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Abstract 
In this paper, a method is presented by which it is possible to determine a 
distance between the sun and a star as well as a velocity at which the star 
moves relative to the sun. In order to achieve this, it is sufficient to know 
three positions of the star and the unit vectors determined by the star and three 
arbitrarily chosen points that do not lie on a single line. The method has been 
tested using the data generated by a computer program as well as real data ob-
tained by Gaia mission. In the first case, we found the huge differences com-
paring the results derived by the method to the results calculated by the tradi-
tional parallax method. In the second case also, there are large differences be-
tween the obtained and the expected results, but primarily because of the form 
of the input data, that is not fully suited to the proposed method. Under certain 
conditions, one would be able to find a velocity at which the sun is moving re-
garding a stationary coordinate system (K) that will be defined later on. 
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1. Introduction 

Stellar parallax is defined as an apparent change in position of a star against the 
background of more distant objects, due to the movement of the earth revolving 
around the sun. In order to calculate a distance to the star, it is enough to know 
a distance from the earth to the sun that serves as a base line and the parallax 
angle that is obtained by two the measurements that have been made six months 
apart. There are some shortcomings of this method. Firstly, the base line is fixed 
thus the angles measured are always extremely small. Secondly, the base line is 
directly affected by the movement of the sun but it is not taken into the consid-
eration. Thirdly, during the time of six months, a star is moving and changing its 
position which also affects a parallax angle. In some cases, a parallax has a nega-
tive value. It is believed that it may arise when the true parallax is smaller than 
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its error. This assumption can only be partially correct, because some large nega-
tive parallaxes have been measured. In this novel method, sun and star move-
ments regarding the stationary frame (K) are taken into the calculation, which in 
certain cases could cause a negative parallax. The base line becomes a “base tri-
angle” and its size is limited only by the time between the two measurements. 

2. Conversion Spherical Coordinates into Cartesian  
Coordinates 

First we will derive well known formulas for transformation from Spherical into 
Cartesian coordinate system and vice versa. Let suppose that a point A is given 
by Spherical coordinates ( ),λ β  (Figure 1). 

1SA =                             (1) 

( ),x xySA SAλ = ∠
                       

(2) 

( ),xySA SAβ = ∠
                        

(3) 

( ) ( )cos cosxa β λ= ∗                       (4) 

( ) ( )cos sinya β λ= ∗                       (5) 

( )sinza β=                           (6) 

1x xSA a= ∗                           (7) 

1y ySA a= ∗                           (8) 

1z zSA a= ∗                           (9) 

, ,x y za a a =  a
                       

(10) 

1=a                            (11) 

and vice versa if vector , ,x y za a a =  a  is known then, we can easily find its 
Spherical coordinates. 

( )arcsin zaβ =                         (12) 

atan2 y

x

a
a

λ
 

=  
                         

(13) 

 

 
Figure 1. Transformation from spherical to cartesian coordinate system. 
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3. The Heliocentric-Ecliptic Coordinate System 

Let the ( ), ,S x y z  represents “The Heliocentric-Ecliptic Coordinate System” 
(Figure 2). Its origin S is at the center of the sun and the fundamental plane 
( ),S x y  coincides with the “ecliptic”, plane of the Earth’s revolution about the 

sun. On the first day of Spring a line joining the center of the Earth and the cen-
ter of the sun points in the direction of positive x-axis. This is called a vernal 
equinox direction. 

The use of The Heliocentric-Ecliptic Coordinate System is obsolete, but in 
present paper we will use it for a better explanation of the proposed method. 

Direction 0SX  represents Vernal equinox, and 1t  the time needed the 
Earth to move from the point 0X  to the point A. We can say that (Figure 2) 
depicts classical explanation how Earth revolves about the sun. 

Now we will present a different interpretation of the same event. A stationary 
coordinate system marked as well by (K) is joined to this referential frame. The 
coordinate system (K) is not moving but rather remains fixed with respect to 
distant objects while the sun is moving by some velocity v  (Figure 3) regard-
ing the coordinate system (K). 

In astronomy, an epoch is a moment in time used as a reference point, so we 
need to specify a certain time T0 (TT-Terrestrial Time), which we are using as a 
reference. In other words an epoch is a moment for when a given position of an 
astronomical object is valid. 

 

 
Figure 2. The position of the Earth in case the Sun is stationary regarding the (K). 

 

 
Figure 3. The position of the Earth in case the Sun is moving by velocity v  regarding 
the (K). 
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Finally we can suppose that for a certain period of time, a set of distant objects, 
the coordinate system (K) and Epoch uniquely determine Stationary Reference 
Frame (K). From Figure 2, it follows 

149597870.7 kmAU =                     (14) 

R AU=                           (15) 

0SA R=                           (16) 

365.25 24 60 60yearsec = × × ×                  (17) 

1 1 0t T T= −                          (18) 

12
cosx

tA R
yearsec

 Π∗
= ∗  

                      
(19) 

12
siny

tA R
yearsec

 Π∗
= ∗  

                      
(20) 

From Figure 3, it follows 

, ,x y zv v v =  v
                       

(21) 

1 1 0t T T= −
                         

(22) 

1x xS t v′ = ∗
                         

(23) 

1y yS t v′ = ∗
                         

(24) 

1z zS t v′ = ∗
                         

(25) 

1
1

2
cosx x

tA t v R
yearsec

 Π∗
= ∗ + ∗  

                   
(26) 

1
1

2
siny y

tA t v R
yearsec

 Π∗
= ∗ + ∗  

                   
(27) 

1z zA t v= ∗
                         

(28) 

( ), ,x x x y zA A v v v=
                      

(29) 

( ), ,y y x y zA A v v v=
                      

(30) 

( ), ,z z x y zA A v v v=
                      

(31) 

where 1T  (TT time) is expressed in seconds 
Thus we have got the coordinates for the center of the Earth (marked by A) 

regarding the (K). Assuming that the time 1t  is known from Equations (29)-(31) 
it follows that the coordinates of point A can be expressed as a function of the 
velocity v . For now v  has been considered as a varible. 

The astrometric processing uses a coordinate system known as the Barycentric 
Coordinate Reference System. It has its origin at the solar-system barycentre. Its 
axes are non-rotating with respect to objects at cosmological distances and coin-
cide with those of the International Celestial Reference Frame. 

The positions and proper motions of non-solar system objects derived from 
Gaia Data Release 1 observations are given in a reference frame that is aligned 
with the International Celestial Reference Frame (ICRF) [1]. ICRF coordinates 
are approximately the same as equatorial coordinates. 
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4. Coordinate Transformations 

The basis vectors in the equatorial system are here denoted [ ], ,x y z , The basis 
vectors in the ecliptic and galactic systems are respectively denoted [ ], ,k k kx y z  
and , ,g g gx y z   . Thus, the arbitrary direction u may be written in terms of the 
equatorial, ecliptic and galactic coordinates in the following way [2]. 

The transformation between the equatorial and ecliptic systems is given by: 

[ ] [ ], , , ,k k kx y z x y z AK= ∗  

and 

[ ] [ ] T, , , ,k k kx y z x y z AK= ∗  

where 

23.4392911obliquity =  (J2000.0 degrees) 

π1 0.409092802283074
180

obliquityobliquity ∗
= =  

( ) ( )
( ) ( )

1 0 0
0 cos 1 sin 1
0 sin 1 cos 1

1 0 0
0 0.917482062146320 0.397777155753990
0 0.397777155753990 0.9174820621463209

AK obliquity obliquity
obliquity obliquity

 
 = − 
  
 
 = − 
          

(32) 

1 T

1 0 0
0 0.917482062146320 0.397777155753990
0 0.397777155753990 0.9174820621463209

AK AK−

 
 = =  
 −    

(33) 

The transformation between the equatorial and galactic systems is given by: 

[ ], , , ,g g gx y z x y z AG  = ∗   

where: 

0.0548755604 0.4941094279 0.8676661490
0.8734370902 0.4448296300 0.1980763734
0.4838350155 0.7469822445 0.4559837762

AG
− + − 
 = − − − 
 − + +       

(34) 

1 T

0.0548755604 0.8734370902 0.4838350155
0.4941094279 0.4448296300 0.7469822445
0.8676661490 0.1980763734 0.4559837762

AG AG−

− − − 
 = = + − + 
 − − +    

(35) 

The transformation between the galactic and ecliptic systems is given by: 

[ ] 1 T, , , , , , *k k k g g g g g gx y z x y z AG AK x y z AG AK−   = ∗ ∗ = ∗     

[ ], , , ,

0.0548755604 0.9938213789915562 0.09647662628973946
0.4941094279 0.1109907336202431 0.8622858750870472

0.867666149 3.515899626965191 10 4 0.4971471917263599

k k k g g gx y z x y z

E

 =  
− − − 
 ∗ − 
 − − − 

(36) 
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The peculiar motion of the Sun [3] with respect to the LSR is 

( ) [ ]( ), , 11.1,12.24,7.25 km sU V W =  

The velocity of the LSR about the center of the Milky Way is about 220 
(km/sec), thus Sun velocity in Galactic coordinates is given by following equa-
tion 

[ ]11.1,232.24,7.25g =v                     (37) 

Sun velocity in Ecliptic coordinates regarding the frame (K) 

[ ]107.85, 36.81,202.79k = −v                   (38) 

Of course, this can not be taken as a fully accurate value. 

