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Abstract 
Survival of HIV/AIDS patients is crucially dependent on comprehensive and 
targeted medical interventions such as supply of antiretroviral therapy and 
monitoring disease progression with CD4 T-cell counts. Statistical modelling 
approaches are helpful towards this goal. This study aims at developing Baye-
sian joint models with assumed generalized error distribution (GED) for the 
longitudinal CD4 data and two accelerated failure time distributions, Log-
normal and loglogistic, for the survival time of HIV/AIDS patients. Data are 
obtained from patients under antiretroviral therapy follow-up at Shashemene 
referral hospital during January 2006-January 2012 and at Bale Robe general 
hospital during January 2008-March 2015. The Bayesian joint models are de-
fined through latent variables and association parameters and with specified 
non-informative prior distributions for the model parameters. Simulations 
are conducted using Gibbs sampler algorithm implemented in the WinBUGS 
software. The results of the analyses of the two different data sets show that 
distributions of measurement errors of the longitudinal CD4 variable follow 
the generalized error distribution with fatter tails than the normal distribu-
tion. The Bayesian joint GED loglogistic models fit better to the data sets 
compared to the lognormal cases. Findings reveal that patients’ health can be 
improved over time. Compared to the males, female patients gain more CD4 
counts. Survival time of a patient is negatively affected by TB infection. 
Moreover, increase in number of opportunistic infection implies decline of 
CD4 counts. Patients’ age negatively affects the disease marker with no effects 
on survival time. Improving weight may improve survival time of patients. 
Bayesian joint models with GED and AFT distributions are found to be useful 
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in modelling the longitudinal and survival processes. Thus we recommend 
the generalized error distributions for measurement errors of the longitudinal 
data under the Bayesian joint modelling. Further studies may investigate the 
models with various types of shared random effects and more covariates with 
predictions. 
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1. Introduction 

Survival of HIV/AIDS patients is crucially dependent on comprehensive and 
targeted medical interventions. Health professionals monitor patients’ health 
status using such disease markers as CD4 T-cells counts. The disease progression 
as indicated by the longitudinal CD4 measures may affect the time of an event of 
interest—death of a patient in this case. The main interest of inference is on the 
association between the longitudinal and survival processes. Joint models for 
longitudinal and time-to-event are based on the joint distribution of the two 
processes [1]. The joint analysis may be appropriate when the longitudinal vari-
able is correlated with patient’s health status and incorporate all information 
simultaneously so as to provide valid and efficient inferences [2]. 

The traditional approach in the analysis of survival data assumes a homoge-
neous population, where all individuals have same health risks. In practice, indi-
vidual patients possibly differ in health risks such as their vulnerability to causes 
of death, responses to treatments, and influences of various risk factors. Joint 
modelling of the two data often assumes normal distributions in the linear 
mixed models [2] [3] [4]. It is interesting to look for alternative distributions 
that can accommodate data that may not be normally distributed.  

The current study considers the longitudinal measure in terms of its rate of 
growth. The rate of growth is an important concept in studying changes. If the 
level of growth is viewed as the current status of a process at a specific time, the 
rate of growth measures how fast the process is changing at that time [4]. Studies 
by [4] extend the usual growth models using the generalized error distribution 
(GED) and estimate its parameters under Bayesian framework. The author stu-
died such a general form of linear growth model it t i itY = +∈X β , where itY  is 
growth observation for individual i at time t assuming the error term to have the 
generalized error distribution ( )2~ GED 0, ,it tσ γ∈   and independent of the 
random effects iβ . The GED has a shape parameter tγ  that may possibly vary 
across time, but here assumed constant. The model can handle data with both 
leptokurtic and platykurtic errors. 

Markos et al. [5] studied joint modelling of survival time and longitudinal 
CD4 cell counts of HIV/AIDS patients using Bayesian methods. The authors 
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compared various Bayesian joint models involving the Weibull, lognormal and 
loglogistic AFT distributions and normality assumption for the longitudinal 
CD4 measure using two data sets. They recommended the Bayesian joint loglo-
gistic model for one data set collected from Shashemene referral hospital and the 
Bayesian joint lognormal model for the second data set collected from Bale Robe 
general hospital. These models have same hazard rate functions as that of data 
sets. In the current study, we further analyze the same data sets with newly de-
fined Bayesian joint models considering the generalized error distribution for 
the longitudinal measure instead of normal distribution.  

