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Abstract 

This paper is to investigate the convergence rate of asymptotic normality of 
frequency polygon estimation for density function under mixing random 
fields, which include strongly mixing condition and some weaker mixing 
conditions. A Berry-Esseen bound of frequency polygon is established and 
the convergence rates of asymptotic normality are derived. In particularly, for 
the optimal bin width 1 5ˆoptb C −= n , it is showed that the convergence rate of 

asymptotic normality reaches to ( )2 5 1 3ˆ N− +n  when mixing coefficient tends to 
zero exponentially fast. 
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1. Introduction 

Denote the integer lattice points in the N-dimensional Euclidean space by NZ  
for 1N ≥ . Let { }: NX Z∈i i  be a strictly stationary random field with common 
density ( )f x  on the real line R. Throughout this paper, let  

( )1 22 2 2
1 2 Ni i i= + + +i  , 1 2

ˆ
Ni i i= i , i j  denote k ki j≤  ( 1 k N≤ ≤ ) for 

( )1 2, , , N
Ni i i Z= ∈i  and ( )1 2, , , N

Nj j j Z= ∈j , and ( )1,1, ,1 NZ= ∈1 . 
The limit process →∞n  denotes 

{ } ( )min ;1 and 1 ,i i jn i N n n C i j N≤ ≤ →∞ ≤ ≤ ≤  

How to cite this paper: Yang, S.C., Yang, 
X., Xing, G.D. and Li, Y.M. (2018) The Rate 
of Asymptotic Normality of Frequency 
Polygon Density Estimation for Spatial 
Random Fields. Open Journal of Statistics, 
8, 962-973.  
https://doi.org/10.4236/ojs.2018.86064  
 
Received: November 27, 2018 
Accepted: December 26, 2018 
Published: December 29, 2018 
 
Copyright © 2018 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

http://www.scirp.org/journal/ojs
https://doi.org/10.4236/ojs.2018.86064
http://www.scirp.org
https://doi.org/10.4236/ojs.2018.86064
http://creativecommons.org/licenses/by/4.0/


S. C. Yang et al. 
 

 

DOI: 10.4236/ojs.2018.86064 963 Open Journal of Statistics 

 

for some constant 0C > . 
For a set of sites NS Z⊂ , ( ) ( );S X S= ∈  i i  denotes the σ-field generated 

by the random variables ( );X S∈i i . ( )Card S  denotes the cardinality of S, and 
( )dist ,S S ′  denotes the Euclidean distance between S and S ′ , that is  
( ) { }dist , min ; ,S S S S′ ′= − ∈ ∈i j i j . We will use the following mixing coefficient 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( )( ) ( )( )

, sup , ,

Card ,Card dist , ,

S S P AB P A P B A S B S

Ch S S S S

α

ϕ

′ ′= − ∈ ∈

′ ′≤

   

   

(1) 

where C is some positive constant, ( ) 0uϕ ↓  as u →∞ , and ( ),h n m  is a 
symmetric positive function nondecreasing in each variable. 

If 1h ≡ , then { }: NX Z∈i i  is called strongly mixing. In Carbon et al. [1], it 
is assumed that h satisfies either 

( ) { }, min , ,h n m n m≤                       (2) 

or 

( ) ( ), 1 kh n m n m≤ + +


                      (3) 

where 1k ≥ . Conditions (2) and (3) are also used by Neaderhouser [2] and Ta-
kahata [3], respectively and are weaker than the strong mixing condition. 

In recent years, there is a growing interest in statistical problem for random 
fields, because spatial data are modeled as finite observations of random fields. 
For asymptotic properties of kernel density estimators for spatial random fields, 
one can refer to Tran [4], Hallin et al. [5] [6], Cheng et al. [7], El Machkouri [8] 
[9], Wang and Woodroofe [10], among others. For spatial regression models, see, 
Biau and Cadre [11], Lu and Chen [12], Hallin et al. [13], Gao et al. [14], Carbon 
et al. [15], Dabo-Niang and Yao [16]. 

