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Abstract 
Although many computing algorithms have been developed to analyze the 
relationship between land use pattern and driving forces (RLPDF), little has 
been done to assess and reduce the uncertainty of predictions. In this study, 
we investigated RLPDF based on 1990, 2005 and 2012 datasets at two spatial 
scales using eight state-of-the-art single computing algorithms and four con-
sensus methods in Jinjing rive catchment in Hunan Province, China. At the 
entire catchment scale, the mean AUC values were between 0.715 (ANN) and 
0.948 (RF) for the single-algorithms, and from 0.764 to 0.962 for the consen-
sus methods. At the subcatchment scale, the mean AUC values between 0.624 
(CTA) and 0.972 (RF) for the single-algorithms, and from 0.758 to 0.979 for 
the consensus methods. At the subcatchment scale, the mean AUC values 
were between 0.624 (CTA) and 0.972 (RF) for the single-algorithms, and 
from 0.758 to 0.979 for the consensus methods. The result suggested that 
among the eight single computing algorithms, RF performed the best overall 
for woodland and paddy field; consensus method showed higher predictive 
performance for woodland and paddy field models than the single computing 
algorithms. We compared the simulation results of the best- and 
worst-performing algorithms for the entire catchment in 2012, and found 
that approximately 72.5% of woodland and 72.4% of paddy field had proba-
bilities of occurrence of less than 0.1, and 3.6% of woodland and 14.5% of 
paddy field had probabilities of occurrence of more than 0.5. In other words, 
the simulation errors associated with using different computing algorithms 
can be up to 14.5% if a probability level of 0.5 is set as the threshold. The re-
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sults of this study showed that the choice of modeling approaches can greatly 
affect the accuracy of RLPDF prediction. The computing algorithms for spe-
cific RLPDF tasks in specific regions have to be localized and optimized. 
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1. Introduction 

Land use change is a complex process. The use of land use change models to 
analyze the causes and consequences of land use dynamics has been a popular 
topic in recent years [1] [2]. However, quantifying the relationship between land 
use pattern and driving forces (RLPDF) is difficult when land use change models 
are applied [3] [4]. RLPDF in some land use change models, e.g., Dyna_CLUE, is 
used to calculate the probability of land use suitability between 0 and 1. The cal-
culation accuracy of the probability of land use suitability directly affects the 
predicting accuracy of land use change models [1]. Therefore, the robust and 
accurate quantification of RLPDF has been a hot subject for numerous investiga-
tions of land use change modeling. Spatial modeling techniques are increasingly 
used in land use change modeling. However, the implemented techniques differ 
in their modeling preference, and some consensus methods are needed to reduce 
the uncertainty of predictions. In this study, apart from accessing the perfor-
mances of eight state-of-the-art single computing algorithms, we tested the pre-
dictive accuracies of four consensus methods. 

One of the common approaches to analyzing RLPDF is the statistical fit of 
correlative computing algorithms, where land use types are fitted by regression 
to land use driving forces [5]. Because land use types are categorical variables, to 
quantify the distribution of land use, we usually use a dummy variable (a binary 
variable) that takes a value of 0 or 1 to indicate the absence or presence of a par-
ticular land use type [1]. Dummy variables are widely used in statistics, econo-
metrics and species distribution analysis. Computing algorithms that use dum-
my variables and dependent variables include generalized linear models (GLM), 
generalized additive models (GAM), classification tree analysis (CTA), random 
forest (RF) and others, such as parametric, semi-parametric and nonparametric 
methods, data mining, and intelligent algorithms [6] [7]. Several investigators 
have applied some of the above methods to studies of RLPDF, such as nested 
neighborhood spaces and distance decay functions [5], predefined parameter 
matrices [8], linear equations of multi-criteria evaluation (MCE) [5], grey-cell or 
fuzzy states [9], logistic models [10], neural networks [9], GLM [1], and machine 
learning [4]. Inevitably, each computing algorithm has its advantages and dis-
advantages. For instance, it seems to be easy to understand the meanings of the 
coefficients in a logistic regression equation, but some indicate that the models 
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are limited due to an assumption of a linear response to environmental predic-
tors. Artificial neural networks (ANN) provide an increasingly advocated alter-
native because they accommodate consideration of nonlinear influences on land 
use distribution. However, it is difficult to comprehend the meanings of the pa-
rameters used in ANN because of the black-box nature of neural networks [4]. 
These results provide an interesting but still limited exploration of which me-
thod performs best for each of several different goals or study areas. One of the 
problems with these analyses is that the results are dependent on the multiva-
riate analysis computing algorithms used. One difficulty with the use of the 
computing algorithms is that the number of techniques available is large and is 
increasing steadily, making it difficult for novices to select appropriate compu-
ting algorithms for their needs [11] [12]. Recent analyses have also demonstrated 
that the discrepancies that arise from using different techniques can be huge, 
which makes the choice of an appropriate computing algorithm more difficult [7]. 