2. Methodology 
2.1. Description of Data 

The study considers two data sets that are collected from two hospitals under 
similar settings and as considered by [5] [6] [7]. The data are extracted from pa-
tients’ charts which contain epidemiological, laboratory and clinical information 
of the patients. Patients with ages less than 16 years old are also those who 
started ART before the defined study period were not included in this study.  

Data 1: The first data set is obtained for 354 random samples of HIV/AIDS 
patients who had been under ART follow-up from January 2006 to December 
2012 at the Shashemene referral hospital. There are two outcome variables in 
each data set. The longitudinal measure is the square root of the number of CD4 
cell counts per mm3 of blood repeatedly measured at approximately every 6 
months interval. The survival outcome is the time in months of a patient to the 
associated death event. Explanatory variables for the longitudinal response are: 
visit time, square of visit time, sex, functional status, alcohol use, tobacco use, 
number of opportunistic infections. Predictors for the survival time are: TB in-
fection status at baseline, awareness about ART, condom use, number of oppor-
tunistic infections, number of living rooms at home. Data 2: The second data set 
is obtained for 400 random samples of HIV/AIDS patients who had been under 
ART follow-up from January 2008 to March 2015 at the Bale Robe general hos-
pital. Outcome variables are: longitudinal measure which is the square root of 
the number of CD4 cell counts per mm3 of blood that repeatedly measured at 
approximately every 6 months interval, and survival time in months of a patient 
to death event. Explanatory variables for the longitudinal measure are: visit time, 
square of visit time, sex, age, weight, number of opportunistic infections, and 
those for the survival time are: age, weight, functional status, tobacco, condom. 
Description and codes of the explanatory variables are described in Table 1. 

2.2. Linear Mixed Models 

The longitudinal data, CD4 T-cell counts, are measurements on the response va-
riable taken from same individuals over several observation times. Thus the set 
of observations on a subject tends to be inter-correlated [8] [9]. The two sources 
of variations expected are the within-patient and the between-patients variations.  
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Table 1. Explanatory variables with codes. 

No. Variable Description and Codes 

1 Observed time Months (continuous) 

2 Square of observed time Months squared (continuous) 

3 Gender Female (0), Male (1) 

4 Age Years (continuous) 

5 Weight Kilograms (continuous) 

6 Functional status Working (0), Ambulatory (1), Bedridden (2) 

7 Alcohol use No (−1), No opinion (0), Yes (1) 

8 Tobacco use No (−1), No opinion (0), Yes (1) 

9 Number of opportunistic infections Counts 

10 TB infection status at baseline Negative (0), Positive (1) 

11 Awareness about ART No (0), Yes (1) 

12 Condom use Not always use (0), Use always (1) 

13 Number of living rooms at home Counts 

 
Analysis of within-patient variation allows studying of changes of the CD4 
counts over time, while analysis of between-patients variation allows under-
standing differences between patients.  

Here we assume that the longitudinal CD4 measure has the generalized error 
distribution for instead of normal. For any variable Y that follows the genera-
lized error distribution, its density function ( )2GED ; , ,y γ µ σ  with three para-
meters as adapted by [4] from [10] is: 

( ) ( ) ( )
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Here µ is location and 2σ  is scale parameters. And γ  is the shape parame-
ter of GED that is related to kurtosis of the distribution and characterizes 
non-normality of Y. The GED can model the error distribution more flexibly 
than the normal one [4] [10] [11].  

The generalized error distribution generalizes the normal distribution. Normal 
distribution is a special case of GED when 0γ =  in which case ( )0 1 2πw =  
and ( )0 1 2c = . Other special cases include a Laplace (double exponential) dis-
tribution when 1γ =  and when becomes a uniform distribution γ  ap-
proaches-1. It becomes leptokurtic distribution for ( )0,1γ ∈ , gets fatter tails 
when 0γ > , and gets thinner tails than the normal distribution when 0γ < . 
Choy and Smith [12] derived the GED as a scale mixture of normal distributions 
for ( ]0.5,1γ ∈ . 
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The GED in Equation (1) is expressed in a simpler form by [13] as follows:  

( ) ( )exp
12

sssf y y

s

λ λ µ= − −
 Γ 
 

               (2) 

The normal distribution is a special case of this form of GED when s = 2 and 
so 1 2λ σ= . But in many situations, data are assumed normal though nor-
mality may not be an appropriate assumption. The statistical package such as 
fitdistrplus developed by [14] can be used to see whether or not measurement 
errors of data at hand are normally distributed. 