The purpose of this paper is going to investigate the convergence rate of 
asymptotic normality of frequency polygon estimation of density function for 
mixing random fields. The frequency polygon has the advantage to be concep-
tually and computationally simple. Furthermore, Scott [17] showed that the rate 
of convergence of frequency polygon is superior to the histogram for smooth 
densities, and similar to those of kernel estimators. In recent years, frequency 
polygon estimator is given increasing attention. For example, key references that 
can be found for non-spatial random variables are Scott [17], Beirlant et al. [18], 
Carbon et al. [19], Yang [20], Xin et al. [21], etc. For spatial random fields, the 
references on frequency polygon are Carbon [11], Carbon et al [1], Bensad and 
Dabo-Niang [22] and El Machkouri [23]. For continuous indexed random fields, 
Bensad and Dabo-Niang [22] derived the integrated mean squared error of fre-
quency polygon and the optimal uniform strong rate of convergence. For dis-
cretely indexed random fields, Carbon [24] obtained the optimal bin width 
based on asymptotically minimize integrated error and the rate of uniform con-
vergence, Carbon [1] derived the asymptotic normality of frequency polygon 
under the mixing conditions that the function h in (1.1) satisfies (2) or (3), El 
Machkouri [23] established the asymptotic normality of frequency polygon for 
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strongly mixing coefficients (that is, 1h ≡ ). However, the convergence rate of 
asymptotic normality of frequency polygon has not been discussed in these lite-
rature. In this paper, we will prove a Berry-Esseen bound of frequency polygon 
and the convergence rate of asymptotic normality under weaker mixing condi-
tions, which include strongly mixing condition. 

This paper is organized as follows: Next section presents the main results. Sec-
tion 3 gives some lemmas, which will be used later. Section 4 provides the proofs 
of theorems. Throughout this paper, the letter C will be used to denote positive 
constants whose values are unimportant and may vary, but not dependent on n . 

2. Main Results 

Suppose that we observe { }Xn  on a rectangular region { }:  i 1 i n . Con-
sider a partition 2 1 0 1 2x x x x x− −< < < < <   of the real line into equal inter-
vals ( ) )1 ,kI k b kb= − n n  of length bn , where bn  is the bin width and 

0, 1, 2,k = ± ±  . For ( ) ( ) )0 01 2 , 1 2x k b k b∈ − + n n , consider the two adjacent 
histogram bins 

0kI  and 
0 1kI + . Denote the number of observations falling in 

these intervals respectively by 
0kv  and 

0 1kv + . Then the values of the histogram 
in these previous bins are given by 

( ) ( )
0 0 0 01 1ˆ ˆ, .k k k kf v b f v b+ += =n nn n

                
(4) 

Thus the frequency polygon estimation of the density function ( )f x  is de-
fined as follows 

( )
0 00 0 1

1 1
2 2k k

x xf x k f k f
b b +

   
= + − + − +   
   

n
n n             

(5) 

for ( ) ( ) )0 01 2 , 1 2x k b k b∈ − + n n . 
We know that the curve estimated by the frequency polygon is a non-smooth 

curve, but it tends to be a smooth density curve as the interval length bn  of in-
terpolation gradually tends to zero. So we always assume that bn  tends to zero 
as →∞n . In addition, we need the following basic assumptions. 

Assumption (A1) The density ( )f x  with bounded derivative. For all ,i j  
and some constant 0M > , 

( )| | ,f y x M≤j i  

where ( )| |f y xj i  is the conditional density of X j  given X i . 
Assumption (A2) The random field { }: NX Z∈i i  satisfies (1) with 
( ) ( )u O u θϕ −=  for some 2Nθ > . 
Under Assumption (A2), we can take β  such that 1 1 2Nθ β− < < , then 

( )1
1

N
i i iβϕ∞ −
=

< ∞∑ . Carefully checking the proof of Theorem 3.1 in Carbon et al 
[1], we find that the conditions (2) and (3) are not used, in fact, it only uses the 
positive constant ( )1,1h . Therefore, by Theorem 3.1 in Carbon et al. [1], we 
obtain the following result on asymptotic variance. 