The various modeling techniques available utilize a variety of algorithms to 
calculate the probability that a land use type can occur in a given area. The vast 
and growing literature on distribution modeling suggests that some techniques 
are typically more effective than others, but there is no one superior algorithm 
that performs best for all land use types, all data sets, or all research objectives 
[13]. A number studies have addressed the errors and uncertainties embedded in 
the above models [14]. The sources of uncertainties are diverse from small sam-
ple size, missing determinates, the nonlinear relationships to uncertainties in 
model building procedures. There are two main approaches to reduce the mod-
el-based uncertainty in land use pattern distribution simulations: 1) comparing 
extensive models, and concerning which of the models will generally provide the 
best predictive performance; 2) using consensus methods, which based on com-
binative algorithms of the predictions provided by different single computing 
algorithms [15]. The consensus approach is based on the idea that different pre-
dictions are copies of possible states of the real distributions, and they form an 
ensemble, which combines several unbiased model results (probabilities) will 
result in a more accurate prediction [16]. There are different ways to build con-
sensus prediction, and it has rarely if ever been tested which of the consensus 
methods are able to consistently generate more accurate land use pattern distri-
butions than some novel single-model methods available for land use modeling. 

In addition to depending on the selection of an appropriate algorithm, model 
results also depend on the complexity of the research subject and the quality of 
the environmental data used [17]. A catchment is a geophysical functional re-
gion widely used in hydrology and ecology. Catchments have also been advo-
cated as appropriate units for ecological planning [18]. Moreover, quantifying 
landscape pattern changes by catchment extent is more ecologically meaningful 
than the extent being delimited by rectangular boundaries or administrative un-
ites [19]. Generally, a catchment is considered as a relatively closed ecosystem. 
Studying RLPDF at the catchment scale can better demonstrate the importance 
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of selecting a model that performs well. The relative importance of driving forces 
in determining land use type distributions also varies with the spatial scale [2]. 

For the above reasons, we chose a small hilly catchment (the Jinjing river cat-
chment) and applied eight computing algorithms [i.e., GLM, GAM, CTA, ANN, 
flexible discriminant analysis (FDA), multivariate adaptive regression splines 
(MARS), generalized boosting models (GBM), and RF] and four consensus me-
thods [two methods (Median and Mean) are based on output of all eight sin-
gle-models, whereas Weighted Average (WA) chose four single-models with 
higher AUC values and PCA (median) methods is based on the median of half of 
the single-model chosen by a principle component analysis] to investigate the 
relationship between land use pattern and driving forces (e.g., elevation, slope, 
aspect, distance to residential areas, distance to roads, distance to rivers, and 
distance to lakes or ponds) at two spatial scales: the entire catchment and sub-
catchment. The main objectives of this study were: (i) to analyze the statistical 
differences in predictive ability of the eight single computing algorithms and 
identify the best-performed computing algorithms for the RLPDF study, and (ii) 
investigate which of the consensus methods could improve the accuracy of pre-
dictions from single computing algorithms. 

2. Materials and Methods 
2.1. Study Area 

The Jinjing river catchment, located in the town of Jinjing, near Changsha in 
Hunan Province, China (Figure 1), has a population of 41,618 people and an 
area of 135 km2. It is one of the headwater catchments of the Jinjing river catch-
ment system, which is one of the major tributaries of the Xiangjiang river wa-
tershed system. 

