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Abstract 
The Alternating Direction Multiplier Method (ADMM) is widely used in 
various fields, and different variables are customized in the literature for dif-
ferent application scenarios [1] [2] [3] [4]. Among them, the linearized alter-
nating direction multiplier method (LADMM) has received extensive atten-
tion because of its effectiveness and ease of implementation. This paper 
mainly discusses the application of ADMM in dictionary learning (non-convex 
problem). Many numerical experiments show that to achieve higher conver-
gence accuracy, the convergence speed of ADMM is slower, especially near 
the optimal solution. Therefore, we introduce the linearized alternating direc-
tion multiplier method (LADMM) to accelerate the convergence speed of 
ADMM. Specifically, the problem is solved by linearizing the quadratic term 
of the subproblem, and the convergence of the algorithm is proved. Finally, 
there is a brief summary of the full text. 
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1. Introduction 

With the development of technology, data collection and processing have become 
easier, and many areas involve high-dimensional data issues, such as information 
technology, economic finance, and data modeling. Faced with such huge data, 
many researchers have proposed different solutions, and compressed sensing and 
sparsity has become an effective algorithm, because sparsity reduces the dimen-
sionality of data in a certain sense and alternates direction multiplier method 
(ADMM) [5]. It is a typical idea of using divide-and-conquer, which is to trans-
form the original high-dimensional problem into two or more low-dimensional 
problem-solving algorithms, which is in line with the processing requirements of 
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big data. However, the traditional ADMM is prone to the local best of the prob-
lem. The linear model has a simple structure, which is relatively basic, easy to 
handle, and widely used. There are many phenomena in real life that can be ap-
proximated by a linear model, for example, the relationship between per capita 
disposable income and consumer spending. Generally speaking, the higher the 
per capita disposable income X is, the higher the corresponding consumption 
expenditure Y is. The main advantage of the new algorithm is that it can make 
the sub-problem have a display solution and be easier to solve, which is of great 
significance in the application of many problems. 

2. Introduction to the Method 

The ADMM algorithm was first proposed by Gabay, Meicher and Glowinski in 
the mid-1970 [6] [7] [8]. A similar idea originated in the mid-1950s. A large 
number of articles analyzed the nature of this method, but ADMM was used to 
solve the problem of partial differential equations. Now ADMM is mainly used 
to solve the optimization problem with separable variables, which solves the 
problem that the augmented Lagrangian algorithm with good properties can’t 
solve. It can be parallelized, which speeds up the solution. The convergence and 
convergence rate of ADMM for convex optimization problems with two separa-
ble variables. Although there is a mature theoretical analysis, the convergence 
problem of convex optimization problems extended to more than three separa-
ble variables has not been improved in a good solution. Then ADMM is also a 
public problem for non-convex optimization problems. There have been many 
applications showing the effectiveness of ADMM for non-convex problems. Can 
ADMM be applied to more optimization problems and more non-convex opti-
mization problems? What is the effect? This article will introduce the application 
of ADMM in non-convex optimization problems. 

First consider the convex optimization problem with equality constraints 

( )min s.t.f x Ax b=                        (1) 

where , , :n m n nx R A R f R R×∈ ∈ →  is a convex function. 
Firstly, an optimization algorithm with good properties is introduced, which 

augments the Lagrangian multiplier method. The augmented Lagrangian func-
tion is defined as: 

( ) ( ) ( ) ( ) 2T
2, 2 ,L x f x Ax b Ax bρ λ λ ρ= − − + −             (2) 

where 0ρ >  is called the penalty parameter. when 0ρ = , 0L  is the Lagran-
gian function. The iterative steps of the augmented Lagrangian multiplier me-
thod are: 

( ) ( )
( )

1

1 1

arg min ,

 

:k k

k k k

x L x

Ax b

ρ λ

λ λ ρ

+

+ +

=

= − −:
                    (3) 

where λ  is the Lagrangian multiplier, i.e. the dual variable. 
The advantage of this algorithm is that the convergence of the iterative se-
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quence can be guaranteed without too strong conditions. For example, for the 
penalty parameter, it is not required to increase to infinity in the iterative process, 
and a fixed value can be taken. But the disadvantage of this algorithm is that 
when the objective function is separable, the model becomes: 

( ) ( )min
s.t.