5. Determining a Distance to a Star and Its Velocity  
regarding the Coordinate System (K) 

We assume that a star is moving with a uniform, rectilinear space motion u  
relative to the referential frame (K). At the some momemt T (that will be derived 
later on) a signal has been emitted from the star (Figure 4). Postion of the star is  
marked by A′ . At the instant t (Terrestrial Time) the signal has been recevied at 
the point A on the Earth. Now we measure right ascension (α ) and declination 
(δ ) of the star regarding the equatorial coordinate system and transform them 
into the ecliptic longitude and ecliptic latitude ( )1 1,λ β  that can be also ex-
pressed as a unit vector , ,x y ya a a =  a  regarding the coordinate system (K). 
In this way the direction in which the star lies has been determined. In order to 
find a position (in pollar coordinates) of the star at the moment t we need to de-
termine a distance between points A and A′ . 

Analogously we have the similiar situation with the pairs of points ( ),B B′  
and ( ),C C′ . Note that the points ,A B′ ′  and C′  are collinear while the 
points A, B and C form a triangle. 

1d AA′=                           (39) 

2d BB′=                           (40) 

 

 
Figure 4. Three positions of a star and the corresponding Earth positions regarding the 
stationary coordinate system (K). 
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3d CC′=                           (41) 

, ,x y za a a =  a
                       

(42) 

( ) ( )1 1cos cosxa β λ= ∗                     (43) 

( ) ( )1 1cos sinya β λ= ∗                      (44) 

( )1sinza β=                         (45) 

, ,x y zb b b =  b
                        

(46) 

( ) ( )2 2cos cosxb β λ= ∗                     (47) 

( ) ( )2 2cos sinyb β λ= ∗                     (48) 

( )2sinzb β=                         (49) 

, ,x y zc c c =  c
                        

(50) 

( ) ( )3 3cos cosxc β λ= ∗                      (51) 

( ) ( )3 3cos sinyc β λ= ∗                      (52) 

( )3sinzc β=                         (53) 

( ), ,x y zA A A A=
                       

(54) 

1
1

2
cosx x

tA t v R
yearsec

 Π∗
= ∗ + ∗  

                   
(55) 

1
1

2
siny y

tA t v R
yearsec

 Π∗
= ∗ + ∗  

                   
(56) 

1z zA t v= ∗                          (57) 

( ), ,x y zB B B B=
                       

(58) 

2
2

2
cosx x

tB t v R
yearsec

 Π∗
= ∗ + ∗  

                   
(59) 

2
2

2
siny y

tB t v R
yearsec

 Π∗
= ∗ + ∗  

                   
(60) 

2z zB t v= ∗                          (61) 

( ), ,x y zC C C C=
                       

(62) 

3
3

2
cosx x

t
C t v R

yearsec
Π∗ 

= ∗ + ∗  
                   

(63) 

3
3

2
siny y

t
C t v R

yearsec
Π∗ 

= ∗ + ∗  
                   

(64) 

3z zC t v= ∗                          (65) 

( ), ,x y zA A A A′ ′ ′ ′=
                       

(66) 

1x x xA A a d′ = + ∗                        (67) 

1y y yA A a d′ = + ∗                        (68) 
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1z z zA A a d′ = + ∗                        (69) 

( ), ,x y zB B B B′ ′ ′ ′=
                       

(70) 

2x x xB B b d′ = + ∗                        (71) 

2y y yB B b d′ = + ∗                        (72) 

2z z zB B b d′ = + ∗                        (73) 

( ), ,x y zC C C C′ ′ ′ ′=
                       

(74) 

3x x xC C c d′ = + ∗                        (75) 

3y y yC C c d′ = + ∗                        (76) 

3z z zC C c d′ = + ∗                        (77) 

The points ,A B′ ′  and C′  are collinear therefore we can write a following 
expression. 

k′ ′ ′ ′= ∗A C A B                        (78) 

where k is for now an unknown coefficient. 

, ,x x y y z zA C A C A C′ ′ ′ ′ ′ ′ ′ ′ =  A C
                  

(79) 

, ,x x y y z zA B A B A B′ ′ ′ ′ ′ ′ ′ ′ =  A B
                  

(80) 

3 1 3 1 3 1, ,x x x x y y y y z z z zC c d A a d C c d A a d C c d A a d + ∗ − − ∗ + ∗ − − ∗ + ∗ − − ∗ =  (81) 

2 1 2 1 2 1, ,x x x x y y y y z z z zk B b d A a d B b d A a d B b d A a d ∗ + ∗ − − ∗ + ∗ − − ∗ + ∗ − − ∗  (82) 

( ) ( )1 2 31 1x x x x x xk a d k b d c d k A k B C− ∗ ∗ − ∗ ∗ + ∗ = − ∗ + ∗ −      (83) 

( ) ( )1 2 31 1y y y y y yk a d k b d c d k A k B C− ∗ ∗ − ∗ ∗ + ∗ = − ∗ + ∗ −      (84) 

( ) ( )1 2 31 1z z z z z zk a d k b d c d k A k B C− ∗ ∗ − ∗ ∗ + ∗ = − ∗ + ∗ −      (85) 

( )
( )
( )

( )
( )
( )

1

2

3

1 1
1 1
1 1

x x x x x x

y y y y y y

z z z z z z

k a k b c d k A k B C
k a k b c d k A k B C
k a k b c d k A k B C

− ∗ − ∗ − ∗ + ∗ −    
    − ∗ − ∗ = − ∗ + ∗ −    
    − ∗ − ∗ − ∗ + ∗ −          

(86) 

( )
( )
( )

1
1
1

x x x

y y y

z z z

k a k b c
D k a k b c

k a k b c

− ∗ − ∗ 
 = − ∗ − ∗ 
 − ∗ − ∗                   

(87) 

0

x x x

y y y

z z z

a b c
D a b c

a b c

 
 =  
                         

(88) 

( )
( )
( )

1
1
1

x x x

y y y

z z z

k A k B C
E k A k B C

k A k B C

− ∗ + ∗ − 
 = − ∗ + ∗ − 
 − ∗ + ∗ −                   

(89) 

( )det D∆ =                          (90) 

( )0 0det D∆ =                         (91) 
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( ) ( ) 01k k∆ = − ∗ − ∗∆                      (92) 

( )
( )
( )

1

1
1
1

x x x x x

y y y y y

z z z z z

k A k B C k b c
D k A k B C k b c

k A k B C k b c

− ∗ + ∗ − − ∗ 
 = − ∗ + ∗ − − ∗ 
 − ∗ + ∗ − − ∗             

(93) 

( ) ( )
( ) ( )
( ) ( )

2

1 1
1 1
1 1

x x x x x

y y y y y

z z z z z

k a k A k B C c
D k a k A k B C c

k a k A k B C c

− ∗ − ∗ + ∗ − 
 = − ∗ − ∗ + ∗ − 
 − ∗ − ∗ + ∗ −            

(94) 

( ) ( )
( ) ( )
( ) ( )

3

1 1
1 1
1 1

x x x x x

y y y y y

z z z z z

k a k b k A k B C
D k a k b k A k B C

k a k b k A k B C

− ∗ − ∗ − ∗ + ∗ − 
 = − ∗ − ∗ − ∗ + ∗ − 
 − ∗ − ∗ − ∗ + ∗ −          

(95) 