The region has a subtropical monsoon climate with a mean annual air tem-
perature of 17.5˚C and a mean annual precipitation of 1330 mm (1968-2015). 
On average, 70% of the annual precipitation falls during the warm season in 
April, May, and June. The elevation is between 56 and 440 m above sea level. 
The main soil types in the study area are red soil, purplish soil, fluvo-aquic soil 
and paddy soil; and the dominant soils are red soil (Ferrosols, Chinese Soil Tax-
onomy) and paddy soil (Anthrosols, Chinese Soil Taxonomy). The natural vege-
tation includes Masson pine, Chinese fir, oil-tea camellia and other evergreen 
trees and shrubs. 

2.2. Data Preparation 

In this study, we used the land use data of 1990, 2005 and 2012 to analyze 
RLPDF. The historical cadastral maps (including land use types and digital ele-
vation model, or DEM, data) were obtained from the Hunan Provincial Geo-
matics Information Center (http://www.hnpgc.com). The land use types in the 
area are woodland, paddy fields, tea fields, roads, residential areas and water bo-
dies (e.g., drainage and irrigation channels, rivers and reservoirs) (Figure 2).  
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Figure 1. Geographical location of the Jinjing river catchment, 50 km north of Changsha (the capital city of Hunan province), 
China. Subcatchments 1 and 39 are highlighted. 
 

 
Figure 2. Land use data for 1990, 2005 and 2012. 
 

From 1990 to 2012, the trend of paddy field shrinking and woodland expanding 
featured as the major landscape change happened in the Jinjing catchment 
(Table 1). Because paddy field and woodland are the two main land use types, 
accounting for 26.65% - 28.72% and 65.45% - 71.28% of the total area of the 
Jinjing catchment, we chose these two land use types to analyze RLPDF. The 
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land use type map was converted to a grid format from the available vector map 
at a spatial resolution of 50 m, i.e., the same as the resolution of the DEM data. 

To analyze the RLPDF at the subcatchment scale, two subcatchments were 
chosen from among 40 subcatchments for their specific distributions of wood-
land and paddy fields. Subcatchment 1 is dominated by woodland (87.41%) and 
thus has an undulating terrain. Subcatchment 39 has a gentle undulating terrain 
and is dominated by paddy field (43.23%). 

Generally, land use changes driving forces can be grouped into two categories 
[20]: biophysical factors, socio-economic drivers. Although biophysical factors, 
such as elevation and slope, mostly do not directly drive land use change, they 
can influence land use allocation decisions to lead to the land use changes [2]. 
Some socio-economic drivers, e.g., GDP and population, are hard to present 
spatial variability in a catchment, such as the Jinjing river catchment in which 
the lowest level of governmental administrations (or township) for national sta-
tistical purposes is located. In view of above reasons, seven representative driv-
ing forces (elevation, slope, aspect, distance to residential areas, distance to lakes 
or ponds, distance to rivers, and distance to roads) were chosen in this study to 
explore the relationship between land use pattern and driving forces. Table 2 
summarizes the seven driving forces. We calculated the importance of the driv-
ing forces using the best-performing algorithms selected from above mentioned 
eight computing algorithms for woodland and paddy field for the two spatial 
scales. 

 
Table 1. Land use types area temporal change (km2). 

Land use types 1990 2005 2012 

Tea fields 4.08 3.28 4.57 

Residential area 2.75 3.11 3.26 

Paddy fields 36.48 35.82 33.61 

Woodland 85.18 87.98 88.59 

Lakes 4.74 3.17 3.32 

 
Table 2. Descriptive statistics of driving forces in the RLPDF analysis. 