f x g y
Ax By b

+

+ =
                         (4) 

where g is also a convex function. In the x iteration step, the augmented Lagran-
gian function Lρ  is inseparable, and the discrete variables cannot be solved in 
parallel for the x subproblem. This leads to the ADMM algorithm we will dis-
cuss in the next section. The Alternating Direction Method (ADMM) is mainly 
used to solve the optimization problem with separable variables like (4), where 

, , , ,n m p n p m px R y R A R B R b R× ×∈ ∈ ∈ ∈ ∈ . Let’s assume that both f and g are 
convex functions, and then make other assumptions. Similar to the definition in 
the previous section, the augmented Lagrangian penalty function of (4) is: 

( ) ( ) ( ) ( ) ( ) 2T
2, , 2L x y f x g y Ax By b Ax By bρ λ λ ρ= + − + − + + −    (5) 

The steps of the ADMM algorithm iteration are as follows: 

( )
( )
( ) ( )( )

1

1 1

1 11

arg min , ,

arg min , ,

k k k

k k k

k kk k

x L x y

y L x y

Ax By b

ρ

ρ

λ

λ

λ λ ρ

+

+ +

+ ++

=

=

= − + −

:

:

:

                 (6) 

where 0ρ > . The similarity between the algorithm and the augmented Lagran-
gian multiplier method is to iteratively solve the variables x and y and then itera-
tively solve the dual variables. 

If the augmented Lagrangian multiplier method is used for iterative solution: 
( ) ( ) ( )( )( )

( ) ( )( )

1 1

1 11

, arg min , ,k k k

k kk k

x y L x y

Ax By b

ρ λ

λ λ ρ

+ +

+ ++

=

= − + −

:

:
                (7) 

As mentioned in the previous section, you can see that the augmented Lagran-
gian multiplier method deals with two separate variables at the same time, and 
ADMM alternates the variables, which is the origin of the algorithm name. It can 
be considered that this is the use of Gauss-Seidel iterations on two variables. For 
details, please refer to. It is obvious from the algorithm framework that the 
ADMM algorithm is more suitable for solving the problem of having separate 
variables because the objective functions f and g are also separated. 

To get a simpler form of ADMM, normalize the dual variable so that 
( )1µ ρ λ= . Then the ADMM iteration becomes: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

21

2

21 1

2

1 1 1

arg min 2

arg min 2:

k k k

k kk

k k k k

x f x Ax By b

y g y Ax By b

Ax By b

ρ µ

ρ µ

µ µ

+

+ +

+ + +

 = + + − + 
 
 = + + − + 
 

= − + −

:

:

         (8) 

ADMM convergence: Regarding the convergence of ADMM, please refer to 
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the literature. 

3. Application of ADMM in Dictionary Learning 

As we all know, the alternating direction method (ADMM) is one of the effective 
algorithms for solving large-scale sparse optimization problems. It is solved by 
splitting the problem into a number of low-dimensional sub-problems by aug-
mented Lagrangian function construction. In recent years, a large number of 
working signals have pointed to the sparse expression of signals. Sparse expres-
sion refers to the use of a ( )m nD R m n×∈   dictionary, the dictionary contains n 

Signal atoms { } 1

n
j j

d
=

. A signal my R∈  can be expressed as a sparse linear  

representation of these signal atoms. In fact, the so-called sparse means that the 
number of non-zero coefficients is much smaller than that of n. Such a sparse 
representation may be a determined y Dx=  or an approximate representation 
with an error term 

py Dx ε− ≤ . The vector nx R∈  is the signal y sparse ex-
pression coefficient. In practice, p often takes a value of 1, 2, or ∞. 

If m n<  and the dictionary D is full rank, then the underdetermined system 
of the problem has an infinite number of solutions, and the solution using the 
least non-zero coefficient is one of them, and is the solution we hope to find. 
Sparse expression is expressed as a mathematical expression 

( )0 0min subject toP x y Dx=                    (9) 

Or 

( )0 0 2min subject toP x y Dx− ≤                 (10) 

where 0⋅  is 0ι —module, which means that the corresponding vector takes a 
non-zero quantity. 

Dictionary Design  

Learn the dictionary based on the signal set. First given a data set { } 1

L
i i

Y y
=

= , 
assuming that there is a dictionary D so that for a given signal can be represented 
as a sparse representation of the dictionary, i.e. for a given signal iy , the model 
( )0P  Or ( )1P can find the sparse coefficient ix . The question then is how to 
find such a dictionary D. Detailed reference can be found in the literature [9]. 