If ( ) ( )( 00 0∆ ≠ ⇔ ∆ ≠  and ( )0k ≠  and ( ))1k ≠  then we have 

( ) ( )
( )

11
1

det
, , ,

detx y z

D
d k v v v

D
∆

= =
∆                  

(96) 

( ) ( )
( )

22
2

det
, , ,

detx y z

D
d k v v v

D
∆

= =
∆                  

(97) 

( ) ( )
( )

33
3

det
, , ,

detx y z

D
d k v v v

D
∆

= =
∆                  

(98) 

In order to calculate distances 1 2 3, ,d d d  we have to determine a coefficient k. 
Let 1t  denotes the time when signal is received at the point A. If 1T  denotes 

the time when the signal was being emitted from the star at the point A′  we 
will have following equation 

1
1 1

dT t
c

= −
                         

(99) 

where c denotes the speed of light in the reference frame K. 
Analogously for the points B and B′  we will have 

2
2 2

dT t
c

= −
                        

(100) 

Now we have 

2 1
1 2 1 2 1

d dT T T t t
c c

∆ = − = − − +
                

(101) 

2 1
1 1

d dT t
c c

∆ = ∆ − +
                     

(102) 

2 1
1 1

d dT t
c c

∆ + = ∆ +
                     

(103) 

If 3T  denotes the time when the signal was being emitted from the star at the 
point C′  and 3t  denoted the time when the signal is received at the point C 
we will have following equation 

3 1
2 3 1 3 1

d dT T T t t
c c

∆ = − = − − +
                

(104) 
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3 1
2 2

d dT t
c c

∆ = ∆ − +
                     

(105) 

3 1
2 2

d dT t
c c

∆ + = ∆ +
                     

(106) 

If u denotes magnitude of the velocity u  then from Equation (78) it follows 

1A B u T′ ′ = ∗∆                        (107) 

2A C u T′ ′ = ∗∆                        (108) 

( )2 1u T k u T∗∆ = ∗ ∗∆                     (109) 

2 1T k T∆ = ∗∆                        (110) 

Combining equations (102), (105) and (110) it follows that 

3 1 2 1
2 1

d d d dt k t
c c c c

 ∆ − + = ∗ ∆ − + 
                 

(111) 

( )1 2 3 1 21 0d k d k d t c k t c∗ − − ∗ + + ∆ ∗ ∗ − ∆ ∗ =           (112) 

( ) 31 2
1 21 0k k t c k t c

∆∆ ∆
∗ − − ∗ + + ∆ ∗ ∗ − ∆ ∗ =

∆ ∆ ∆          
(113) 

( ) ( ) ( )2
1 2 3 0 1 0 21 1 1 0k k t c k k t c k k∆ ∗ − − ∆ ∗ + ∆ −∆ ∗∆ ∗ ∗ ∗ − + ∆ ∗∆ ∗ ∗ ∗ − = (114) 

Dividing Equation (114) by ( )1k k∗ −  we obtain that 

( )
31 2

0 1 0 2 0
1 1

t c k t c
k k k k

∆∆ ∆
− + − ∆ ∗∆ ∗ ∗ + ∆ ∗∆ ∗ =

− ∗ −        
(115) 

( )
( )
( )

1

1
1
1

x x x x x

y y y y y

z z z z z

k A k B C k b c
k A k B C k b c
k A k B C k b c

− ∗ + ∗ − − ∗
∆ = − ∗ + ∗ − − ∗ =

− ∗ + ∗ − − ∗
          

(116) 

( ) ( )21
x x x x x x x x x

y y y y y y y y y

z z z z z z z z z

A b c B b c C b c
A b c k k B b c k C b c k
A b c B b c C b c

∗ − ∗ + ∗ − + ∗ (117) 

( ) ( )2
1 11 12 131k k k k∆ = ∆ ∗ − ∗ + ∆ ∗ − + ∆ ∗

            
(118) 

( ) ( )1
11 12 131k k

k
∆

= ∆ ∗ − + ∆ ∗ − + ∆
               

(119) 

( ) ( )1
11 12 13 11k

k
∆

= ∆ −∆ ∗ + ∆ −∆
                

(120) 

1
1 1

x x x x x x x x

y y y y y y y y

z z z z z z z z

A B b c C A b c
A B b c k C A b c p k q

k
A B b c C A b c

− −
∆

= − ∗ + − = ∗ +
− −      

(121) 

( ) ( )
( ) ( )
( ) ( )

2

1 1
1 1
1 1

x x x x x

y y y y y

z z z z z

k a k A k B C c
k a k A k B C c
k a k A k B C c

− ∗ − ∗ + ∗ −
∆ = − ∗ − ∗ + ∗ − =

− ∗ − ∗ + ∗ −
         

(122) 
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( ) ( ) ( ) ( )1 1 1 1
x x x x x x x x x

y y y y y y y y y

z z z z z z z z z

a A c a B c a C c
a A c k k a B c k k a C c k
a A c a B c a C c

∗ − ∗ − + ∗ − + ∗ − (123) 

( ) ( ) ( ) ( )2 21 22 231 1 1 1k k k k k∆ = ∆ ∗ − ∗ − + ∆ ∗ ∗ − + ∆ ∗ −       (124) 

( )2
21 22 231

1
k k

k
∆

= ∆ ∗ − + ∆ ∗ − ∆
−                

(125) 

( ) ( )2
22 21 21 231

k
k
∆

= ∆ −∆ ∗ + ∆ −∆
−                

(126) 

2
2 21

x x x x x x x x

y y y y y y y y

z z z z z z z z

a B A c a A C c
a B A c k a A C c p k q

k
a B A c a A c c

− −
∆

= − ∗ + − = ∗ +
−

− −     

(127) 

( ) ( )
( ) ( )
( ) ( )

3

1 1
1 1
1 1

x x x x x

y y y y y

z z z z z

k a k b k A k B C
k a k b k A k B C
k a k b k A k B C

− ∗ − ∗ − ∗ + ∗ −
∆ = − ∗ − ∗ − ∗ + ∗ − =

− ∗ − ∗ − ∗ + ∗ −
       

(128) 

( ) ( ) ( ) ( )21 1 1
x x x x x x x x x

y y y y y y y y y

z z z z z z z z z

a b A a b B a b C
a b A k k a b B k k k a b C k k
a b A a b B a b C

∗ − ∗ + ∗ − ∗ − ∗ + ∗ − ∗ (129) 

( ) ( ) ( )2 2
3 31 32 331 1 1k k k k k k∆ = ∆ ∗ − ∗ − ∆ ∗ − ∗ + ∆ ∗ − ∗       (130) 

( ) ( )3
31 32 331

1
k k

k k
∆

= ∆ ∗ − − ∆ ∗ + ∆
− ∗              

(131) 

( ) ( ) ( )3
31 32 33 311

k
k k
∆

= ∆ −∆ ∗ + ∆ −∆
− ∗              

(132) 

( )
3

3 31

x x x x x x x x

y y y y y y y y

z z z z z z z z

a b A B a b C A
a b A B k a b C A p k q

k k
a b A B a b C A

− −
∆

= − ∗ + − = ∗ +
− ∗

− −   

(133) 

And finally the Equation (115) can be written in the following form 
0A k B∗ + =                        (134) 

1 2 3 1 0A p p p t c= − + − ∆ ∗ ∗∆                  (135) 

1 2 3 2 0B q q q t c= − + + ∆ ∗ ∗∆                  (136) 

( ) ( )
( )

, ,
, ,

, ,
x y z

x y z
x y z

B v v v
k v v v

A v v v
= −

                 
(137) 

If ( 0A ≠ ) then the Equation (134) has a unique solution, therefore the Equa-
tions (96)-(98) have unique solution, as well. 

If A, B and C are collinear points, then it follows that 

AC ABα= ∗
���� ����

                        (138) 

It is easy to prove that k α= , what implies that matrix 0E = . In that case 
we would have only a trivial solution 1 2 3 0d d d= = = . 

The coefficient k is eliminated from the equations, thus the distances  
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1 2 3, ,d d d  are expressed only as a function of v . 