Variable Unit 
Entire catchment Subcatchment 1 Subcatchment 39 

Range SD Range SD Range SD 

Elevation Meter 54.9 - 440.6 63.1 107.8 - 396.0 55.0 54.9 - 181.0 26.5 

Slope Percentage 0 - 45.0 7.4 0 - 45.0 7.3 0.1  - 28.5 5.3 

Aspect Degree 0 - 360.0 99.6 0 - 360.0 102.6 0.1 - 359.0 91.7 

Distance to lakes Meter 0 - 1656.8 231.1 0 - 1656.8 376.1 0 - 585.2 127.8 

Distance to residential areas Meter 0 - 1303.8 143.3 0 - 608.3 137.7 0 - 304.1 72.3 

Distance to rivers Meter 0 - 5727.6 1199.1 212.1 - 5314.1 1225.6 0 - 1280.6 288.2 

Distance to roads Meter 0 - 6408.0 1331.5 602.1 - 4925.4 1209.2 0 - 1697.8 387.0 
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2.3. Single Computing Algorithms and Consensus Methods for the 
RLPDF Analysis 

In this study, to take the variation in algorithm performance into account, a 
multi-model approach was taken, using the BIOMOD package implemented in 
R software [7]. The eight computing algorithms considered: GLM, GAM, CTA, 
ANN, FDA, MARS, GBM and RF are listed in Table 3. Each of the eight compu-
ting algorithms was run independently. We used a dummy variable (a binary va-
riable) that takes a value of 0 or 1 to indicate the absence or presence of a land 
use type as the dependent variable, and took seven driving forces as the inde-
pendent variables for each computing algorithms. 

Eight single computing algorithms were first built separately for each of land 
use type. The combing of the outputs of the single computing algorithms then 
provided the ensemble of predictions, which contains eight forecasted probabil-
ity values distributions for land use pattern. Median consensus method is the 
median value of the outputs of all the eight single-models. The WA consensus 
method ranks the single computing algorithms according to their predictive 
performance, and assign a weighted value (0 ~ 1) to the probability values. The 
PCA (median) method calculates the median value of part single computing al-
gorithms selected by a PCA from all models for each land use type. The PCA is 
run with projected probabilities of all single computing algorithms and provides 
a rate for each single computing algorithm to reflect its ability to explain the va-
riance of the general trend of the eight single computing algorithms [15]. 

We implemented a cross-validation procedure to evaluate the computing  
 
Table 3. Description of eight algorithms for researching RLPDF. 

Methods Name 
R 
package 

Description Key reference 

ANN Artificial Neural Networks nnet A machine learning method with the mean of three runs used to 
provide predictions and projections, as each simulation gives slightly 
different results 

Ripley (1996) 

CTA Classification Tree Analysis rpart A classification method running a 50-fold cross-validation to select 
the best trade-off between the number of leaves of the tree and the 
explained deviation 

Breiman et al. 
(1984) 

GAM Generalized Additive Models gam A regression method with 4 degrees of freedom and a stepwise 
procedure to select the most parsimonious model 

Hastie and 
Tibshirani (1990) 

GBM Generalized Boosting Model gbm A machine learning method that combines a boosting algorithm and 
a regression tree algorithm to construct an “ensemble” of trees 

Ridgeway (1999); 
Friedman (2001) 

GLM Generalized Linear Models stats A regression method with polynomial terms for which a stepwise 
procedure is used to select the most significant variables 

McCullagh and 
Nelder (1989) 

MARS Multiple Adaptive Regression 
Splines 

mda A major assumption of any linear process in that the coefficients are 
stable across all levels of the explanatory variables 

Friedman (1991) 

FDA Flexible Discriminant Analysis mda A classification method based on mixture models Hastie et al. (1994) 

RF Breiman and Cutler’s Random 
Forest for Classification and 
Regression 

Random 
Forest 

A machine learning method that is a combination of tree predictors 
such that each tree depends on the values of a random vector sample 
independently and has the same distribution for all trees in the forest 

Breiman (2001) 
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algorithms. Because there was no independent data set containing the same type 
of data that could be used for evaluation purposes, the computing algorithms 
were calibrated using a random subset of 80% of the available data and evaluated 
using the remaining 20%. The area under the curve (AUC) of the receiver oper-
ating characteristic (ROC) has been used to assess the predictive performance of 
the distribution models [21]. An evaluation system based on the calculated AUC 
values was developed: 0.5 - 0.7 = low accuracy, 0.7 - 0.9 = potentially useful, 
and >0.9 = high accuracy [22]. 

