9 945Pade 5 5 , and Pade 5 5 .

115 313 41 1
252 15120 9 63

t t t tt
x y

t t t t

+ + − +
= =

− + − +
 

The outputs of the routines PSSOL, NSOL and RK4 for 10,12n =  and 14 and 
correspondingly the outputs of the MATHEMATICA command PadeApproximant  
for 5,6n =  and 7 together with the exact solutions x and y are depicted in Fig-
ures 4(a)-(c). 

In Figure 5, the absolute errors for the exact solutions ( )x t  and ( )y t  are 
sketched in (a) and (b), respectively. 

We list the maximal error parameters nME  for 5,6n =  and 7 in Table 2. 
 

 
Figure 4. The curves of PSSOL, NSOL, RK4 outputs and exact solution for n = 5, 6 and 7 in (a), (b) and (c), respectively. 

 

 

Figure 5. (a) The absolute error for the x-component of the solution, ( ) secx t t= ; (b) The absolute error for the y-component of 

the solution, ( ) tany t t= . 
 

Table 2. The maximal error parameters MEn for n = 5, 6 and 7. 

n 5 6 7 

( )nME x  61.23274 10×  114.35763 10×  114.35763 10×  

( )nME y  73.17247 10×  92.25313 10×  111.16824 10×  
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From Table 2 we can conclude that the maximal error parameters for both 
components of the exact solution decrease approximately at an exponential rate. 

Example 4. Consider a three-dimensional system of autonomous nonlinear 
DE with quadratic nonlinearities [33]  

2, , ,x y ax yz y by xz z cxy dz ex′ ′ ′= − + = − = − −            (47) 

where , ,x y z∈R , and the state variables, and , , ,a b c d +∈R  and e∈R  are 
constant parameters of the system. This system has many interesting complex 
behaviors and exhibits chaotic behavior over a wide range of parameters. It can 
show two coexisting one-wing, a single two-wing, three-and four-wing when its 
parameters are chosen appropriately. 

When we set 1.6, 3, 8, 11a b c d= = = =  and 0.5e =  the system can display 
two existing one-wing chaotic attractors with different initial conditions as 
shown in Figure 6. The right (colored in blue) and left (colored in red) attrac-
tors are constructed with initial values ( )0.5,1,0.5−  and ( )0.5, 1,0.5− − , re-
spectively by running NSOL for 10n =  and step-size 0.02h =  (left) and 
MATHEMATICA (right) on the interval 0 40t≤ ≤ . 

For the values of the parameters 8, 4, 8, 11a b c d= = = =  and 0.5e = , the 
system generates two existing two-wing chaotic attractors as shown in Figure 7. 
Each wing of the attractor has a helical form. Running NSOL by taking 10n =  
and step-size 0.02h =  outputs the 11th-order numeric solutions for the system 
on the interval 0 40t≤ ≤ . Two existing two-wing chaotic attractor generated by 
modified ADM is sketched on the left and the MATHEMATICA result is 
sketched on the right of Figure 7. For each attractor we use the above initial 
conditions. 

With the choice of the parameters 4.84, 3, 8, 11a b c d= = = =  and 0.5e =  
the system generates a three-wing attractor for the initial values as 
( ) ( ) ( )0 0.5, 0 1, 0 0.5x y z= − = − =  as seen in Figure 8. On the left 11th-order 

modified ADM numeric solution for 10n =  and step-size 0.02h = , generated 
by routine NSOL and on the right MATHEMATICA numeric solution on the  
 

 
Figure 6. Phase portraits of the two coexisting one-wing chaotic attractors for 

1.6, 3, 8, 11, 0.5a b c d e= = = = =  blue line: ( ) ( ) ( )0 0.5, 0 1, 0 0.5x y z= − = = , red line: 

( ) ( ) ( )0 0.5, 0 1, 0 0.5x y z= − = − =  generated by modified ADM (left) and MATHEMATICA 

(right). 
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Figure 7. Phase portraits of two existing two-wing chaotic attractors for 

8, 4, 8, 11, 0.5a b c d e= = = = =  generated by modified ADM (left) and MATHEMATICA 
(right). 
 

 
Figure 8. Phase portraits of a single three-wing chaotic attractor for 

4.84, 3, 8, 11, 0.5a b c d e= = = = =  and ( ) ( ) ( )0 0.5, 0 1, 0 0.5x y z= − = − =  generated by 

modified ADM (left) and MATHEMATICA (right). 
 
interval 0 40t≤ ≤  are displayed. 

It can also display a four-wing chaotic attractor with parameters 
8.8, 3, 8, 11a b c d= = = =  and 0.5e =  and initial values  

( ) ( ) ( )0 0.5, 0 1, 0 0.5x y z= − = − =  as illustrated in Figure 9. 
Another four-wing chaotic attractor exists for  

9.93, 3, 8, 11, 0.5a b c d e= = = = =  and for ( ) ( ) ( )0 0.5, 0 1, 0 0.5x y z= − = − =  
as shown in Figure 10.  