The generalized error distribution was first introduced by Subbotin [15] as 
class of symmetric distributions with variation in kurtosis. The distributions 
have many structural properties close to a normal distribution. Many researchers 
have studied GED including its applications but not in the joint models studied 
here. Nelson [16] developed linear regression and time series models with heavy 
tails assuming the underlying distribution to be the GED. It can be used in sta-
tistical modelling if the observation errors are not necessarily normally distri-
buted. Zhang [4] proposed and studied linear mixed growth models for longitu-
dinal data with the GED so as to handle leptokurtic and platykurtic errors. The 
author reported that such models fit better to data than the respective models 
with normality assumptions. 

In our case, we first analyzed the CD4 counts data in fitdistrplus package [14] 
and found that measurement errors of the longitudinal CD4 data seem 
non-normally distributed. Then we define the linear mixed model using genera-
lized error distribution. Let itY  be the longitudinal CD4 measurement of the ith 
patient 1,2,3, ,i n=   at times 1, , Tt t t=  . The linear mixed model for the 
longitudinal process with assumption of generalized error distribution for the 
error term is defined as:   

( ) ( )1it i it i it itY t W tµ= + +∈                   (3) 

where ( )i it it itµ = X β  is time dependent mean response of itY  as a function of 
predictors itX  and coefficients iβ , ( )1i itW t  is time dependent subject spe-
cific random effects having normal distribution with mean zero and variance 

2σ , and it  is a random error distributed as ( )2~ GED ,0,it γ σ∈ . The shape 
parameter γ  is an important parameter to be studied here. 

2.3. Survival Models 

The survival time is random variable defined on non-negative real numbers. The 
observed time is taken as the minimum ( )min ,i i iT t c=  of the time to event it  
and time to censoring ic . The time variable is modeled with two AFT distribu-
tions (lognormal and loglogistic) as considered in [5] [17] [18] [19].  

We assume that the survival time follows lognormal distribution. Its probabil-
ity density function ( )f t , survival function ( )S t  and hazard function ( )h t  
with parameters µ  and σ  can be expressed respectively as: 
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The regression model linked with the covariates for each individual i is given 
as: 

( )( )2~ lognormal ,i iT tµ σ  with ( )( ) ( )T
2 2 2log i i i it W tµ = +X α     (4) 

Assuming that the survival time follows loglogistic distribution, its probability 
density function ( )f t , survival function ( )S t  and hazard function ( )h t  
with parameters with parameters λ  and ρ  can be expressed respectively as: 

( )
( )

( ) ( )
1 1

2

1, ,
1 11

t tf t S t h t
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ρ ρ

ρ ρρ

λρ λρ
λ λλ

− −

= = =
+ ++

 

The regression model is linked with the covariates for each individual 𝑖𝑖 as 
follows: 

( )( )~ Loglogistic ,i iT tρ λ  with ( )( ) ( )( )2 2log i i i it W tλ ρ= − +X α   (5) 

The AFT models allow the direct effects of covariates on survival time instead 
of hazard rate. Given a vector of predictors 2iX , the log-linear form of the AFT 
model for survival time iT  of individual patient 1,2,3, ,i n=   can be written 
as: 

( ) ( )2 2 2log |i i i i i iT W W t ε= + +X α                  (6) 

where iα  is a vector of unknown coefficients of 2iX , ( )2iW t  refers to subject 
specific random effects having normal distribution, iε  is a sequence of mu-
tually independent measurement errors that follows AFT distributions, in this 
case, lognormal and loglogistic distributions. 

3. Bayesian Joint Models 
3.1. Likelihood Model 

The association between the longitudinal and survival processes is assumed to 
come through stochastic dependences denoted by ( )1iW t  and ( )2iW t . There 
are many ways of making the linkages [2]. Here we consider the links used in [5]. 
Thus the joint models that link the GED based model of longitudinal process in 
Equation (3) to the AFT based model of survival process in Equations (4)-(6) is 
given as follows:  

( )1 1 2  i i iW t U U t= + ∗                        (7) 

( )2 1 1 2 2i i iW t rU r U= +                        (8) 

where 1 2,r r  are association parameters. Note that 1 2,i iU U  are latent variables 
that are independent subject-specific random effects having bivariate Gaussian 
distribution with mean zeros and constant variances. These effects are assumed 
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to be induced by the longitudinal process to the time-to-event process through 
the random intercept and random slope terms in the linear mixed model.  