The model of the problem can be written as: 

{ }2
, 00

min s.t. 1,, ,D X iFY Dx x i Lτ− ≤ =            (11) 

where 0τ  is the upper bound of the coefficient sparsity, ix  is the ith column of 
the coefficient matrix X, and 2

F⋅  is the Frobenius norm of the matrix, i.e. the 
sum of the squares of the elements of the matrix. 

Another model for dictionary learning is corresponding to the above model. 

{ }2
, 1 0

min s.t.L
D X ii Fx Y Dx

=
− ≤∑               (12) 

  is a fixed error value. 
Before applying ADMM, first make some transformations to the model, let 
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Z DX= , then the model becomes: 

{ }2
, , 00

min s.t. , 1, ,,D X Z iFY DX Z DX x i Lτ− = ≤ =      (13) 

Then the augmented Lagrangian function of the problem is: 

( ) ( )2 2

1
, , ,Λ Λ ,

2

L

i iF F
i

L D X Z Y DX Z DX Z DXβ
β

=

= − + − + −∑:   (14) 

whereΛ  is the Lagrange multiplier matrix and Λi  is the ith column of Λ . 
Using the ADMM algorithm in the above model, there is a X subproblem 

( ) 2
00

1
min Λ , s.t. 1, ,

2
,

L

i ii FX i
Z DX Z DX x i Lβ τ

=

− + − ≤ =∑   (15) 

Equivalent to 

2
00

min Λ s.t ,. 1, ,
2X iFZ DX x i Lβ β τ+ − ≤ =          (16) 

The Z subproblem is 

( )2 2
1min Λ ,

2
L

Z ii iF FY Z Z DX Z DXβ
=

− + − + −∑         (17) 

This sub-question has a solution. 

( ) ( )2 2Z DX Yβ β= + −Λ +                    (18) 

D sub-problem is 

2min
2D FZ DXβ β+ Λ −                      (19) 

Λ  updated to 
( ) ( ) ( )1k k Z DXγβ+Λ = Λ + −                     (20) 

But ADL (ADMM for Dictionary Learning) is prone to the local best of the prob-
lem. Using linearization techniques, we extended LADMM to solve the problem of 
ADL local straits and proved the convergence of the algorithm. Numerical experi-
ments are used to illustrate the effectiveness of the proposed algorithm. 

4. Application of Linearized ADMM in Dictionary Learning 

In order to apply ADMM, we can rewrite (11) into the following form 

, 1 0
min s.t.L

D X ii x Y DX
=

=∑                    (21) 

Then the augmented Lagrangian function of the model (20) is 

( ) ( ) 2T
1 20

, ,
2

L
iiL X Y x Y DX Y DXµ

µλ λ
=

= − − + −∑          (22) 

The iterative method of ADMM is: 

( )
( )

( )

1

1 1

1 1 1

arg min , ,

arg min , ,

k k k

k k k

k k k k

X L X Y

Y L X Y

Y DX

µ

µ

λ

λ

λ λ µ

+

+ +

+ + +

 =

 =


= − −

                  (23) 

Now, we solve the subproblem in (22). First we solve the X-sub problem. 
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( ) ( )

( ) ( )

T 21
1 0 2

T 2

1 0 2

2

1 0 2

arg min
2

arg min
2

2

Lk k k k
ii

L k k k
ii

L k k
ii

X x Y DX Y DX

x Y DX Y DX

x Y DX

µλ

µλ

µ λ µ

+
=

=

=

 = − − + − 
 
 = − − + − 
 

= + − −

∑

∑

∑

     (24) 

Because of the non-identity of matrix D, this subproblem does not show a so-

lution. Inspired by [9], we linearize this quadratic term 
2

2

1
2

k kY DX λ µ− −  as 

( ) ( )T 2T

22
k k k k kD DX Y X X X Xρλ µ− − − + −            (25) 

The parameter 0ρ >  controls the degree of approximation of X and kX , 
then we solve the following problem and use the solution of this problem to ap-
proximate the solution of the subproblem generated by ADMM. 