2.4. Predicting Results Analysis of Computing Algorithms for the 
RLPDF Analysis 

Probability thresholds for transforming the continuous computing algorithms 
results into binary values were set for each computing algorithms. We over-
lapped the probability thresholds with the histogram of predicted probability 
values (HPPV) of land use pattern to illustrate the significant differences among 
the outcomes of the eight computing algorithms at the two different spatial 
scales considered. 

To show the spatial contrast of the predicted probability (0 - 1) of the best- 
and the worst-performing algorithms, for the entire catchment, for example, we 
used the best spatial simulation value (0 - 1) estimated by the best-performing 
algorithm minus the worst spatial simulation value (0 - 1) estimated by the 
worst-performing algorithm to compute the spatial prediction differences. Con-
sidering the repetition of such calculations for the three discrete years, we only 
chose the 2012 data to investigate the impact of different computing algorithms 
for the RLPDF analysis. 

3. Results 
3.1. Performance of Computing Algorithms  

at Different Spatial Scales 

The prediction performance of the single computing algorithms and consensus 
methods varied for the different land use types at the two different spatial scales 
(Figure 3). At the entire catchment scale, the mean AUC values were between 
0.715 (ANN) and 0.948 (RF) for the single-algorithms, and from 0.764 to 0.962 
for the consensus methods. At the subcatchment scale, the mean AUC values 
were between 0.624 (CTA) and 0.972 (RF) for the single-algorithms, and from 
0.758 to 0.979 for the consensus methods, suggested that, (i) among the eight 
single computing algorithms, RF performed the best overall for woodland and 
paddy field; (ii) WA showed higher predictive performance for woodland and 
paddy field models than did the single computing algorithms. The eight single 
computing algorithms and four consensus methods performed differently at the 
two spatial scales for the RLPDF analysis for 2012 (Figure 4). The significant 
differences among the HPPVs and threshold values reflect the predictive proba-
bility values statistic distribution and the importance of choosing appropriate  
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Figure 3. ROC index-based evaluation of simulation results by using eight algorithms and four consensus methods. 
 

computing algorithms to analyze RLPDF. 

3.2. Spatial Predicted Error Analysis  
of Selecting Computing Algorithms 

In comparing the AUC values of the eight computing algorithms for RLPDF in 
2012 (Figure 3), we found that for woodland, WA and CTA were the best- and 
worst-performing algorithms, respectively, and that for paddy fields, WA and 
ANN were the best- and worst-performing algorithms, respectively. Figure 5 
shows the predicted probability (0 - 1) of the best- and worst-performing algo-
rithms for woodland and paddy field at the entire catchment scale for 2012. Ap-
proximately 72.5% of woodland and 72.4% of paddy field had probabilities of 
occurrence of less than 0.1, and 3.6% of woodland and 14.5% of paddy field had 
probabilities of occurrence of more than 0.5. In other words, the simulation er-
rors associated with the selection of the computing algorithm can be up to 14.5% 
if 0.5 is chosen as the threshold value. In 1990 and 2005, the differences of  
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Figure 5. Comparison of the predicted probability (0 - 1) of the best- and worst-performing algorithms for woodland and paddy 
field at the entire catchment scale for 2012. Woodland (WA): woodland simulation by Weighted average; Woodland (CTA): 
woodland simulation by classification tree analysis; Woodland (WA-CTA): Woodland (WA) minus Woodland (CTA); Paddy 
field (WA): Paddy field simulation by Weighted average; Paddy field (ANN): paddy field simulation by artificial neural networks; 
and Paddy field (WA-ANN): Paddy field (WA) minus Paddy field (ANN). 
 

predicted probabilities (0-1) produced by the best- and worst-performing algo-
rithms were similar to that in 2012. 

