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Abstract 
 
New approximate analytical solutions for steady flow in parallel-plates channels filled with porous materials 
governed by non-linear Brinkman-Forchheimer extended Darcy model for three different physical situations 
are presented. These results are compared with those obtained from an implicit finite-difference solution of 
the corresponding time dependent flow problem. It is seen that the time dependent flow solutions yield the 
almost same steady state values as obtained by using the new approximate analytical solutions 
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1. Introduction 
 
The behaviour of fluid flow in porous media has achi- 
eved considerable attention due to its important practical 
applications. Applications include packed-bed catalytic 
reactor, geothermal reservoir, drying of porous solids, 
shell-side flow model in shell-and tube heat exchanger, 
petroleum resources and many others. Reference [1] and 
[2] studied the mixed convection flow problems in 
porous media based on the model of Darcy law. For flow 
through the porous media with solid boundary, [3] pro- 
posed the classical boundary term in addition to Darcy’s 
law. This Brinkman-extended Darcy model analyzed the 
no slip boundary condition at the wall and showed that 
although the wall shear resistance has little influence on 
the pressure drop, it has drastic effects on stream-wise 
velocity component and heat transfer rate at the interface 
between porous media and solid boundary. 

In many modern applications, porous media are cha- 
racterized by high velocities, i.e., the Reynolds number 
based on mean pore size is grater than unity. In such 
cases, it is necessary to account for deviation from li- 
nearity in the momentum equation for porous media. 
This deviation is accounted for by the Forchheimer term 
representing the quadratic drag which is essential for lar- 
ge particle Reynolds numbers. From the physical point 
quadratic drag appears in the momentum equation for 
porous media because of large filtration velocities, the 
form drag due to the solid obstacles becomes comparable 
with the surface drag due to friction [4]. 

Reference [5] also presented a closed form solution of 
the Brinkman-Forchheimer-extended Darcy momentum 
equation and the associated heat transfer equation for the 
case of fully developed flow with uniform heat flux at 
the boundary. They assumed a boundary-layer-type de- 
veloped flow and as a consequence their solution is inac- 
curate when the inertia parameter is small and Darcy 
number approaches and exceeds the value of unity. Refe- 
rence [6] reconsidered the analysis presented in [5] with- 
out invoking their boundary-layer assumption and de- 
rived a more general theoretical solution. 

Recent results on the model (Brinkman-Forchheimer 
extended Darcy) presented are in [7-10]. In all the results 
presented above, no attempt was made to solve the non- 
linear equations analytically.  

In the present work, flow formation in a parallel plate 
channels filled with a fluid saturated porous media is 
analyzed analytically and numerically. The flow is des- 
cribed by the Brinkman-Forchheimer extended Darcy 
equation. 
 
2. Mathematical Model 
 
The physical problem under consideration consists of a 
steady laminar fully developed flow between two infi- 
nitely long horizontal parallel plates filled with porous 
material. The flow formation is caused either by pressure 
gradient or (and) by the movement of one of the bound-  
ing plates. The fluid is assumed to be Newtonian with 
uniform properties and the porous medium is isotropic 
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and homogeneous. The x -axis is taken along one of the 
plate while -axis is normal to it. Under the above 
mentioned assumption and using the dimensionless pa- 
rameters given in the nomenclature, the equation of mo- 
tion in porous media which accounts for the boundary 
and non-linear inertia term is  
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The first term in the left-hand side of Equation (1) is 
the Brinkman term, second is the Darcy and third is the 
Forchheimer term  2n  , hence the momentum trans- 
fer in the porous media is governed by steady Brinkman- 
Forchheimer extended Darcy model. 

The boundary conditions in dimensionless form are: 
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The above equations have been rendered in dimen- 
sionless form by using the non-dimensional parameters 
defined in nomenclature. 

 
3. Analytical Solutions 
 
By introducing the assumption  into Equation 
(1) it becomes 
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Equation (3) has the solutions in Subsections 3.1-3.3. 
 