( )1 1 , ,x y zd d v v v=
                      

(139) 

( )2 2 , ,x y zd d v v v=
                      

(140) 

( )3 3 , ,x y zd d v v v=
                     

(141) 

We will see later how the change in the value of velocity v  affects the dis-
tances 1 2 3, ,d d d . 

We assume that the coordinates of the points ,A B′ ′  and C′  and corres-
ponding distances 1 2,d d  and 3d  are known thus we are able to determine a 
velocity u  of the star regarding the frame (K). We have got the following equa-
tions. 

, ,x y zu u u =  u
                      

(142) 

2T
′ ′

=
∆
A Cu

                         
(143) 

( ) 3 1

2

, , x x x x
x x y z

C A c d a d
u v v v

T
− + ∗ − ∗

=
∆             

(144) 

( ) 3 1

2

, , y y y y
y x y z

C A c d a d
u v v v

T
− + ∗ − ∗

=
∆             

(145) 

( ) 3 1

2

, , z z z z
z x y z

C A c d a d
u v v v

T
− + ∗ − ∗

=
∆             

(146) 

2 2 2
x y zu u u= + +u

                     
(147) 

6. The Case When v = 0 

In this section it will be considered a case when v  is unknown. Unlike the unit 
vectors , ,a b c  that are obtained by measurements and remain unchanged, vec-
tor v  will be substituted by 0 and u  by ∆u . Therefore the formulas given in 
the [Section 5] get the new forms. 

0xv =                           (148) 

0yv =                           (149) 

0zv =                           (150) 

( ), ,x y zA A A=A
                      

(151) 

1
1

2
0 cosx

tA t R
yearsec

 Π∗
= ∗ + ∗  

                  
(152) 

1
1

2
0 siny

tA t R
yearsec

 Π∗
= ∗ + ∗  

                   
(153) 

1 0zA t= ∗                          (154) 

( ), ,x y zB B B=B
                      

(155) 
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2
2

2
0 cosx

tB t R
yearsec

 Π∗
= ∗ + ∗  

                  
(156) 

2
2

2
0 siny

tB t R
yearsec

 Π∗
= ∗ + ∗  

                  
(157) 

2 0zB t= ∗                         (158) 

( ), ,x y zC C C=C
                      

(159) 

3
3

2
0 cosx

t
C t R

yearsec
Π∗ 

= ∗ + ∗  
                  

(160) 

3
3

2
0 siny

t
C t R

yearsec
Π∗ 

= ∗ + ∗  
                  

(161) 

3 0zC t= ∗                         (162) 

...Finally we have got 

( )1 1 0,0,0d d≈                        (163) 

( )2 2 0,0,0d d≈                       (164) 

( )3 3 0,0,0d d≈                        (165) 

...and 

3 1

2

x x x x
x

C A c d a d
u

T
− + ∗ − ∗

∆ ≈
∆                 

(166) 

3 1

2

y y y y
y

C A c d a d
u

T
− + ∗ − ∗

∆ ≈
∆                 

(167) 

3 1

2

z z z z
z

C A c d a d
u

T
− + ∗ − ∗

∆ ≈
∆                 

(168) 

In that way we are able to determine approximate values for distances 1 2 3, ,d d d  
and star velocity ∆u  regarding the sun. 

In the special case, instead of a star, we can observe the barycenter of the Ga-
laxy. Then ∆u  denotes the velocity at which the barycenter of the Galaxy 
“moves” relative to the sun. In other words g = −∆v u  denotes the velocity at 
which the Sun is moving about the barycenter of the Galaxy. 

7. Determining a Position of a Star 

In this section it will be explained how to find a position of the star at some in-
stant 2t  if the following elements are known: 
• v  velocity of the sun regarding the reference frame (K) 
• u  velocity of a star regarding the reference frame (K) 
• distance 1d  between the Earth and star at some instant 1t  
• spherical coordinates of the star at point A given by unit vector , ,x y za a a =  a  

at instant 1t  
Thus our goal is to find the position of the star ( ), ,x y zB B B B′ ′ ′ ′=  at instant 

2t . From the (Figure 5) it follows that coordinates of the points A′  and B are  
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Figure 5. Two positions A′  and B′  of the star and the corresponding positions A and 
B of the Earth 

 
known. 

Therefore we get following equations 

1 2 1t t t∆ = −                         (169) 

( ), ,x y zA A A A′ ′ ′ ′=
                      

(170) 

1x x xA A a d′ = + ∗                       (171) 

1y y yA A a d′ = + ∗                       (172) 

1z z zA A a d′ = + ∗                       (173) 

( ), ,x y zB B B B=
                      

(174) 

1x x xB A t v= + ∆ ∗                       (175) 

1y y yB A t v= + ∆ ∗                       (176) 

1z z zB A t v= + ∆ ∗                       (177) 

( ), ,x y zB B B B′ ′ ′ ′=
                      

(178) 

1x x xB A T u′ ′= + ∆ ∗                       (179) 

1y y yB A T u′ ′= + ∆ ∗                       (180) 

1z z zB A T u′ ′= + ∆ ∗                       (181) 

2 1 1 1d t d T′∗ = = −∆ ∗ + ∗ + ∆ ∗b BB v a u              (182) 
2 2 2 2 2 2
2 1 1 1 1 1

1 1 1 1

2
2 2

d t v d u T t d
t T d T

= ∆ ∗ + + ∗∆ − ∗∆ ∗ ∗ ∗
− ∗∆ ∗ ∗ ∗∆ + ∗ ∗ ∗ ∗∆

v a
v u a u           

(183) 

Obviously 1T∆  represents the time it takes for the star to move from the 
point A′  to the point B′ . On the other hand we have 

1 2
1 1

d dt T
c c
+ ∆ = + ∆

                     
(184) 

2 1 1 1d d c t c T= + ∗∆ − ∗∆                   (185) 
2 2 2 2 2 2
2 1 1 1 1 1

2
1 1 1 1

2

2 2

d d c t c T d c t

d c T c t T

= + ∗∆ + ∗∆ + ∗ ∗ ∗∆

− ∗ ∗ ∗∆ − ∗ ∗∆ ∗∆            
(186) 

https://doi.org/10.4236/jamp.2019.71016


M. Čojanović 
 

 

DOI: 10.4236/jamp.2019.71016 195 Journal of Applied Mathematics and Physics 
 

From the Equations (183) and (186) we have 

( ) ( )
( ) ( )

2 2 2 2
1 1 1 1 1 1

2 2 2
1 1 1

2

2 0

c u T d c c t t d T

c v t d t c

− ∆ − + ∆ −∆ + ∆

+ − ∆ + ∆ + =

uv au

va
(187) 

The Equation (187) can be written in the following short form and solved by 
an unknown 1T∆  

2 2A c u= −                         (188) 
2

1 1 1 1B d c c t t d= + ∆ −∆ +uv au                  (189) 

( ) ( )2 2 2
1 1 12C c v t d t c= − ∆ + ∆ + va

               
(190) 

2 2 0A x B x C∗ − ∗ ∗ + =                    (191) 

2

1,2
B B A Cx

A
± − ∗

=
                   

(192) 

There are two roots 1x  and 2x , but since 2 0d >  it follows that 

2 1 1
1 1 1 10

d d dt T t T
c c c

   = + ∆ − ∆ > ⇒ + ∆ > ∆   
   

 

Thus we will choose a root of the Equation (191) for which this condition is 
fulfilled. 

Now, when 1T∆  is known we are able to determine point B′ , distance 2d  
and a unit vector b . 

( ) ( ) ( )22 2
2 x x y y z zd BB B B B B B B′ ′ ′ ′= = − + − + −

         
(193) 

2

x x
x

B B
b

d
′ −

=
                       

(194) 

2

y y
y

B B
b

d
′ −

=
                       

(195) 

2

z z
z

B Bb
d
′ −

=
                        

(196) 

, ,x y zb b b =  b
                       

(197) 

Now we will transform the unit vector , ,x y za a a =  a  from ecliptic to 
equatorial system. Transformed unit vector is marked by _a eq . 