3.3. Importance of Driving Forces at Different Spatial Scales 

The importance of the driving forces calculated by stable performing computing 
algorithms (i.e., RF) was different for the different land use types at the two spa-
tial scales (Figure 6). Elevation showed high importance values at both spatial 
scales in 1990, 2005 and 2012, especially for Subcatchment 39, indicating that 
elevation was the most important driving force for the RLPDF analysis in this 
study. Other driving forces, e.g., distance to residential areas, were found to be 
the second most important driving force. This was mainly due to the Jinjing  

https://doi.org/10.4236/ijg.2019.101002


X. L. Liu et al. 
 

 

DOI: 10.4236/ijg.2019.101002 23 International Journal of Geosciences 
 

 
Figure 6. Importance values for seven driving forces (e.g., elevation, aspect, slope, distance to lakes, distance to residential areas, 
distance to rivers and distance to roads) in the RLPDF analysis. (a) woodland for the entire catchment; (b) paddy field for the en-
tire catchment; (c) woodland for Subcatchment 1; (d) paddy field for Subcatchment 1; (e) woodland for Subcatchment 39; and (f) 
paddy field for Subcatchment 39. 
 

river catchment possessing small plains mixed with hills. 

4. Discussion 
4.1. Effects of Computing Algorithm Selection for RLPDF 

The processes of land use changes are complex. RLPDF research has gained 
momentum with recent developments in multivariate analysis methods applied 
to ecological analysis [23] [24]. Statistical models for RLPDF are increasingly 
being used, but systematic comparisons of alternative methods are still limited. 
In particular, only a few studies have explored the effect of the spatial scale on 
the model outputs [7]. In this study, we investigated the predictive ability of 
eight computing algorithms using data on land use distribution and driving 
forces at two scales: an entire catchment and subcatchments. The results ob-
tained provide useful information for other RLPDF researchers. 
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The ROC curve is a graphical method for representing the relationship be-
tween the false positive fraction and the sensitivity for a range of thresholds [21]. 
Our results indicate that all of the eight models considered performed well at 
predicting land use distributions, with AUC values ranging from 0.654 to 0.963 
at the two different spatial scales considered. Of the eight computing models 
considered, the non-parametric approaches (i.e., RF, GBM, MARS, CART, and 
ANN), and particularly RF and GBM, produced better results for very complex 
systems than parametric algorithms such as GLM [23]. Based on our observa-
tions in this study, the performance of ANN was judged to be unreliable for 
full-scale data sets. One possible reason for the poor performance of ANN is that 
the spatial correlation between land use pattern and driving forces may be 
over-fitted [25]. Many researchers have proven that ANN is incapable of ana-
lyzing RLPDF [9]. In this study, we did not doubt the predicting ability of ANN 
for the RLPDF analysis. However, comparing with RF and GBM and considering 
the complexity of parameter setting, ANN may be not suitable for the RLPDF 
analysis, especially for some places with high spatial heterogeneity. In our study, 
the most efficient consensus method was the WA consensus method, which sig-
nificantly improved the predictive accuracy of these eight single computing al-
gorithms. The good performance of WA consensus method was primarily due to 
the low-pass filtering ability of the average function. This result was similar to 
other researches referring to predictive species distribution modeling [7]. 