3.1. Couette Flow [G = 0.0 and B = 1.0] 
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3.2. Pressure Driven Flow [B = 0 and G ≠ 0.0] 
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3.3. Generalized Couette Flow [B = 1.0 and G ≠ 

0.0] 
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The Equations (4) to (6) can be used to find the values 
of the dimensionless velocity  as a function of dimen- 
sionless distance  in the interval [0,1] at the iteration 

u
y

 1i   in terms of value of   at the iteration . It 
should be noted here that 

i
  is function of   which 

really stands for  yiu . Thus Equations (4) to (6) can be 
written in the following algorithmic form 

  1 ,iu y F y u y  i          (7) 

 
4. Numerical Solution 
 
The analytical solutions of the previous section are valid 
for steady state momentum transfer in porous medium 
containing Darcy, Brinkman and Forchheimer terms. To 
explore the limits of validity of these analytical solutions 
and to extend our investigation to time dependent mo-
mentum transfer in porous medium, numerical solution 
of the time dependent problem is obtained using implicit 
finite difference approach. 

Consider the dimensionless form of time dependent 
momentum equation 
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      (8) 

The first term in the right-hand side of Equation (8) is 
the Brinkman term, second is the Darcy and third is the 
Forchheimer term  2n  , hence the momentum trans- 
fer in the porous media is governed by time dependent 
Brinkman-Forchheimer extended Darcy model. 

The initial and boundary conditions in dimensionless 
form for the present problem are: 
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The equations above also have been rendered in di- 
mensionless form by using the non-dimensional parame- 
ters defined in nomenclature. 

The numerical solution of Equation (8) using the ini- 
tial and boundary conditions (9) is obtained by discreti- 
zation of the momentum Equation (8) into the finite defe- 
rence equation at the grid points . They are in or-
der as follows: 
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(10) 

Here the index i refers to y and j to t. The partial time 
derivative is approximated by the backward difference 
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formula, while the second-order partial space derivative 
is approximated by the central difference formula. The 
above equation is solved by Thomas algorithm by ma-
nipulating into a system of linear algebraic equations in 
the tri-diagonal form. 

In each time step, the process of numerical integration 
for every dependent variable starts from the first neigh- 
boring grid point of the plate at  and proceeds 
towards the another plate using the tri-diagonal form of 
the finite difference Equation (10) until it reaches at im- 

0y 

mediate grid point of the plate at . 1y 
In each time step the velocity field is obtained. The 

process of computation is advanced until a steady state is 
approached by satisfying the following convergence cri- 
terion: 

, 1 , 6
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          (12) 

with respect to velocity field. 
Here ,i jA  represents the velocity field, M  is the 

number of interior grid points and 
max

A  is the maxi- 
 

mum absolute value of ,i jA . 
In the numerical computation special attention is need- 

ed to specify t  to get a steady state solution as rapidly 
as possible, yet small enough to avoid instabilities. 

It is set, which is suitable for present computation, as 

 2
t Stabr y                (13) 

The parameter  is determined by numerical 
experimentation in order to achieve convergence and sta- 
bility of the solution procedure. Numerical experiments 
show that the value 2 is suitable for numerical computa- 
tions. 

Stabr

 
5. Results and Discussion 
 
For the Brinkman-Forchheimer extension of Darcy equa- 
tion to model the flow in a porous media (n = 2), B = 1.0, 
γ = 1.0, C = 0.52, Da = 0.01, and G = + 10.0, 0.0 and 
–10.0, the solutions of Equation (1) have been compared 
with the implicit finite-difference solution of Equation (8) 
in Tables 1, 2 and 3, for Couette flow, pressure driven 
flow and generalized Couette flow respectively. 

 
Table 1. B = 1.0, γ = 1.0, Da = 0.01, G = 0.0 & C = 0.52. 

y ANALYTICAL SOLUTION 
NUMERICAL SOLUTION 

(IMPLICIT FINITE-DIFFERENCE SOLUTION) 

0.0 1.00000 1.00000 

0.1 0.36443 0.36457 

0.2 0.13439 0.13381 

0.3 0.04959 0.04923 

0.4 0.01828 0.01813 

0.5 0.00673 0.00668 

0.6 0.00248 0.00246 

0.7 0.00091 0.00090 

0.8 0.00033 0.00032 

0.9 0.00011 0.00010 

1.0 0.00000 0.00000 

 
Table 2. B = 0.0, γ = 1.0, Da = 0.01 & C = 0.52. 