T_ , ,x y za a a AK = ∗ a eq
                   

(198) 

[ ]_ _ 1,1xa eq = a eq                      (199) 

[ ]_ _ 1,2ya eq = a eq                      (200) 

[ ]_ _ 1,3za eq = a eq                      (201) 

By transformation from a right-angle coordinate system into the spherical 
coordinates we obtain the following equations 

1

_
atan2

_
y

x

a eq
a eq

α
 

=  
                       

(202) 
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( )1 arcsin _za eqδ =                      (203) 

The same procedure will be repeated for unit vector , ,x y zb b b =  b . 
T_ , ,x y zb b b AK = ∗ b eq

                   
(204) 

[ ]_ _ 1,1xb eq = b eq                      (205) 

[ ]_ _ 1,2yb eq = b eq                      (206) 

[ ]_ _ 1,3zb eq = b eq                      (207) 

2

_
atan2

_
y

x

b eq
b eq

α
 

=  
                       

(208) 

( )2 arcsin _zb eqδ =                      (209) 

where coordinates ( )1 1,α δ  and ( )2 2,α δ  represent positions of the star in the 
points A and B respectively. 

We will define a proper motion ( µ ) as angular changes per year in the star’s 
right ascension ( RAµ ) and declination ( DECµ ), using a constant epoch. Now we 
will calculate proper motion components ( RAµ ) and ( DECµ ). 

Referring to (Figure 6) we get 
1SA SD SA SD′ ′= = = =                    (210) 

( )1 ,x SAα ′= ∠                        (211) 

( )2 ,x SDα ′= ∠                       (212) 

( )2 1 A SDα α α ′ ′∆ = − = ∠                   (213) 

( ) ( )1 A SA D SDδ ′ ′= ∠ = ∠                   (214) 

S A SA′ ′
                          (215) 

S D SD′ ′
                          (216) 

( ),RA SA SDµ = ∠                       (217) 

( ) ( )1 1cos cosS A S D SA δ δ′ ′= = ∗ =               (218) 

sin
2 2

AD
S A

α∆ =  ′∗                        
(219) 

 

 
Figure 6. The component RAµ  of proper motion in the direction of right ascension. 

https://doi.org/10.4236/jamp.2019.71016


M. Čojanović 
 

 

DOI: 10.4236/jamp.2019.71016 197 Journal of Applied Mathematics and Physics 
 

( )1sin cos sin
2 2 2

AD S A α αδ∆ ∆   ′= ∗ = ∗   
               

(220) 

( )1sin cos sin
2 2 2 2
RA AD AD

SA
µ αδ ∆   = = = ∗    ∗              

(221) 

( )12 arcsin cos sin
2RA
αµ δ ∆  = ∗ ∗  

                 
(222) 

Since α∆  is a small angle it follows that 

( ) ( ) ( )1 1 1arcsin cos sin cos sin cos
2 2 2
α α αδ δ δ ∆  ∆ ∆     ∗ ≈ ∗ ≈ ∗      

         
(223) 

( ) ( ) ( )1 1 2 1cos cosRAµ δ α δ α α≈ ∗∆ = ∗ −             (224) 

It is trivial to prove that 

2 1DECµ δ δ= −                        (225) 

or if we expressed them in milliarcseconds we get 

[ ] ( ) ( )180 3600 1000
mas RA

RA

µ
µ

× × ×
=

Π              
(226) 

[ ] ( ) ( )180 3600 1000
mas DEC

DEC

µ
µ

× × ×
=

Π             
(227) 

8. The Second Part 

In this section are given descriptions of four programs written in Maxima [4]. 
The purpose of their writing is testing the results obtained in the previous chap-
ters. Instead of using the real measurements we will use data that are generated 
by a computer program. These data are presented in spherical coordinates 
( ),λ β  or as a corresponding unit vector , ,x y za a a =  a  regarding the coor-
dinate system (K). We assume that velocities v  and u  as well a distance 1d  
between the star and Earth at some instant t are known. 

Since the distances between the sun and stars are expressed by large numbers, 
64-bits floating-point format which gives from 15 to 17 significant decimal digits 
is not sufficient to make enough precise arithmetic operations. Therefore, for 
correct and precise testing, a quad precision (128-bit or 34-digit) is required. 

Stellar parallax, proper motion and velocity 
If the vectors , ,x y zb b b =  b  and , ,x y zc c c =  c  are respectively corres-

ponding unit vectors at points B and C [Figure 4] it is possible to calculate stel-
lar parallax and its distance from the Earth using well known formulas. The time 
between two measurements is equal to six months. 

AU is as usual defined as astronomical unit. 

1 arccos
2

parallax ⋅ 
= ∗  

⋅ ∗ ⋅ 

b c
b b c c              

(228) 

( )sin
AUdistance

parallax
=

                  
(229) 
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Since we work with approximate values, instead of 1=b  and 1=c  we 
will rather use = ⋅b b b  and = ⋅c c c  

Let suppose that we observe a star from our Galaxy which has a following 
spherical coordinate regarding the equatorial coordinate system [label=] 
• RA 12.56=  
• DEC 57.81= −  

These are field descriptions from the Table 1 and Table 2. 
• , ,x y zv v v =  v —sun velocity [km/sec] 
• , ,x y zu u u =  u —star velocity [km/sec] 
• .Real dist —presumed distance between the star and Earth [Section 7] [km] 
• PRX —parallax [Equation (228) [mas]] 
• ( )Dist PRX —distance [Equation (229)] [km] 

• Coeff —a ratio between the two distances, ( )Dist PRX
Coeff

Realdist
=  

• .PM RA —proper motion (right ascension) [mas/year] 
• .PM DEC —proper motion (declination) [mas/year] 

By comparing the first and second rows, we can conclude that by changing 
only one component zu  of the velocity u  and keeping the values of all other 
elements unchanged, parallax and proper motion have been drastically changed. 
By comparing first, second and third rows, we can conclude that despite the 
same distances, but due to the different values for velocity u , we obtain differ-
ent values for the parallaxes. By comparing the first and fifth row, it follows that 
assuming that the sun is stationary, it does not significantly affect the value of 
the parallax nor the value of the proper motion. 

It follows from the sixth row that when 0=u  and 0=v  it is possible di-
rectly calculated the distance by means of parallax. 

 
Table 1. Parallax and proper motion of the star. 

 xv  yv  zv  xu  yu  zu  .Real dist  ( )masPRX  ( )Dist PRX  Coeff  PM.RA PM.DEC 

1. 107.852 −36.81 202.79 40xv +  50yv +  60zv +  1.8 E15 78.81 3.91 E14 0.2175 214.70 233.63 

2. 107.852 −36.81 202.79 40xv +  50yv +  60zv −  1.8 E15 7.6067 4.0565 E15 2.2536 46.187 −10.445 

3. 107.852 −36.81 202.79 80xv +  100yv +  120zv +  1.8 E15 157.20 1.962 E14 0.109 429.416 467.27 

4. 107.852 −36.81 202.79 80xv +  100yv +  120zv +  3.6 E15 78.57 3.92719 E14 0.109 214.7088 233.637 

5. 0 0 0 40 50 60 1.8 E15 78.78 3.91672 E14 0.217595 214.7079 233.6343 

6. 0 0 0 0 0 0 1.8 E14 171.426 1.800001 E14 1.00000055 −2.31E−9 1.4E−8 

 
Table 2. Proper motion of the star during the period of the six months. 

 xv  yv  zv  xu  yu  zu  ( )Dist A  ( )Dist B  ( )Dist C  PM.RA.5 PM.DEC.5 

1. 107.852 −36.81 202.79 40xv +  50yv +  60zv +  1.8 E15 1.799999986 E15 1.799999972 E15 135.562 97.329 

2. 107.852 −36.81 202.79 40xv +  50yv +  60zv −  1.8 E15 1.800001369 E15 1.800002738 E15 51.30 −24.71 
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These are field descriptions from the Table 2. 
• ( )Dist A —distance from the point A to the star [km] 
• ( )Dist B —distance from the point B to the star [km] 
• ( )Dist C —distance from the point C to the star [km] 
• . .5PM RA — proper motion (right ascension) [mas/(0.5*year)] 
• . .5DEC RA —proper motion (declination) [mas/(0.5*year)] 

Comparing the first row of the table T1 with the first row of the table T2, we 
can conclude that the angular motion of the star in a period of one year is 
roughly twice as large as its angular motion in six months. Comparing the 
second row of the Table T1 with the the second row of the Table T2, we can 
conclude that the angular motion of a star over a period of six months is greater 
than the one in one year. So in this case it would appear that the star is moving 
zigzag. 