( ) ( ) }
( )

2

1 0 2

TT

2T
1 0 2

arg min
2

arg min
2

Lk k
ii

k k k k

L k k k k
ii

X x X X

D DX Y X X

x X X D DX Y

µρ

µ λ µ

µρ λ µ ρ

=

=

= + −


 + − − −  

 = + − + − + 
 

∑

∑

 (26) 

For the above problem, it is known from [9] medium (11) 

( )
( )

( )( )

2
T

1

0
1

2

T

arg min
2

shrink ,

k k kLk k
i i i

i
i

k k k k

i

D DX Y
x x x X

X D DX Y

λ µµρ
ρ

λλ µ ρ
µρ

+

=

  − −  = + − −     
 

= − − − 
 

∑
 (27) 

Furthermore, for the Y subproblem, the Equation (10) in [9] shows that the 
display solution is 

1 1
1,2

1shrink ,k kY DX
κλ
µ µ

+ + 
= − 

 
                   (28) 

As can be seen from the above discussion, the LADMM iterative algorithm 
can be described by the following table. 
 

Input: X, Y and tol. Choose 1 0, 0λ µ> >  and ( )T 2
1 pX X Iρ ρ λ> + , where ( )ρ ⋅  denotes the  

spectral radius, select ( ) ( )0 0 0, , 0,0,0X Y λ =  for 1,2, ,k N=   

‘do 
Compute 1kX +  by (27). 
Compute 1kY +  by (28). 
end 

Update ( )1 1 1k k k kY DXλ λ µ+ + += − − ; 

end 

Output: ( ), ,N N NX Y λ  as an approximate solution of (11). 
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Convergence Proof 
In this section, we will demonstrate that the LADMM algorithm is convergent. 

pI  is the unit matrix of p p× . Let p n p n pS R R R+ += × ×  and ( )TT T T, ,ω β γ α= , 
( ) ( )2,1f β β∈∂ , ( ) ( )1g γ γ∈∂ . Solving the model is equivalent to finding 

( )* * *, ,β γ α  that satisfies the KKT condition of the model, i.e. 

( )
( )

* T *
2

* *

* *

0

0

0

X

X

g

y

fλ β α

γ α

β γ

 − =

 + =


− − =







                      (29) 

Let us remember that the set of elements that satisfy the above formula in S is 
*S . The KKT condition of the above formula can be written as the form of varia-

tional inequality (VI) as: 

( ) ( )T* * 0, ,F Sω ω ω ω− ≥ ∀ ∈                   (30) 

where 

( )
( )
( )

T
2 X

X

f
F g

y

λ β α
ω γ α

β γ

 −
 

= + 
 − − 







                    (31) 

In order to prove these conclusions, as well as the proof of convergence of 
LADMM, need to introduce some lemma. For details, please refer to the litera-
ture [9]. 

5. Numerical Experiments 

In this chapter, we will discuss the application of the algorithm in image deblur 
ring to prove the effectiveness of the algorithm. All experiments were carried out on 
a four-core notebook computer with Intel Intel(R) Core(TM) i5-7200UCPU @ 2.50 
GHz and 4 GB memory. Procedures for this experiment, pictures are referenced 
[10]. 

Figure 1 shows the application of ADMM algorithm in image deblurring, 
which has motion blur and Gaussian blur respectively. (“motion”, 35, 50), (“gaus-
sian”, 20, 20). 

The noise levels are delta = 0.256, 0.511 respectively. For comparison, we also 
include the results of FTVd v4.1 in [11], which is the most advanced image deb-
lurring algorithm. It can be seen from the pictures that our proposed algorithm 
and FTVd algorithm have the same quality as PSNR (Figure 2), and our algo-
rithm does not need regularization operator.   

[ ]
2

10
255PSNR 10 log dB
MSE

= ⋅  

MSE represents the average square error of each pixel. 

6. Conclusions  

In this paper, we propose a linearized alternating direction multiplier method  
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Figure 1. ADMM algorithm for deblurring. 

 

 
Figure 2. LADMM algorithm for deblurring. 

 
(LADMM) to solve the problem of rapid convergence of the dictionary model 
that is easy to fall into the local optimal solution. This model combines the ad-

Original Observed, PSNR 

ADMM TV, PSNR FTVd, PSNR 

Original Observed, PSNR 

ADMM Frame, PSNR Original

Observed, PSNR ADMM Frame, PSNR 
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vantages of linearization features to make sub-problems easier to solve. When the 
algorithm is applied to the problem of image reconstruction, we use the quadrat-
ic term of the linearized sub-problem to make the sub-problem easier to solve. 

Moreover, in the case of similar PSNR, the algorithm does not need regulari-
zation operator. 

In addition, we analyze the convergence of the LADMM algorithm. Our next 
step is to generalize the model to more non-convex problems (non-negative ma-
trix factorization problems) and use practical problems. 
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