We assume Y and T are conditionally independent given the random effects 
( )1 2,w w=w  and model parameters ( )1 2,=θ θ θ . The two sets of parameters 

are one for the linear mixed model ( )2 2 2
1 1 2, , , ,u uγ σ σ σ− −= θ β  and those for the 

survival model ( )2
2 1 2, , ,LN r rσ −=θ α  in the lognormal or ( )2 1 2, , ,r rρ=θ α  in the 

loglogistic case. The joint likelihood function of the data from the two processes 
can be given as: 

( )
( ) ( ) ( ) ( )

1 2 1 2

1 1 2 2 2 1 1 2 1

, , | , , ,

| , , | , | d d

f w w

f w f w f w w f w w w= ∫
y t

y t

δ θ θ

θ δ θ
      (9) 

where each δ  is an indicator for a patient’s survival with 1δ =  if death event 
occurs and 0δ =  if censored.  

3.2. Prior Distributions 

Non-informative joint prior distribution of the parameters ( )1 2, ,w wπ θ  is 
considered. Individual parameters β’s and α’s are assumed to be independently 
and identically normally distributed with mean zero and large variance 1000. 
The association parameters 1 2,r r  are each assumed to have normal distribution 
with mean zero and variance 1000. The shape parameter γ  of GED, the shape 
parameter of loglogistic distribution ρ , and precision parameters 2τ σ −=  all 
are assumed to follow Gamma(2, 0.5). 

3.3. Posterior Distribution  

The Bayesian model [10] is defined by the posterior distribution ( ), | , ,w y tπ θ δ  
of the model parameters θ  and random effects w  given the data and is ex-
pressed by: 

( ) ( ) ( )
( ) ( )

, , | , ,
, | , ,

, , | , , d d
f y t w w

w y t
f y t w w w

δ θ π θ
π θ δ

δ θ π θ θ
=
∫

        (10) 

where ( ), , | ,f y t wδ θ  is the likelihood function, ( ), wπ θ  is the prior proba-
bility distribution, and ( ) ( ), , | , , d df y t w w wδ θ π θ θ∫  is the normalizing con-
stant. The main challenge here is computational difficulty. The standard maxi-
mum likelihood method involves integrating out latent variables from the log 
likelihood function which is difficult when the parameters are of high dimen-
sional. Simulation simplifies the computational challenges. Here the Bayesian 
model in Equation (10) is computed using Markov chain Monte Carlo methods 
with the Gibbs sampler algorithm that is based on full conditional distributions 
of the parameters [7] [13] [20]. The Gibbs sampler algorithm is implemented in 
the WinBUGS software version 1.4 [20]. The final inferences are made based on 
independent samples taken from the posterior distribution after convergence of 
the realizations. Time series plots, auto-correlations and Gelman-Rubin statistics 
are used to assess and confirm convergences.  
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4. Results and Discussion 

The objective of this study is to model the longitudinal CD4 measurement and 
the associated time to death data using Bayesian joint modelling approach. The 
generalized error distribution is assumed for the square root of the CD4 T-cell 
counts, while lognormal and loglogistic distributions are assumed for the surviv-
al time. Two data sets collected from two hospitals are analyzed using four Baye-
sian joint models. The findings from the models are all interpreted as they are 
important in many ways. 

4.1. Descriptive Analysis  

For Data 1 taken from Shashemene referral hospital, the average baseline CD4 
cell counts is estimated to be 156.9 with standard deviation of 92.5 per mm3 of 
blood sample. By the end of study period, percentage of death event is about 
5.9%. The average survival time of the patients is estimated to be 48.7 with stan-
dard deviation of 21.3 in months.  

For Data 2 taken from Bale Robe general hospital, the average number of 
baseline CD4 counts is about 177.6 with standard deviation of 104.8 per mm3 of 
blood sample. Among the sample of patients considered, percentage of death 
event is about 11.5%. The average survival time is about 55.1 with standard dev-
iation of 21.8 in months.  

The baseline CD4 counts reveal same variabilities in the two studies which is 
about 59% as measured by coefficient of variation. However, it seems that there 
a slight difference between variabilities for time to event data with 44% for Data 
1 and 40% for Data 2. 

To understand the relationship between the longitudinal measure and fol-
low-up time, mean structures are plotted in Figure 1. The plots show that the 
average of square root of CD4 counts may have a quadratic relationship with pa-
tient’s follow-up time. We thus include both observation time and its square in 
the linear mixed models as predictor variables.  

4.2. Inferential Analysis in the Case of Data 1 

In the analysis of Data 1, twenty one parameters are estimated using the two de-
fined Bayesian joint models based on GED-lognormal and GED-loglogistic dis-
tributions. The results of analysis are displayed in Table 2 & Table 3.  
 