Motion toward or away from the Sun called radial velocity is determined by 
using the Doppler Effect. Motion perpendicular to the direction to the Sun is 
called tangential velocity. It is accepted that transverse velocity TV  is given by a 
following formula: 

TV k dµ= ∗ ∗                        (230) 

where distance is noted by d, proper motion is noted by µ  and the factor k 
comes from the unit conversion. 

We are going to test the correctness of this formula. 
Let the vector v represents the velocity of the sun and the vector u represents 

the velocity of the star regarding the (K). Relative velocity , ,x y zu u u ∆ = ∆ ∆ ∆ u  
of the star regarding the sun is given by following equations. 

∆ = −u u v                         (231) 

x x xu u v∆ = −                        (232) 

y y yu u v∆ = −                        (233) 

z z zu u v∆ = −                        (234) 

Let us, regarding the coordinate system (K), define three unit vectors. The 
first vector noted by _z radial  is directed to the star. Therefore, its spherical 
coordinates are ( ),λ β , where λ  represents ecliptic longitude and β  repre- 
sents ecliptic latitude. The second one marked by _x pmlong  is determined by 
star proper motion in longitude direction. Its spherical coordinates are  
( )π 2,0λ + . And the third one marked by _y pmlat  will be determined by star 
proper motion in latitude direction. Its spherical coordinates are ( ), π 2λ β + . 

( ) ( ) ( ) ( ) ( )_ cos π 2 cos 0 ,cos 0 sin π 2 ,sin 0λ λ= + ∗ ∗ +  x pmlong
  

(235) 

( ) ( ) ( ) ( ) ( )_ cos cos π 2 ,cos π 2 sin ,sin π 2λ β β λ β= ∗ + + ∗ +  y pmlat
 

(236) 

( ) ( ) ( ) ( ) ( )_ cos cos ,cos sin ,sinλ β β λ β= ∗ ∗  z radial       
(237) 

In this way, a new coordinate system noted by (K’) has been defined. Its axes 
are determined by unit vectors [ ]_ , _ , _x pmlong y pmlat z radial  and its origin is 
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at the center of the sun. We can find the scalar projections of the vector ∆u  
onto the unit vectors _ , _z radial x pmlong  and _y pmlat  which is the same 
as to transform ∆u  from the coordinate system (K) to the coordinate system 
(K’). 

_ _u long∆ = ∗∆x pmlong u                   (238) 

_ _u lat∆ = ∗∆y pmlat u                    (239) 

_ _u radial∆ = ∗∆z radial u                   (240) 

Let define AZ a transformation matrix from coordinate system (K’) to the 
coordinate system (K) by the following equation. 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

cos π 2 cos 0 cos 0 sin π 2 sin 0
cos cos π 2 cos π 2 sin sin π 2

cos cos cos sin sin
AZ

λ λ
λ β β λ β

λ β β λ β

+ ∗ ∗ + 
 = ∗ + + ∗ + 
 ∗ ∗   

(241) 

( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

sin cos 0
cos sin sin sin cos

cos cos cos sin sin

λ λ
λ β β λ β
λ β β λ β

− 
 = − ∗ − ∗ 
 ∗ ∗              

(242) 

By transforming the velocity ∆u  from the coordinate system (K) to the 
coordinate system (K’), we obtain the following equation 

[ ] T_ , _ , _u long u lat u radial AZ∆ ∆ ∆ = ∆ ∗u             (243) 

( )
2

tan .
_

d PM LONG
u pmlong

T
∗

∆ =
∆               

(244) 

( )
2

tan .
_

d PM LAT
u pmlat

T
∗

∆ =
∆                 

(245) 

where distance between the sun and a star is noted by d and 2T∆  is defined by 
Equation (105). 

If the formula given by the Equation (230) is valid then we should have that 

_ _u long u pmlong∆ = ∆                    (246) 

_ _u lat u pmlat∆ = ∆                      (247) 

From the two examples shown in Table 3, we can see that the conditions giv-
en by (246) and (247) are met. 

Matrix AZ is an orthogonal matrix. As a linear transformation, an orthogonal 
matrix preserves the dot product of vectors. In other words orthogonal transfor-
mations preserve lengths of vectors and angles between them. Let .PM LONG   

 
Table 3. Transverse velocity of a star determined in two ways. 

 xu∆  yu∆  zu∆  _u long∆  _u lat∆  _u radial∆  Distance PM.LONG PM.LAT _u pmlong∆  _u pmlat∆  

1. 10 20 30 8.740 35.5236 −7.8528 1.8 E15 31.6001 128.4824 8.73817 35.52842 

2. −30 20 −10 34.67859 −14.0384 0.5627 1.8 E15 125.406 −50.767 34.6788 −14.03868 
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and .PM LAT  denote components for proper motion of the star in the ecliptic 
coordinate system (K). Then we have the following equation. 

2 2 2 2. . . .PM RA PM DEC PM LONG PM LATµ = + = +      (248) 

The differences between fields _u pmlong∆  and _u long∆  and fields _u pmlat∆  
and _u lat∆  are minimal, and therefore we can say that the formula given by 
(230) is correct. Of course, this is not a rigorous proof, but a conclusion that re-
sulted from a few examples. 

At the end of this section let us suppose that _ , _u pmlong u pmlat∆ ∆  and 
radial velocity noted by _u radial∆  are known. Transforming the velocity  
[ ]_ , _ , _u pmlong u pmlat u radial∆ ∆ ∆  from the coordinate system (K’) to the 
coordinate system (K) we get the velocity ′∆u  defined by following equation. 

[ ], , _ , _ , _x y zu u u u pmlong u pmlat u radial AZ′ ′ ′ ′ ∆ = = ∆ ∆ ∆ ∗ u     
(249) 

In this way we have calculated the velocity of the star regarding the sun in two 
different ways. 

The first method is given by the Equations (166)-(168), and the second one by 
Equation (249) 

( ), ,∆ = ∆u u a b c                       (250) 

( ), , _d radial velocityµ′ ′∆ = ∆u u                 (251) 

If ′∆ ≈ ∆u u  then we can conclude that measurements and proposed metho-
dology are correct. Please refer to the attached program “parallax0.wxmx” for 
further details, investigation and testing. 

Distance and relative velocity of a star if we assume that the sun is sta-
tionary regarding the frame (K) 

In this case we assume that 0=v  and star velocity u  is substituted by its 
relative velocity ∆u  regarding the sun. 

Let suppose that we observe a star which has a following spherical coordinate 
regarding the ecliptic coordinate system (K) [label=] 
• LONG 29.45=  
• LAT 60.58=  

Star relative velocity ∆u  is fixed and defined by the following equations 

10xu∆ = −                         (252) 

30yu∆ = −                         (253) 

30zu∆ =                          (254) 

These are fields descriptions from the (Table 4). 
• 1t —time[years] when the first measurement at point A was performed 
• 2t —time[years] when the second measurement at point B was performed 
• 3t —time [years] when the third measurement at point C was performed 
• Realdist —presumed distance [km] between the star and Earth [Section 7] 
• .Calc dist —distance (km) Equation (177) 
• .Diff Calc dist Realdist= −  
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Table 4. The distances in the case that the sun is stationary. 

 1t  2t  3t  .Real dist  .Calc dist  Diff  xdu  ydu  zdu  

1. 0 4/12 8/12 4.7 E14 4.699999994915726 E14 −5.08427 E05 −10.02 −30.00 29.95 

2. 0 28/12 56/12 4.7 E14 4.699999575402733 E14 −4.24597 E07 −9.99 −29.99 30.01 

3. 0 40/12 80/12 4.7 E14 4.699999142379139 E14 −8.5762 E07 −9.99 −29.99 30.01 

4. 0 76/12 152/12 4.7 E14 4.699996938037172 E14 −3.06196 E08 −9.99 −29.99 30.01 

 
• xdu —component xu∆  calculated by computer program 
• ydu —component yu∆  calculated by computer program 
• zdu —component zu∆  calculated by computer program 

We can conclude from the obtained results that the increase in the time be-
tween the two measurements negatively affects the accuracy in determining the 
distance, while the accuracy in determining relative velocity remains relatively 
constant. In addition, we can make assumption that this method is much more 
precise in determining the distance compared to the “traditional” parallax me-
thod. 