Proposition 1 Suppose that Assumption (A1) and (A2) are satisfied. Then, for 
( ) ( ) )0 01 2 , 1 2x k b k b∈ − + n n , we have 
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( )( ) ( ) ( )2 1 ,n nnb Var f x x oσ= +n                   
(6) 

where 

( ) ( )
2

2
0

1 2 .
2

xx k f x
b

σ
  
 = + − 
   

n
n                  

(7) 

It should be reminded that, as in Remark 3 in El Machkouri (2013), it should 
be ( )( ) ( )2

01 2 2 k x b f x+ − n  instead of ( )( ) ( )2
01 2 2k x b f x+ − n  for the 

asymptotic variance ( )2 xσn . 

Let ( ) ( ) ( ) ( )1 2 1ˆS b f x Ef x xσ −= −  n n n n nn , ( ) ( )SF u P S u= <
n n  and ( )uΦ  

denote the distribution function of ( )0,1N . Now we give our main results as 
follow. 

Theorem 1. Suppose that Assumption (A1) and (A2) hold. Assume that there 
exist integers p p= →∞n  and q q= →∞n  such that 

1, 2, 3,0, 0, 0τ τ τ→ → →n n n                     (8) 

where ( ) 1 21
1, 2, ˆ, Nqp b pτ τ −−= =n n nn  and ( ) ( )1 21

3, ˆ ˆ, Nb q h pθτ − −=n nn n . Then, 

for x  such that ( ) 0f x >  and as →∞n , we have 

( ) ( ) ( )sup S
u R

F u u O τ
∈

−Φ =
n n

                   
(9) 

where 1 3 1 2 1 3
1, 2, 3, 4,τ τ τ τ τ= + + +n n n n n  and 1

4,
Nb p q θτ − −=n n . 

Remark 1. In the theorem above, it does not need to assume that 4, 0τ →n  
because 4, 2, 3,0 0Cτ τ τ≤ ≤ →n n n  from (8). 

Theorem 1 provides a general result for Berry-Esseen bound of frequency po-
lygon estimation. Some specific bounds can be obtained by choosing different 
bn , p and q. 

Theorem 2. Suppose that Assumption (A1) and (A2) hold. Let ˆb C ν−=n n  

for some ( )0,1ν ∈ . Denote that ( )
( )

( )
( )1

1 2 1
1 1 3

N N
N

ν ε
η

ν ε ε
+ −

= +
− +

,  

( )
( )2 1

3
1 3

N N
N

ε
η η

ε
+

= +
+

 and 


( )3 1
4

1
N kη η
ν ε

= +
−

 for some ( )0,1ε ∈ .  

1) If 1h ≡  and 

{ }1max 2 , ,Nθ η≥                       (10) 

2) or if (2) is satisfied and 

{ }2max 2 , ,Nθ η≥                       (11) 

3) or if (3) is satisfied and 

{ }3max 2 , ,Nθ η≥                       (12) 

then, for x  such that ( ) 0f x >  and as →∞n , we have 

( ) ( )
( )( )
( )

1 1
2 1 3ˆsup N

S
u R

F u u O
ν ε− −

−
+

∈

 
 −Φ =
 
 

n
n

               

(13) 
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Carbon [24] proved that the optimal bin width for asymptotical mean square 
error 

( )

1 5

1 5

2

15 ˆ2
49optb

R f
− 

=   
 

n
                   

(14) 

where ( ) ( ) 2
2 dR f f x x

∞

−∞
′′=   ∫ , when 2 3 2Nθ > + . For the optimal bin width, 

it is ease to get the following result by Theorem 2. 
Corollary 1. Suppose that Assumption (A1) and (A2) hold and 1h ≡ . Let 