Table 2. Parameter estimations for the Bayesian Joint GED Lognormal Model in the case 
of Data 1. 

Parameter Mean SD MC error 95% CI 

oβ  13.650 0.294 0.030 (13.08, 14.22)* 

obtβ  2.134 0.084 0.010 (1.978, 2.318)* 

2obt
β  −0.118 0.010 0.001 (−0.141, −0.10)* 

sexMaleβ  −0.891 0.364 0.033 (−1.609, −0.137)* 

funβ  −0.292 0.329 0.027 (−0.923, 0.363) 
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Continued 

alcβ  −0.712 0.546 0.064 (−1.721, 0.452) 

tobacβ  0.894 0.509 0.059 (−0.164, 1.811) 

oisβ  0.056 0.085 0.007 (−0.110, 0.222) 

γ  1.021 0.102 0.003 (0.8291, 1.227)* 

σ∈  3.051 0.074 0.002 (2.911, 3.206)* 

1uτ  0.097 0.010 0.000 (0.079, 0.117)* 

2uτ  2.363 0.339 0.026 (1.796, 3.133)* 

0α  1.368 0.014 0.001 (1.340, 1.394)* 

tbα  −0.072 0.015 0.000 (−0.1008, −0.044)* 

artkα  0.080 0.007 0.000 (0.067, 0.095)* 

condα  −0.091 0.012 0.000 (−0.114, −0.067)* 

oisα  0.003 0.002 0.000 (−0.002, 0.007) 

roomα  0.003 0.004 0.000 (−0.0054, 0.0124) 

LNτ  7.869 0.595 0.013 (6.743, 9.081)* 

1r  0.001 0.002 0.000 (−0.003, 0.004) 

2r  0.003 0.011 0.001 (−0.018, 0.025) 

*Significant at 5% significant level; SD: Standard deviation; CI: Credible interval. 

 
Table 3. Parameter estimations for the Bayesian Joint GED Loglogistic Model in the case 
of Data 1. 

Parameter Mean SD MC error 95% CI 

oβ  13.720 0.320 0.019 (13.11, 14.38)* 

obtβ  2.125 0.077 0.005 (1.97, 2.268)* 

2obt
β  −0.117 0.009 0.001 (−0.134, −0.099)* 

sexMaleβ  −0.935 0.377 0.020 (−1.64, −0.183)* 

funβ  −0.259 0.357 0.018 (−0.96, 0.4647) 

alcβ  −0.771 0.582 0.040 (−1.946, 0.354) 

tobacβ  0.938 0.574 0.039 (−0.226, 2.074) 

oisβ  0.033 0.094 0.005 (−0.151, 0.217) 

γ  1.017 0.103 0.002 (0.823, 1.229)* 

σ∈  3.047 0.074 0.001 (2.910, 3.198)* 

1uτ  0.097 0.010 0.000 (0.0795, 0.117)* 

2uτ  2.326 0.318 0.012 (1.775, 3.016)* 

0α  3.986 0.038 0.001 (3.911, 4.062)* 

tbα  −0.241 0.039 0.000 (−0.319, −0.164)* 

artkα  0.282 0.021 0.000 (0.241, 0.323)* 

condα  −0.361 0.036 0.001 (−0.4297, −0.291)* 

oisα  0.006 0.007 0.000 (−0.006, 0.020) 

roomα  0.006 0.013 0.000 −(0.018, 0.031) 

ρ  6.450 0.295 0.003 (5.878, 7.034)* 

1r  0.002 0.005 0.000 (−0.007, 0.012) 

2r  0.001 0.029 0.001 (−0.055, 0.058) 

*Significant at 5% significant level; SD: Standard deviation; MC: Monte Carlo; CI: Credible interval. 
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(a) 

 
(b) 

Figure 1. Plots of mean of square roots of CD4 Counts over observed time for the two 
studies: (a) Data 1 and (b) Data 2. 

4.2.1. Bayesian GED Lognormal Analysis 
The results of analysis are displayed in Table 2. They reveal that the shape pa-
rameter of the GED of the longitudinal measure is significantly different from 
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zero ( )( )ˆ 1.021,CI 0.8291,1.227γ =  at 5% level of significance. This is because 
the 95% credible interval does not contain zero. The standard deviation of the 
GED is as well significant ( )( )ˆ 3.051, 2.911,3.206σ∈ = .   