G = 10.0 y ANALYTICAL SOLUTION 
NUMERICAL SOLUTION 

(IMPLICIT FINITE-DIFFERENCE SOLUTION) 

 0.0 0.00000 0.00000 

 0.1 0.06306 0.06296 

 0.2 0.08611 0.08606 

 0.3 0.09450 0.09448 

 0.4 0.09745 0.09744 

 0.5 0.09817 0.09816 

 0.6 0.09745 0.09744 

 0.7 0.09450 0.09448 

 0.8 0.08611 0.08606 

 0.9 0.06306 0.06296 

 1.0 0.00000 0.00000 
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G = –10.0    

 0.0 0.00000 0.00000 

 0.1 –0.06335 –0.06331 

 0.2 –0.08676 –0.08671 

 0.3 –0.09536 –0.09532 

 0.4 –0.09840 –0.09837 

 0.5 –0.09915 –0.09912 

 0.6 –0.09840 –0.09837 

 0.7 –0.09536 –0.09532 

 0.8 –0.08676 –0.08671 

 0.9 –0.06335 –0.06331 

 1.0 0.00000 0.00000 

 
Table 3. B = 1.0, γ = 1.0, Da = 0.01 & C = 0.52. 

G = 10.0 y ANALYTICAL SOLUTION 
NUMERICAL SOLUTION 

(IMPLICIT FINITE-DIFFERENCE SOLUTION) 
 0.0 1.00000 1.00000 

 0.1 0.42608 0.42646 

 0.2 0.21942 0.21891 

 0.3 0.14532 0.14313 

 0.4 0.11546 0.11527 

 0.5 0.10478 0.10470 

 0.6 0.09988 0.09983 

 0.7 0.09539 0.09536 

 0.8 0.08643 0.08637 

 0.9 0.06316 0.06306 

 1.0 0.00000 0.00000 

G = –10.0    

 0.0 1.00000 1.00000 

 0.1 0.30250 0.30234 

 0.2 0.04874 0.04808 

 0.3 –0.04517 –004548 

 0.4 –0.07984 –0.07992 

 0.5 –0.09229 –0.09229 

 0.6 –0.09587 –0.09584 

 0.7 –0.09443 –0.09439 

 0.8 –0.08643 –0.08637 

 0.9 –0.06324 –0.06320 

 1.0 0.00000 0.00000 

Gr = 0.0    

 0.0 1.00000 1.00000 

 0.1 0.36443 0.36457 

 0.2 0.13439 0.13381 

 0.3 0.04959 0.04923 

 0.4 0.01828 0.01813 

 0.5 0.00673 0.00668 

 0.6 0.00248 0.00246 

 0.7 0.00091 0.00090 

 0.8 0.00033 0.00032 

 0.9 0.00011 0.00010 

 1.0 0.00000 0.00000 
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From the results presented in Tables, it can be noticed 
that the approximate analytical solutions presented in this 
work, though it is simple, it gives good and accurate re- 
sults, and hence it can be efficiently used to solve this 
class of nonlinear differential equation models. 
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Nomenclature 
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 axial pressure gradient Darcy number, 
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dimensionless pressure gradient, 
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u  velocity of the fluid  

G 
dimensionless velocity of the fluid, 

u H


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 
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 u 
H  total width of the channel 
y  dimensional co-ordinate  t  dimensional time 
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 dimensionless time, 
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 y  t 

n  index Greek symbols 

eff  effective kinematics viscosity of porous medium C  inertia coefficient 

C = dimensionless inertia coefficient, 
3
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


  kinematics viscosity of fluid 
   ratio of kinematics viscosity 

G = dimensionless axial pressure gradient
0U  motion of the channel wall at  0y 

B  dimensionless motion of the channel wall at 0y   

K  permeability of the porous medium 
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