1 5ˆb C −=n n . 1) If 

( )
( )
2 13max 2 ,

2 1 3
NNN

N
ε

θ
ε ε

 − ≥ + 
+                    

(15) 

for some ( )0,1ε ∈ , then, for x  such that ( ) 0f x > , 

( ) ( )
( )
( )
2 1

5 1 3ˆsup .N
S

u R
F u u O

ε−
−

+

∈

 
 −Φ =
 
 

n
n

               

(16) 

2) If ( )uϕ  tends to zero exponentially fast as u tends to infinity, then, for x  
such that ( ) 0f x > , 

( ) ( ) ( )
2

5 1 3ˆsup .N
S

u R
F u u O

−
+

∈

 
 −Φ =
 
 

n
n

               
(17) 

Remark 2. The asymptotic normality of frequency polygon under the strongly 
mixing conditions established by Carbon [1] and El Machkouri [23]. As far as 
we know, however, the convergence rate of asymptotic normality has not been 
studied. Our conclusions make an effort in this respect. 

3. Lemmas 

In the later proof, we need to estimate the upper bounds of covariance and va-
riance of dependent variables. The following two lemmas give the upper bounds 
of covariance and variance respectively. 

Lemma 1. Roussas and Ioannides [25] suppose that ξ  and η  are ( )S - 
measurable and ( )S ′ -measurable random variables, respectively. If 1Cξ ≤  
a.s. and 2Cη ≤  a.s., then 

( ) ( )( ) ( )( )1 24 , .E E E C C dist S Sξη ξ η α ′− ≤
            

(18) 

Let 

( )( ), , , ,1 , .k k k kY I k b X kb Y Y EY= − ≤ < = −i n i n i i i


          
(19) 

Lemma 2. Gao et al. [26] let assumption (A1) and (A2) be satisfied. Sup-
pose that the integer vectors ( )1 2, , , Na a a=a  , ( )1 2, , , Nm m m=m   and 

( )1 2, , , Nn n n=n   satisfy 0 i i i ia a m n≤ < + ≤  for 1 i N≤ ≤ . Then there exists 
a positive constant C, which is no depending on n , a  and m , such that 

2

, ˆ .i k
a i a m

E Y C b
+

 
≤ 

 
∑ nm

                     
(20) 
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Lemma 3. Lemma 3.7 in Yang [27] suppose that { }: 1n nζ ≥  and { }: 1n nη ≥  
are two random variable sequences, { }: 1n nγ ≥  is a positive constant sequence, 
and 0nγ → . If 

( ) ( ) ( )sup ,
n n

u
F u u Oζ γ−Φ =

                  
(21) 

then for any 0ε > , 

( ) ( ) ( )( )sup .
n n n n

u
F u u O Pζ η γ ε η ε+ −Φ = + + ≥

          
(22) 

4. Proofs 

Proof of Theorem 1 We will use the methodology of using “small” and “big” 
blocks which is similar to that of Carbon et al. [1]. For  

( ) ( )( )0 01 2 , 1 2x k b k b∈ − +n n , define 

0 0 0

1 2
, 0 , 0 , 1

1 1 .
2 2k k k

x xZ b k Y k Y
b b

−
+

     = + − + − +    
     

i n i i
n n         

(23) 

and 
0 0 0, , ,k k kZ Z EZ= −i i i . Then 

( )
0

1 2
,ˆ .kS x Z−= ∑ 

 
n i

1 i n
n

                     
(24) 

Now we divide ( )S xn  into the sum of large blocks and the sum of small 
blocks. According to the block size method, we assume q p<  and ,p q  satisfy 
(8). Assume for some integer vector ( )1 2, , , Nr r r= r , we have  

( ) ( )1 1 , , N Nn r p q n r p q= + = + . If it is not this case, there will be a remainder 
term in the splitting block, but it will not change the proof much. For  1 j r , 
let 