The subject-specific random effects 1U  and 2U  are found to be significant 
since their respective precision parameters are significant  

( )( )1ˆ 0.097, 0.079,0.117uτ =  and ( )( )2ˆ 2.363, 1.796,3.133uτ = . For AFT model, 
the precision parameter in the lognormal distribution is significant  

( )( )ˆ 7.869, 6.743,9.081LNτ = . However, the association parameters 1r  and 2r  
in the joint model are not significant ( )( )1̂ 0.001 0.003,0.004r = −  and  

( )( )2̂ 0.003 0.018,0.025r = − . Thus the Bayesian joint GED lognormal model is 
not significant. 

4.2.2. Bayesian GED Loglogistic Analysis 
Analysis results of the Bayesian GED loglogistic model in the case of Data 1 are 
displayed in Table 3. The parameters of the generalized error distribution are 
both significant at significant 5% level based on estimations of its shape parame-
ter ( )( )ˆ 1.017, 0.823,1.229γ =  and scale parameter ( )( )ˆ 3.047, 2.910,3.198σ∈ = . 
The random effects 1U  and 2U  are significant as well since their respective 
precision parameters are significant ( )( )1ˆ 0.097, 0.0795,0.117uτ =  and  

( )( )2ˆ 2.326, 1.775,3.016uτ = . In the survival sub-model, the shape parameter of 
the loglogistic distribution is significant ( )( )ˆ 6.450, 5.878,7.034ρ = . Similar to 
the lognormal case, the Bayesian joint GED loglogistic model is not significant 
since the association parameters 1r  and 2r  are both insignificant  

( )( )1̂ 0.002, 0.007,0.012r = −  and ( )( )2̂ 0.001, 0.055,0.058r = − .  
Comparing their total DIC values, the Bayesian GED loglogistic model fits 

better to Data 1 than the lognormal case. From the analysis of Bayesian GED 
loglogistic model, the covariates that are found to affect the longitudinal CD4 
measure are: observed time, squared observed time and gender. They imply that 
the disease marker improves over time but later reaches maximum and then de-
clines. Female patients gain more CD4 counts as compared to the males. Effects 
of the functional status, alcohol use, tobacco use, and opportunistic infection 
status of patients are not statistically significant. From the survival sub-model, 
the results show that TB infection status at baseline, awareness about ART and 
condom use have significant effects on the survival time of a patient.  

4.3. Inferential Analysis in the Case of Data 2 

Here we analyze Data 2 and estimate twenty parameters of the same two defined 
models: Bayesian joint GED-lognormal and Bayesian GED-loglogistic models. 
The results are given in Table 4 & Table 5. 

4.3.1. Bayesian GED Lognormal Analysis 
The results of analysis in Table 4 show that the shape parameter of the genera-
lized growth distribution is significantly different from zero  

( )( )ˆ 0.05244, 0.00209,0.1442γ = . The standard deviation of the GED is signifi-
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cant ( )( )ˆ 5.006, 4.846,5.176σ∈ =  and relatively larger than those obtained from 
Data 1 case. The subject-specific random effects 1U  and 2U  are significant 
due to the fact that their respective precision parameters are significant  

( )( )1ˆ 4.764, 0.547,15.47uτ =  and ( )( )2ˆ 5.231, 0.866,12.12uτ = .  
For the survival sub-model, the precision of the lognormal distribution is sig-

nificant ( )( )ˆ 7.43, 5.678,10.53LNτ = . Again, the association parameters 1r  and 

2r  are not significant ( )( )1̂ 0.0047, 0.1297,0.101r = − −  and  
( )( )2̂ 0.010, 0.144,0.178r = − −  and hence the Bayesian joint GED lognormal 

model is not significant in the case of Data 2.  
The covariates observed time, square of observed time, sex, age, weight and 

number of opportunistic infection have statistically significant effects on CD4 
counts of the HIV/AIDS patients. For survival part, age, functional status, to-
bacco use, and condom use have effects on survival time of the patients. Patient’s 
weight is not significant in this case. 

4.3.2. Bayesian GED Loglogistic Analysis 
The results are displayed in Table 5. The shape parameter of the generalized  
 
Table 4. Parameter estimations for the Bayesian Joint GED Lognormal Model in the case 
of Data 2. 