Although the ROC curve is not dependent on the probability threshold, the 
selection of thresholds for land use pattern prediction was important because the 
determination of the presence or absence of a given land use type is largely de-
pendent on the threshold value selected [26]. When a model yields good per-
formance, the predicted probability varies randomly between 0 (true negative) 
and 1 (true positive) [27]. Predicting the continuous probability between 0 and 1 
is one of the important purposes of using various algorithms to analyze RLPDF. 
In general, the continuous 0-1 probability value is considered an index of suita-
bility for land use types and a core component of some land use models [28]. In 
this study, the characteristics of HPPVs were significantly different for the two 
different spatial scales considered (Figure 4). This phenomenon could be attri-
buted to the quality of the environmental data used and the complexity of the 
studied objects. The structural complexity, spatial heterogeneity, and factorial 
co-linearity of spatial catchment data can make the RLPDF analysis and land use 
distribution simulation more difficult. This was also the main reason that some 
algorithms (such as CART and ANN) performed poorly in this study. We com-
pared the simulation results of the best- and worst-performing algorithms. The 
simulation error caused by the algorithm selection can be up to 14.5% if a thre-
shold value of 0.5 is used. In general, probability values are used to quantify the 
stability of land use, which is considered a very important part of a land use 
model [2]. When we use land use models (e.g., Dyna_CLUE and GeoSOS) to 
simulate land use and cover change, we may confuse the simulation errors re-
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sulting from the choice of the computing algorithms embedded in these land use 
models and the uncertainty of the internal parameters of land use models. Si-
mulation errors can be completely avoided by repeatedly and carefully choosing 
and optimizing algorithms before we use them to quantify the stability of land 
use spatial distributions. One may argue that the characteristics and limitations 
of algorithms may be the key reason for their poor or good performance. Most 
of those algorithms were not developed for land use assessment purposes, and 
they have rarely been used in the RLPDF analysis [2]. When they are used in the 
RLPDF analysis, some improvements need to be made to them [7]. 

4.2. Selection of Driving Forces with Spatial Scales 

The driving forces’ importance analysis are important parts in studying RLPDF 
and using land use models, especially in some places with characteristics includ-
ing intensity spatial heterogeneity, great spatial scale change sensitivity and 
complicated land use change process. The importance of driving forces varied 
with different land use types at multiple spatial scales in the Jinjing river catch-
ment. However, the most important factor was DEM in the entire catchment 
and Subcatchments 1 & 39. This was mainly due to the characteristics of little 
plains interbedded with hilly in the Jinjing river catchment [29]. The less impor-
tant factors were different for woodland and paddy field in Subcatchment 1. One 
possible reason for this difference concerned the natural environment: Subcat-
chment 1 contained more than 70% of the total area as woodland and also had 
paddy field embedded in hills (Figure 1). This kind of distribution of embedded 
paddy field increased its resource dependence for water, and thus, Distance to 
lake was found the most important factor for paddy field in this subcatchment. 
In this study, we used the best performance algorithm to quantify importance of 
driving forces for land use change at the entire catchment and subcatchment. If 
we use other poor performance algorithms, the importance values of driving 
forces were obviously different in comparison with that quantified by the best 
performance algorithm (results not shown). This phenomenon also demonstrate 
the importance of selecting computing algorithms for analyzing RLPDF. 

4.3. Other Algorithms for Future RLPDF Analysis 

Our results indicate that different land use types require different computing al-
gorithms, depending on the spatial scale. Such differences may be obstacles to 
the development of a single all-purpose land use model for land use planning. 
Thus, it is desirable that land use decision-making be based on a set of alterna-
tive source maps and a set of predictions obtained using multiple models. 

There are also other algorithms available for use in the RLPDF analysis, e.g., 
geographically weighted regression (GWR) [30], a generalized linear mixed 
model, and a nonlinear mixed model [31]. For finite data, using multiple com-
puting algorithms will yield accurate and clarity insights in the RLPDF analysis. 
The future challenges facing us may include combining multiple computing al-
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gorithms with the theories of cellular automata (CA) and multi-agents to build a 
land use structure optimization model at the catchment scale. 

5. Conclusion 

Eight computing algorithms and four consensus methods were used to investi-
gate RLPDF at two spatial scales (e.g., an entire catchment and a subcatchment) 
in the town of Jinjing, northeast of Changsha in Hunan Province in China. WA 
consensus method performed the best overall for woodland and paddy field in 
the catchment. However, ANN performed inconsistent, especially for subcatch-
ment 1 with high spatial heterogeneity. Taking 2012 data as example and com-
paring with the predicted probability between best and worst performed compu-
ting algorithms, approximately 72.5% of woodland and 72.4% of paddy field had 
probabilities of occurrence of less than 0.1, and 3.6% of woodland and 14.5% of 
paddy field had probabilities of occurrence of more than 0.5. The consensus 
methods based on average function algorithms may increase significantly the 
accuracy of land use distribution predictions, and thus they show considerable 
promise for different land use change modeling and planning. 
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