( )
( )( )

( )( )

0

1
1 2

,
1 1;1

ˆ1, ,
k

k k

j p q p

k
i j p q k N

U Z
− + +

−

= − + + ≤ ≤

= ∑ 

in j n  

( )
( )( )

( )( )

( )( )

( )

0

1
1 2

,
1 1;1 1 1 1

ˆ2, ,
k N

k k N N

j p q p j p q

k
i j p q k N i j p q p

U Z
− + + +

−

= − + + ≤ ≤ − = − + + +

= ∑ ∑ 

in j n  

( )
( )( )

( )( )

( )( )

( )

( )( )

( )( )1

0
1 1

1 1
1 2

,
1 1;1 2 1 1 1 1

ˆ3, ,
k NN

k k N N N N

j p q p j p q pj p q

k
i j p q k N i j p q p i j p q

U Z
−

− −

− + + − + ++
−

= − + + ≤ ≤ − = − + + + = − + +

= ∑ ∑ ∑ 

in j n  

( )
( )( )

( )( )

( )( )

( )

( )( )

( )1

0
1 1

1
1 2

,
1 1;1 2 1 1 1 1

ˆ4, ,
k N N

k k N N N N

j p q p j p q j p q

k
i j p q k N i j p q p i j p q p

U Z
−

− −

− + + + +
−

= − + + ≤ ≤ − = − + + + = − + + +

= ∑ ∑ ∑ 

in j n  

an so on. Note that 

( )
( )( )

( )

( )( )

( )( )

0

1
1 2

,
= 1 1;1 1 = 1 1

ˆ2 1, , .
Nk

k k N N

j p q pj p q
N

k
i j p q p k N i j p q

U Z
− + ++

−

− + + + ≤ ≤ − − + +

− = ∑ ∑ 

in j n  

Finally 

( )
( )( )

( )

0

1 2
,

1 1;1

ˆ2 , , .
k

k k

j p q
N

k
i j p q p k N

U Z
+

−

= − + + + ≤ ≤

= ∑ 

in j n  

For each integer 1,2Ni  ∈   , define 
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( ) ( ), , ,T i U i= ∑
 1 j r

n n j
                     

(25) 

and ( )2
2 ,

N

iB T i
=

= ∑n n . Then 

( ) ( )1, .S x T B= +n nn                      (26) 

Enumerate the random variables ( ){ }1, , :U  n j 1 j r  in an arbitrary man-
ner and refer to them as ˆ1 2, , ,V V V r . Note that 1 2 1 2ˆ N

iV C p b− −≤ nn . Using 
Theorem 4 in Rio [28] or Lemma 4.5 in Carbon et al. [29] [30], there exists 

ˆ1 2, , ,V V V  

 r , independent random variables, independent of ˆ1 2, , ,V V V r  with 
the same law verifying 

( )( ) ( )

( ) ( )

1 2 1 2

1 2 1 2

ˆ ˆ 1 ,

ˆ ˆ , .

N N N
i i

N N

E V V C p b h p p q

C p b h p q

ϕ

ϕ

− −

− −

− ≤ −

≤



n

n

n r

n n
           

(27) 

Let ( ) ˆ

11, iiT V
=

= ∑ 

rn  and ( ) ( )1, 1,A T T= − n n n . Thus 

( ) ( )1, .S x T A B= + +

n n nn                    (28) 

By Lemma 3, it is sufficient to show that 

( ) ( )1 2 1 2
3, 3, ,P A Oτ τ> =n n n                     

(29) 

( ) ( )1 3 1 3 1 3 1 3
1, 4, 1, 4, ,P B Oτ τ τ τ> + = +n n n n n                

(30) 

and 

( ) ( ) ( ) ( )2,1,sup .T
u R

F u u O τ
∈

−Φ =
 nn

                 
(31) 

Obviously, from (27) 