Parameter Mean SD MC error 95% CI 

oβ  14.31 0.2427 0.02007 (13.84, 14.77)* 

obtβ  2.897 0.1616 0.01875 (2.573, 3.196)* 

2obt
β  −0.2712 0.02531 0.003028 (−0.321, −0.225)* 

sexMaleβ  −1.627 0.2513 0.007866 (−2.123, −1.124)* 

ageβ  −0.6367 0.1199 0.003315 (−0.867, −0.405)* 

wtβ  0.7092 0.1243 0.00304 (0.462, 0.949)* 

oisβ  −0.4647 0.1139 0.002709 (−0.68, −0.241)* 

γ  0.05244 0.03823 0.00091 (0.002, 0.144)* 

σ∈  5.006 0.08456 0.0018 (4.846, 5.176)* 

1uτ  4.764 3.845 0.3743 (0.547, 15.47)* 

2uτ  5.231 3.04 0.3509 (0.8663, 12.12)* 

0α  1.27 0.01391 0.00063 (1.243, 1.298)* 

ageα  −0.01079 0.005444 0.00011 (−0.022, −4.1E−05)* 

wtα  0.00933 0.005371 0.00012 (−0.0014, 0.020) 

funα  0.0194 0.006951 0.00028 (0.005, 0.033)* 

tobacα  −0.03173 0.006202 0.00012 (−0.044, −0.020)* 

condα  0.09406 0.0109 0.00037 (0.072, 0.115)* 

LNτ  7.43 1.271 0.09489 (5.678, 10.53)* 

1r  −0.004651 0.05618 0.0051 (−0.130, 0.101) 

2r  −0.01015 0.08735 0.01037 (−0.144, 0.178) 

*Significant at 5% significant level; SD: Standard deviation; MC: Monte Carlo; CI: Credible interval. 
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Table 5. Parameter estimations for the Bayesian Joint GED Loglogistic Model in the case 
of Data 2. 

Parameter Mean SD MC error 95% CI 

oβ  14.270 0.2212 0.01681 (14.280, 14.690)* 

obtβ  2.939 0.1494 0.01712 (2.930, 3.259)* 

2obt
β  −0.299 0.0243 0.00293 (−0.302, −0.243)* 

sexMaleβ  −1.540 0.2518 0.00999 (−1.538, −1.020)* 

ageβ  −0.603 0.1197 0.00336 (−0.603, −0.362)* 

wtβ  0.708 0.1258 0.00428 (0.710, 0.955)* 

oisβ  −0.486 0.1152 0.00351 (−0.488, −0.260)* 

γ  0.093 0.0455 0.00121 (0.089, 0.190)* 

σ∈  4.778 0.0860 0.00262 (4.778, 4.95)* 

1uτ  4.705 3.6040 0.41920 (3.939, 15.05)* 

2uτ  4.605 2.7750 0.34590 (4.356, 10.15)* 

0α  3.586 0.0584 0.00402 (3.587, 3.695)* 

ageα  −0.041 0.0229 0.00089 (−0.041, 0.005) 

wtα  0.046 0.0233 0.00097 (0.046, 0.093)* 

funα  0.061 0.0292 0.00183 (0.060, 0.120)* 

tobacα  −0.111 0.0248 0.00098 (−0.111, 0.063) 

condα  0.371 0.0442 0.00210 (0.372, 0.458)* 

ρ  5.559 0.4328 0.02653 (5.526, 6.539)* 

1r  −0.021 0.1464 0.01219 (−0.005, 0.238) 

2r  
 

0.627 0.2127 0.02693 (0.643, 1.005)* 

*Significant at 5% significant level; SD: Standard deviation; MC: Monte Carlo; CI: Credible interval. 

 
growth distribution is significant ( )( )ˆ 0.093, 0.089,0.190γ =  and its standard 
deviation is also significant ( )( )ˆ 4.778, 4.778,4.95σ∈ = . The subject-specific 
random effects 1U  and 2U  are significant because their respective precision pa-
rameters are so ( )( )1ˆ 4.705, 3.939,15.05uτ =  and ( )( )2ˆ 4.605, 4.356,10.15uτ = .  

For the survival sub-model, the precision parameter of the loglogistic distri-
bution is significant ( )( )ˆ 5.559, 5.526,6.539ρ = . Only the slope term 2r  of the 
association parameters is significant ( )( )2̂ 0.627, 0.643,1.005r =  but not the in-
tercept ( )( )1̂ 0.021, 0.005,0.238r = − − . The Bayesian joint GED loglogistic model 
is significant implying that the joint model is important for this data set.  

The Bayesian joint GED loglogistic model fits better to the data than the log-
normal case based on the total DIC values. From analysis of Data 2 with the se-
lected loglogistic model, the covariates that are found to significantly affect lon-
gitudinal CD4 measure of an HIV/AIDS patient are: observed time, square of 
observed time, sex, age, weight and number of opportunistic infection. With in-
creasing ART follow-up time, CD4 counts of a patient can get parabolic mean 
growth with reaching maximal point. Female patients achieve higher CD4 
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counts on average than males. Moreover, the mean CD4 counts of a patient de-
clines as patient’s age increases, weight decreases and number of opportunistic 
infection increases.  