Example 5. Consider 4-dimensional system of nonlinear DE with quadratic 
nonlinearities [34]  

( )2 2, , , ,
2
zx y z w y x z a y y bz w c z dw ′ ′ ′ ′= − − − = = − − = − − 

 
     (48) 

where a, b, c, and d are real parameters. 
The system in (48) exhibits hypertoroidal behavior when the parameters are 

chosen as 0.2, 0, 0.04a b d c= = = =  and the initial values are taken as 
( ) ( ) ( ) ( )0 0, 0 0.75, 0 0.2, 0 0.75x y z w= = = = −  as shown in Figure 11. 
Running NSOL for 4n =  and step-size 0.05h =  outputs the 5th-order 

numeric solutions for the system on the interval 0 200t≤ ≤ . The 3-dimensional 
x-y-z (top) and y-z-w (bottom) projections of the modified results  
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Figure 9. Phase portraits of a four-wing chaotic attractor for 8.8, 3, 8,a b c= = =
11, 0.5d e= = . 11th-order modified ADM numeric solution (left) and MATHEMATICA 

numeric solution (right) on the interval 0 40t≤ ≤ . 
 

 

Figure 10. Phase portraits of a four-wing chaotic attractor for 9.93, 3, 8,a b c= = =
11, 0.5d e= = . 11th-order modified ADM numeric solution (left) and MATHEMATICA 

numeric solution (right) on the interval 0 40t≤ ≤ . 
 
are depicted on the left of Figure 11. To compare the results, we also calculated 
MATHEMATICA numeric solutions of the system are also depicted on the right 
of Figure 11. 

Example 6. Consider the following seven-dimensional third-order hyperchaotic 
system [35] with cubic nonlinearity in each equation  
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Figure 11. Hyperchaotic behavior of system (48) two different 3-dimensional x-y-z and 
y-z-w projections of the system are shown in A and B, respectively. The parameter values 
are 0.2, 0, 0.04a b d c= = = =  and the initial conditions are ( ) ( )0 0, 0 0.75,x y= =

( ) ( )0 0.2, 0 0.75z w= = − . On the left NSOL results and on the right MATHEMATICA 

results are depicted. 
 

1 1 5 5 6 7

2 2 6 1 6 7

3 3 5 1 2 7

4 4 1 1 2 3

,
,
,

,

x ax ax bx x x
x cx dx x x x
x ax ax gx x x
x ax ex x x x

′ = − + −
′ = − − +
′ = − + −
′ = − + +

 

5 5 7 2 3 4

6 6 5 3 4 5

7 7 2 5 6

,
,
.

x ax ex x x x
x ex ex x x x
x bx fx mx x

′ = − + −
′ = − + +
′ = − + −

                    (49) 

Since it has a chaotic attractor when we set 15a = , 5b = , 0.5c = , 25d = , 
10e = , 4f = , 0.1g = , 1.5m =  and the initial conditions are taken as 

( )1 0 0.1x = , ( )2 0 0.1x = , ( )3 0 0.0x = , ( )4 0 0.2x = − , ( )5 0 0.2x = − , 
( )6 0 0.0x = , ( )7 0 0.3x =  we consider the numeric solution of the system (49) 

for those values over the interval 0 40t≤ ≤ . 
Running NSOL by taking 4n =  and step-size 0.02h =  generates 5th-order 

numeric solutions on the interval for the system. The 2- and 3-dimensional pro-
jections of the modified results are plotted on the left of Figure 12 and Figure 
13. To compare the results, we also calculated MATHEMATICA numeric solu-
tion of the system and plotted on the right of Figure 12 and Figure 13. 
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Figure 12. Two-dimensional x1-x6, x2-x4 and x2-x6 projections of system (49) gener-
ated by NSOL (on the left) and MATHEMATICA (on the right). 

 

 
Figure 13. 3-dimensional x1-x2-x6 and x2-x4-x6 projections of system (49) generated 
by NSOL (left) and MATHEMATICA (right). 
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5. Conclusion 

In this study, we use the Duan-Rach-Wazwaz modified Adomian decomposition 
method for solving nonlinear IVPs of the first order nonlinear ODEs and two, 
three, four and seven dimensional systems of nonlinear ODEs. To show the 
computational accuracy of the technique we consider homogeneous and non-
homogeneous equations with variable and constant systems coefficients. In each 
example, the solution of the modified technique is compared with that from 
MATHEMATICA solution and with the exact solution if it is known. In addi-
tion, in examples 1, 2 and 3 the numeric solutions are also computed by RK4. 
We have seen that the modification results closely agree with MATHEMATICA 
and RK4 solutions and also with exact solutions, if available. However, we have 
obtained modified solutions over a bigger time step than MATHEMATICA and 
RK4 solutions. Moreover, different problems have been solved in order to con-
firm the robustness of the modification over a wide variety of ODEs. Therefore, 
it may be concluded that the method has the ability of applying all types of non-
linear ODEs provided uniqueness of the solutions. 
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