( )
( ) ( )

( ) ( )

ˆ
1 3 1 2
3, 3,

1

1 2 1 2 1 2
3,

1 21 2 1
3,

1 2
3,

ˆ ˆ ˆ ,

ˆ ˆ ,

,

i i
i

N N

N

P A C E V V

C p b h p q

C b q h p

C

θ

τ τ

τ ϕ

τ

τ

−

=

− − −

− − −

> ≤ −

≤

≤

=

∑ 

r

n n n

n n

n n

n

rn n

n n

          

(32) 

it follows (29). Now consider that 

( ) ( )( )

( ) ( )

2
1 3 1 3 1 3 1 3
1, 4, 1, 4,

2

221 3 1 3 2
1, 4,

2

,

, .

N

N

i

i

P B P T i

C ET i

τ τ τ τ

τ τ

=

−

=

> + ≤ > +

≤ +

∑

∑

n n n n n

n n

n

n
         

(33) 

Note that 

( ) ( ) ( ) ( )( )2 2

, ,

1 2

ˆ2, 2, , Cov 2, , , 2, ,

:

ET EU U U
′ ′≠

′= +

= Λ + Λ

∑
 1 j j r j j

n r n j n j n j

    

(34) 

By Lemma 2, 
1 1 1 1

1 1,ˆ ˆ .NC b p qb Cp q Cτ− − − −Λ ≤ ≤ =n n nrn               (35) 
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Define 
( ) ( )( ) ( )( ){

( )( ) ( )}
2, , : 1 1 1 ,

1 1, 1 1
k k k

N N N

j p q i j p q p

k N j p q p i j p q

= − + + ≤ ≤ − + +

≤ ≤ − − + + + ≤ ≤ +

 n j i
. By 

Lemma 1, 

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( )

0 0

1
2 , ,

, , 2, , , 2, ,

1 1

, , 2, , , 2, ,

1 1

, , 2, , , 2, ,

1 1 2 2 2

, ,

ˆ ,

ˆ

ˆ

ˆ

k k

N

Z Z

C b

C b q

C b p q q
θ

ϕ

ϕ

−
′

′ ′ ′ ′≠ ∈ ∈

− −

′ ′ ′ ′≠ ∈ ∈

− −

′ ′ ′ ′≠ ∈ ∈

−− − −

′ ′≠

Λ ≤

′≤ −

′≤ −

′≤ −

∑ ∑

∑ ∑

∑ ∑

∑

 

 

 

 

 

 

 

 

i i
1 j j r j j i n j i n j

n
1 j j r j j i n j i n j

n
1 j j r j j i n j i n j

n
1 j j r j j

n Cov

n i i

n j j

n j j

 

( )

1 1 2 2 2

21 1 2 1

1

4,

ˆ ˆ

ˆ ˆ

.

N

N

N

C b p q q

C b p q qp

Cb p q
C

θθ

θ

θ

τ

−− − − −

− − − −

− −

≤

≤

≤
=

∑
 

n
1 j r

n

n

n

n r j

n r

                         

(36) 

Combining (34)-(36), we have 

( ) ( )2
1, 4,2, .ET C τ τ≤ +n nn

                   
(37) 

similarly, ( ) ( )2
1, 4,,ET i C τ τ≤ +n nn  for 3 2Ni≤ ≤ . Thus, we obtain (30) from 

(33). 
Finely, to show that (31). Clearly, 

( )( ) ( ) ( )1
ˆ1 , ,

ˆVar 1, Var Cov ,t t
t t t t

T V V V ′
′ ′≤ ≤ ≠

= + ∑
r

n r
           

(38) 

Define ( ) ( )( ) ( )( ){ }1, , : 1 1 1 ,1k k kj p q i j p q p k N= − + + ≤ ≤ − + + ≤ ≤ n j i . 
Recalling (36), we have 

( )

( ) ( )( )

( ) ( )
( )