For survival sub-model, the results reveal that improving a patient’s weight 
improves her/his survival time. Note that weight is an important variable in ex-
plaining both the longitudinal and survival processes of a patient. Healthy func-
tional status and condom use during sexual intercourse have also positive effects 
on survival time. Age and tobacco use are not significant for this data case.  

4.4. Assessment of Convergence  

For each of the Bayesian models, three parallel sampling chains of 60000 itera-
tions with different starting values are generated. Some plots are given in Figure 
2. Inferences are made based on samples of the posterior distributions that are 
taken with thinning of 10 after burn-in of 25000. Time series plots of the history 
of the simulations show a reasonable degree of randomness and they may con-
vergence to same values. Auto-correlations and Gelman-Rubin statistics are also 
used to assess convergences. Finally independent samples are taken from the  
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(c) 

Figure 2. Plots from analysis of Data 1 using the Bayesian GED Loglogistic. (a) Time Se-
ries plots of simulations of shape parameter γ of GED and shape parameter ρ of loglogis-
tic distribution; (b) Autocorrelation plots; (c) Plots of Gelman-Rubin statistics. 

 
posterior distribution after convergence of the realization with specified burn-in 
and thinning values, and then all inferences are made using those samples. 

Assessment plots are displayed in Figure 2 from the analysis of Data 1 using 
the Bayesian GED loglogistic model. Results of two parameters: shape parameter 
γ  of GED and shape parameter ρ  of loglogistic distribution are illustrated. 
They show that the simulations converge. 

The findings reveal that the generalized error distribution for both data sets 
has positive estimate of the shape parameter and so it is of fatter tails than nor-
mal distribution. There is higher variation on the CD4 T-cell counts for the data 
from Bale Robe general hospital (about 49%) than that obtained from Shashe-
mene referral hospital (about 10%).  

The posterior distributions estimated under the selected models, Bayesian 
GED loglogistic models, are the solutions required in this analysis. Though the 
association parameter in the joint model is significant for one data but not for 
the other data case, both fitted models are still important to consider as they are 
newly defined models implementing the generalized error distribution. Thus the 
respective results are used to report findings on how the longitudinal CD4 
counts and survival time of a patient are related and parameter estimations.  

The findings from this study are fairly consistent with the studies by [5] ex-
cept for the type of models selected. They suggested different models for the two 
data sets while only one is recommend here. This may be expected as the GED is 
involved in this study and as indicated by [4] the GED model can gain more in-
sight on the error distributions than the normal growth curve models.  

5. Conclusions 

The current study focuses on developing Bayesian joint models with the as-
sumption of generalized error distribution for the longitudinal CD4 observations 
and of two AFT distributions for the survival time of HIV/AIDS patients. Ana-
lyses of two different data sets show that measurement errors of the longitudinal 
CD4 variable are not normally distributed and so are modelled by the general-
ized error distribution. The distributions have fatter tails than the normal dis-
tribution. The Bayesian joint GED loglogistic models are found to be important 
models in fitting to the data sets. Fairly consistent estimates of parameters and 
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more insights of the data are obtained from the models. In one of the data sets, it 
is found that survival time of a patient is affected by the latent variables gener-
ated from the longitudinal CD4 T-cell counts. 

Covariates with significant effects are identified from analysis of the Bayesian 
GED loglogistic models. The findings reveal that under ART follow-up, patients’ 
health can be improved over time. Female patients gain more CD4 counts as 
compared to the males. Survival time of a patient is negatively affected by TB in-
fection. Awareness about ART is an important factor as well. 

Increase in number of opportunistic infection implies decline of CD4 counts. 
Age of a patient negatively affects the disease marker but no effects on the sur-
vival time. Weight loss is related with decline of CD4 counts and shortening of 
survival time on average. Improving a patient’s weight may improve her/his sur-
vival time. Condom use is positively related with survival time of a patient.  

Bayesian joint models with GED and AFT distributions are found to be useful 
in modelling the longitudinal and survival processes. Bayesian computations of 
such complex models are well handled in the WinBUGS software by providing 
simulations and estimations of the posterior distributions. We recommend 
Bayesian joint models with generalized error distributions when measurement 
errors of the longitudinal data are not necessarily normally distributed. Further 
studies may investigate the models with various types of shared random effects, 
more covariates and prediction of future observations.  
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