Please refer to the attached program “distance_velocity_0.wxmx” for further 
investigation and testing. 

Determining distance and velocity of a star in case that velocity v of the 
sun regarding the frame (K) is known 

Again let us suppose that (K) is stationary coordinate system regarding the 
galaxy barycenter and that the sun moves at velocity , ,x y zv v v =  v  regarding 
the (K). Velocity of the sun is given by Equation (38). 
• [ ]107.852 km secxv =  

• [ ]36.81 km secyv = −  

• [ ]202.79 km seczv =  
We observe a star which has a following spherical coordinate regarding the 

ecliptic coordinate system (K)  
• LONG 29.45=  
• LAT 60.58=  

Star velocity u  regarding the (K) is given by the following equations. 

97.85xu =                         (255) 

66.81yu = −                         (256) 

232.79zu =                         (257) 

These are field descriptions from the Table 5. 
• 1t —time[year] when the first measurement at point A was made 
• 2t —time[year] when the second measurement at point B was made 
• 3t —time [year] when the third measurement at point C was made 
• Realdist —presumed distance [km) between the star and Earth [Section 7] 
• .Calc dist —distance [km] Equation (130) 
• .Diff Calc dist Realdist= −  
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Table 5. The distances between the star and Earth when velocity v of the sun regarding the (K) is known. 

 1t  2t  3t  .Real dist  .Calc dist  Diff  xu′  yu′  zu′  

1. 0 4/12 8/12 4.7 E14 4.70000002962370 E14 2.96237 E06 97.85 −66.81 232.79 

2. 0 28/12 56/12 4.7 E14 4.69999999883636 E14 −1.16363 E05 97.85 −66.81 232.79 

3. 0 40/12 80/12 4.7 E14 4.70000000121683 E14 1.21683 E05 97.85 −66.81 232.79 

4. 0 76/12 152/12 4.7 E14 4.700000000370287 E14 3.7028 E04 97.85 −66.81 232.79 

 
• xu′ —component xu  calculated by the program 
• yu′ —component yu  calculated by the program 
• zu′ —component zu  calculated by the program 

Comparing the first row of the Table 5 with the second and third one and 
Comparing the second and the third row with the fourth row of the Table 5 we 
can conclude that increasing the interval between two measurements increases 
the accuracy in determining the distance d. This is completely contrary to the 
situation in the previous section. We can say that the errors in this case are neg-
ligible and that they are due to rounding up the numbers into 64-bit format. 

Please refer to the attached program “distance_velocity_v.wxmx” for further 
explanations and data testing. 

Discussion 
Based on what we have found so far, we can conclude that assuming that 

0=v , the obtained results are far more reliable than the data obtained by the 
“parallax” method. Problems arise when we increase the interval between two 
measurements. Increasing this interval increases the error in distance calcula-
tion. 

Method in which the velocity v  is known gives the best results. In addition, 
by increasing the interval between the two measurements, the angles between 
the unit vectors ,a b  and c  are increasing which improves the accuracy of 
the calculations. 

Only in cases when the velocity v  is known and the measurements have 
been carried out over a sufficiently long period of time we can obtain reliable 
data on the distance d and velocity u . 

These conclusions should be taken with a certain reservation because they are 
based only on a few examples. 

9. Testing the Proposed Method Using Data Obtained from 
Gaia Catalogs DR1 and DR2 

The reference system for the source catalogs is the barycentric celestial reference 
system (BCRS/ICRS). Observations are more naturally expressed in the cen-
tre-of-masses reference system (CoMRS) which is defined from the BCRS by 
special relativistic coordinate transformations. This system moves with the Gaia 
spacecraft and is defined to be kinematically non-rotating with respect to the 
BCRS/ICRS [5]. 
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In order to successfully apply the described method, we have to know the unit 
vectors and the positions of the detector. The exact location of the satellite will 
be substituted by the center of the earth and the unit vectors will be derived from 
the data given in the Gaia’s catalogs [6] (option “Search”). We should also keep 
in mind that we need spherical coordinates of a star regarding the coordinate 
system with its origin at the satellite instead of the sun barycenter. 

From the Gaia catalogs we can directly get the following data 
• RA2015—Barycentric right ascension of the source in ICRS at the reference 

epoch J2015.0 
• DEC2015—Barycentric declination of the source in ICRS at the reference 

epoch J2015.0 
• RA2015:5—Barycentric right ascension of the source in ICRS at the reference 

epoch J2015.5 
• DEC2015:5—Barycentric declination of the source in ICRS at the reference 

epoch J2015.5 
• PRX.2015:5—Absolute stellar parallax of the source at the reference epoch 

J2015.5 
• PM.RA—Proper motion in right ascension direction, J2015.5 epoch 
• PM.DEC—Proper motion (Declination) J2015.5 epoch 

From the obtained data we can derive a right ascension RA2016.5 and a dec-
lination DEC2016.5 of a star at the reference epoch J2016.5. 

( )2016.5 2015.5 . cos 2015.5RA RA PM RA DEC= + ∗         (258) 

2016.5 2015.5 .DEC DEC PM DEC= +              (259) 

Vernal equinox in 2015 happened on March Mar 20, 22:45 (GMT) or  
78.91666667 days from the beginning of the year 2015. 

The reference epoch for Gaia DR1 is J2015 
J2015 = 2015 Jan 1, 00:00:00 (?) 
The reference epoch for Gaia DR2 is J2015.5 
J2015.5 = 2015 July 2, 21:00:00 

( )0 78.91666667 year year_sect = − ∗  the time of the first measurement (an 
epoch J2015.0) 

( )1 0.5 78.91666667 year year_sect = − − ∗  the time of the second measure-
ment (an epoch J2015.5) 

( )2 1.5 78.91666667 year year_sect = − − ∗  the time of the third measurement 
(an epoch J2016.5) 

We will assume that the measurement were taken regarding the Equatorial 
coordinate system with its origin at the center of the Earth. 

In this way, we obtained all the parameters needed to calculate a star relative 
velocity regarding the sun and the star distance in two different ways. 
• ( )Distance PRX —Distance to a star calculated by using traditional parallax 

method 
• ( )Distance v —Distance to a star, assuming that 0=v  
• xu′ —determined by Equation (249) 
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• yu′ —determined by Equation (249) 
• zu′ —determined by Equation (249) 
• xu —determined by Equation (166) 
• yu —determined by Equation (167) 
• zu —determined by Equation (168) 

The stars are chosen at random. The results are summarized in the two fol-
lowing tables. 

The correctness of the proposed method and the accuracy of the input para-
meters can be tested in the following way. 

Firstly, we can compare the , ,x y zu u u ∆ =  u  Equation (250) and  
, ,x y zu u u′ ′ ′ ′ ∆ =  u  Equation (251). It is obvious that in this particular case there 

are huge differences between them. 
Now when the distance between the sun and a star and relative velocity ∆u  

of the star regarding the sun are known, we are able to derive values for proper 
motion [Equations (223) and (225)] and parallax [Equation (228)] and compare 
them with the values obtained by actual measurements. In this particular case, 
the differences between the derived and the actual values are enormous and be-
cause of that we didn’t show them. 

Our assumption is that these errors are mainly caused by using the data that 
do not fully suit the proposed method. 

 
Table 6. Distance between the Earth and the star and star velocity calculated on the basis of the data obtained from the Gaia cata-
logs. 