( ) ( )
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(39) 

and by Lemma 2 

( ) ( )( ) 1
1ˆ ˆ ˆ ˆVar Var 1, , .NV U C p C−= ≤ ≤r r n 1 rn

            
(40) 
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Combining (38)-(40) yields that ( )( ) ( ) ( )1ˆVar 1, Var 1T V o= +n r  and  
( )( )Var 1,T C≤n , so that ( ) ( )( ) ( )( ) ( )Var Var 1, Var 1, 1nS T B T o= + = +nn n  

from 2 0EB →n . Hence 
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( ) ( )
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1 1

2

ˆ ˆVar 1, Var Var
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1 .
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n

n

n r r

n

               

(41) 

Let ( )( ){ } 3 2 3ˆ

1Var 1, iiT E V
−

=
∆ ≡ ∑ 

r
n n . Note that  

( )( ) ( ) ( )2Var 1, 2 4T x f xσ≥ ≥

nn  for ( ) ( )( )0 01 2 , 1 2x k b k b∈ − +n n . From 

(40), we have 

( ) ( ) ( )
ˆ 3 1 2 1 2

1
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ˆ ˆ ˆVar 0,N N
i

i
C E V C b p V C b p− −

=

∆ ≤ ≤ ≤ →∑  

r

n n nn r n
    

(42) 

yields (31) by Berry-Esseen theorem. Complete the proof. 
Proof of Theorem 2 In Theorem 1, take ˆp ρ =  n  and ˆq τ =  n  where 

( )( )
( )

1 3
2 1 3

N
N N
ν ε

ρ
− +

=
+

 and 
( )1

2N
ν ε

τ
−

=  for 0 1ν< <  and 0 1ε< < . Notes 

that ˆb C ν−=n n . Then 

( )( )
( )

3 1 1
2 1 31

1, ˆ ,Nqp
ν ε

τ
− −

−
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( )
( )( )
( )

1 1
1 2 2 1 3
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2 1 31

4, ˆ .
N

NNb p q
ν ε

θτ ν
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 − +
− − − 

+− −   = =n n n                (45) 

First consider the case (1), that is that 1h ≡  and the condition (10) holds. At 
this time, we have 

( ) ( )
( ) ( )1 1

1 21 2
3, ˆ ˆ ˆ, .

N
N N

n b q h p
ν εθ ν

θτ
− − +
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The condition (10) implies that 
( )
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1 2 1
1 1 3

N N
N

ν ε
θ

ν ε ε
+ −

≥ +
− +

. Combining this 

with (45) and (46), we can get that 
( )( )
( )

1 1
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 =
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(48) 

From (43),(44), (47) and (48), it is ease to know that 
( )( )
( )

1 1
2 1 31 3 1 2 1 3

1, 2, 3, 4, ˆ .NO
ν ε

τ τ τ τ τ
− −

−
+

 
 = + + + =
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(49) 
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It follows the desired result (13). For the case (2) and the case (3), the proving 
methods are similar to the method used to prove the case (1). Complete the 
proof. 

5. Conclusion 

The frequency polygon estimation has the advantage of simple calculation. It can 
save calculation cost in the face of large data, so it is a valuable and worth study-
ing method. In the existing literature, the asymptotic normality of the frequency 
polygon estimation has been studied, but its convergence rate has not been es-
tablished. This paper proves a Berry-Esseen bound of the frequency polygon and 
derives the convergence rate of asymptotic normality under weaker mixing con-
ditions. In particularly, for the optimal bin width 1 5ˆoptb C −= n , it is showed that 
the convergence rate of asymptotic normality reaches to ( )2 5 1 3ˆ N− +n  when mix-
ing coefficient tends to zero exponentially fast. These conclusions show that the 
asymptotic normality of the frequency polygon estimator also has a good con-
vergence rate under the dependent samples. Therefore, when the sample size is 
large, the normal distribution can be used to give a better confidence interval es-
timation. 
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