Gaia source ID 1996596911406176000 1267906854386665088 219999464832627584 932222445438498944 3471190026007380992 

RA2015 [degrees] 345.2287148122942 225.83211458394337 57.64076463233877 124.98562499895499 187.33090960579008 

DEC2015 [degrees] 54.38920810592237 25.42448994720175 36.11354636758435 50.884152757844795 −30.842056520510575 

RA2015.5 [degrees] 345.2286881349424 225.83212885046885 57.640787372575275 124.98564294506525 187.33095326939153 

DEC2015.5 [degrees] 54.38919072361569 25.424567002148986 36.11352384195696 50.88412887441873 −30.842103480719885 

Parallax [mas] 38.45223658078517 154.92079559457247 −0.1736208834797856 3.825486423654411 24.626355359460785 

PM(RA) [mas/year] −110.82924669719277 87.72181780153205 148.0180947897536 81.4438996869589 269.2027204879181 

PM(DEC) [mas/year] −125.75137410621457 559.2198769511647 −162.08048821185827 −172.20093572981995 −337.8374762654241 

Radial velocity [km/sec] −22.001165161166835 − − −0.2803438886939773 15.533125166544002 

Distance(PRX) [km] 8.0247 E14 1.991777 E14 − 8.0661 E15 1.252998 E15 

Distance(v = 0) [km] 2.4297 E16 1.8591 E16 4.664 E15 3.5331 E17 1.516 E17 

xu′  [km/sec] −7.028 − − −489.140 2333.50 

yu′  [km/sec] −15.606 − − 48.835 −3876.28 

zu′  [km/sec] −18.786 − − −425.58 −1927.30 

xu  [km/sec] −165,355.38 − − 101,136.76 132,912.72 

yu  [km/sec] −54,985.63 − − −219,887.01 42,807.88 

zu  [km/sec] −236,414.11 − − −142,649.10 63,517.15 
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Table 7. Distance between the Earth and the star and star velocity calculated on the basis of the data obtained from the Gaia cata-
logs. 

Gaia source ID  3968823147582581504 3506524893749579648 2392703946771797248 1854353916756790400 3945681073517688960 

RA2015 [degrees] 164.37525525103945 200.09638529784812 350.6790229293687 321.88591137228934 185.63609385569734 

DEC2015 [degrees] 13.653681201911555 −20.06343186628493 −19.691300195639307 34.0238623055378 16.357596564626736 

RA2015.5 [degrees] 164.37528560226255 200.09640104426754 350.67898899365645 321.8858646334176 185.63607166653534 

DEC2015.5 [degrees] 13.653657150053572 −20.063447680691795 −19.6913255777869 34.02383684263199 16.3575826008146 

Parallax [mas] 20.911752813322053 11.496169556523695 23.25135907901302 38.45223658078517 15.40129228431169 

PM(RA) [mas/year] 211.58298658446174 105.17501228068048 −229.9247639971531 −280.0377248573189 −153.87591844804413 

PM(DEC)  
[mas/year] 

−172.99188421088598 −113.83221442757147 −183.05964366990693 −182.44201795818088 −100.88155554235291 

Radial velocity 
[km/sec] 

−39.2822790770779 4.635329233298119 33.98144938403769 −67.36320930350523  

Distance(PRX) [km] 1.47557 E15 2.684 E15 1.327 E15 8.0247 E14 2.0035186 E15 

Distance(v = 0) [km] 1.06517 E17 5.857 E16 1.3055 E17 2.660 E16 2.994104 E18 

xu′  [km/sec] −185.815 22.296 −38.842 −58.269 −20.272 

yu′  [km/sec] −576.369 −45.795 −201.341 −32.992 60.918 

zu′  [km/sec] −183.643 −24.109 −60.015 −52.323 −93.284 

xu  [km/sec] 240,711.77 253,830.47 −268,636.98 −188,091.10 285,858.14 

yu  [km/sec] −86,558.65 124,417.50 78,995.59 71,127.52 −7594.04 

zu  [km/sec] −29,133.97 53,599.13 71,777.99 −206,760.47 −88,673.82 

 
In order to improve the results we should know the exact coordinates of the 

the points A, B and C actually the locations of the satellite at the moments when 
the measurements have been made. The coordinate systems and transformation 
matrices should be replaced by the appropriate ones. The reference system for 
the source catalog is the Barycentric Celestial Reference System (BCRS/ICRS), 
but for the proposed method it is necessary that the Gaia observations are ex-
pressed in the Centre-of-Mass Reference System (CoMRS), a system that moves 
with the Gaia spacecraft. 

Therefore, for all these reasons, the results shown in (Table 6) and (Table 7) 
must be taken with great caution. 

Please refer to the attached program “gaia0.wxmx” for further explanations 
and data testing. In this program is also given a code for extracting data from 
Gaia’s databases. 

10. Determining a Velocity v regarding the (K) 

It has already been mentioned why, in the case of very distant objects, it is im-
portant that the velocity v is known. One of the methods for determining the 
velocity v is given in the [7], where the problem of the possible relation between 
absolute velocity and stellar aberration has been discussed. 
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In the rest of this section, we present another a method which possibly may 
serve in determining the velocity v. Equations (166)-(168) can be written in mod-
ified forms, where ,x yu u∆ ∆  and zu∆  are derived from the Equation (249). 

3 1

2

x x x x
x x x

C A c d a d
u v

T
− + ∗ − ∗

∆ + = −
∆


             

(260) 

3 1

2

y y y y
y y y

C A c d a d
u v

T
− + ∗ − ∗

∆ + = −
∆


            

(261) 

3 1

2

z z z z
z z z

C A c d a d
u v

T
− + ∗ − ∗

∆ + = −
∆


             

(262) 

( ) ( )
( )

3 1
2 3 1

1 3 2

2 2cos cos , , , ,

( , , ) , ,

x x x y z x x y z

x x x
x y z x y z

t tt v R c d v v v a d v v v
yearsec yearsec

c u v
d v v v d v v v c t

 Π∗   Π∗
∆ ∗ + ∗ − + ∗ − ∗    

    = ∗ − ∆ −
− + ∗∆

 (263) 

( ) ( )
( )

3 1
2 3 1

1 3 2

2 2sin sin , , , ,

( , , ) , ,

y y x y z y x y z

y y y
x y z x y z

t tt v R c d v v v a d v v v
yearsec yearsec

c u v
d v v v d v v v c t

 Π∗   Π∗
∆ ∗ + ∗ − + ∗ − ∗    

    = ∗ − ∆ −
− + ∗∆

 (264) 

( ) ( )
( )

2 3 1

1 3 2

, , , ,

( , , ) , ,
z z x y z z x y z

z z z
x y z x y z

t v c d v v v a d v v v
c u v

d v v v d v v v c t

∆ ∗ + ∗ − ∗
= ∗ − ∆ −

− + ∗∆


   
(265) 

We can form a function ( ), ,x y zg v v v  in the following way 

( ) 2 2 2, ,x y z x y zg v v v = + +  
                  

(266) 

Now we can try to find a minimum value of the the function ( ), ,x y zg v v v  
with respect to unknowns ,x yv v  and zv . If there are such 0 0,x yv v  and 0zv  
for which ( ), ,x y zg v v v  has a minimum, then we can say that Equation (266) 
has a solution. 

Let us suppose that we have observed n stars from our Galaxy. Corresponding 
velocities, obtained by Equation (266) are marked by 1 2, , , nv v v� . 

Let define 0v  as a mean value of the the vectors { }iv  

1
0

n

i
i

n
==
∑v

v
                         

(267) 

Let ε  is some small positive number. 
If the following inequality hold 

0
1

n

i
i

n
ε=

−
<

∑ v v

                       
(268) 

then we will consider two cases 
1) 0 =v 0  

it is only possible to determine a velocity of a star relative to the sun 
2) 0 0>v  

Let kv  is defined by Equation (38) and 
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an 1ε  is some small positive number. 
We will consider two subcases: 
a) if 0 1k ε− ≤v v  then 0v  represents velocity by which the Sun moves 

relative to the Galactic barycenter 
b) if 0 1k ε− >v v  then 0v  represents velocity by which the Sun moves 

regarding the stationary frame (K) 
If an inequality (268) does not hold then this approach to finding the velocity 

of the solar system regarding the Galactic barycenter (or a velocity v regarding 
the stationary frame (K)) did not yield the expected results and therefore it must 
be rejected. 

The same procedure can be repeated, but this time the extra-galactic objects 
should be observed. 

11. Conclusion 

In this paper, we have developed and tested a method by which it is possible to 
find the distance d between the sun and the arbitrary cosmic object as well as the 
velocity ∆u  at which this object moves relative to the sun. The advantage of 
this method in comparison to the traditional parallax method is that it can be 
applied to very distant objects, provided that the measurements are performed 
over a long period of time and that the velocity at which the solar system moves 
relative to the coordinate system (K) is known. In addition to distance d and ve-
locity ∆u , it is also possible to derive values for proper motion, parallax and 
radial velocity and compare them with values obtained by direct measurements. 
In this way, we are able to assess to what extent the results obtained by this me-
thod are correct. 
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